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Abstract: Brillouin lasers, with their unique properties, offer an intriguing solution for many
applications, yet bringing their performance to integrated platforms has remained questionable.
We present a theoretical framework to describe Brillouin lasing in integrated ring microcavities.
Specifically, a general case of a mismatch between the Brillouin shift and the microresonator
inter-mode spacing is considered. We show that although the lasing threshold is increased with
the frequency detuning, a significant enhancement of the laser power in comparison with the pure
resonant interaction could be achieved. Moreover, there is an optimal pump frequency detuning
from the resonant mode frequency, when the effect is most pronounced. An increase of the
Brillouin threshold with the pump frequency detuning is accompanied by narrowing the pump
frequency range available for lasing. Importantly, at the optimal value of the pump frequency
detuning when the Brillouin signal is maximal, Brillouin signal noise level is minimal. Analytical
results obtained in the steady-state approach are in quantitative agreement with the results of
numerical simulations.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Spectrally pure lasers are the heart of precision high-end scientific and commercial applications
[1–3]. The scope of such laser applications is spread on distributed fiber monitoring [4,5],
precise spectroscopy [6], optical communications [7,8], microwave photonics [9], and so on. The
most accessible and studied method to narrow the laser linewidth is to organize a feedback loop
to the laser generation [10,11], namely a feedback through an external high-Q microresonator
[12–14]. The use of such configurations allows to narrow the linewidth of standard semiconductor
DFB lasers down to several kHz [15]. Despite the numerous applications, injection-locked
lasers currently suffer from rather large linewidth. Brillouin lasers enabling sub-kHz generation
linewidth offer an alternative solution. They exploit specific properties of the Brillouin scattering
amplification process such as a low-power threshold and a narrow gain band (tens of MHz) [16].
Such a narrow Brillouin gain spectrum that could be narrower than the microresonator inter-mode
spacing supports single-frequency Brillouin laser operation in fiber cavities of lengths less than
∼10 m [17,18]. Currently, Brillouin lasers are poised to make the leap from the fiber structures to
integrated circuits [19]. Translating their performance to integrated photonics will dramatically
reduce cost and footprint for applications such as ultrahigh capacity fiber and data center networks,
atomic clocks and sensing [20]. Recently, a sub-hertz (∼0.7Hz) fundamental linewidth Brillouin
laser in an integrated Si3N4 waveguide platform has been demonstrated that translates advantages
of non-integrated designs to the chip scale [21]. Such silicon-foundry-compatible design supports
low loss from 405 to 2350 nm and can be integrated with other components, in particular, based
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on silicon, chalcogenide glasses, and other materials with high Brillouin gain factor [22–24].
Single- and multiple-frequency output operation provides a versatile low phase-noise solution.
Effective Brillouin lasing in microcavities requires adjusting the microresonator inter-mode
frequency spacing (i.e. a multiple free spectrum range (FSR)) to the Brillouin frequency shift.
Both these parameters depend on the pump wavelength and external factors (temperature, strain,
etc.). The current advanced technology allows tuning the FSR with an accuracy of about 1 MHz
(through a control of the microresonator size), while its absolute value is comparable with the
Brillouin frequency shift (typically, ∼10 GHz) [24]. The effects of the inter-mode frequency
spacing detuning from the Brillouin shift on Brillouin lasing should be mandatorily taken into
account by the laser designers. In particular, a chip integrable silica microdisk Brillouin laser has
been recently demonstrated as a part of a dual-microcavity system enabling laser generation of a
superior spectral purity [25]. In that system one silica microresonator is used for lasing, while
the second microcavity helps suppress the phase noise and stabilize the laser frequency through
operation of the feedback loop. The frequency detuning effects are vital for the stabilization
algorithms used in such systems. They should be also important for organizing the laser frequency
scanning, adjustment of the Brillouin frequency combs [26] and sensing external quantities [27].
The aim of this work is to describe the dynamical effects arising in the Brillouin laser

microcavities in the case of offset between the Brillouin frequency shift and the microresonator
FSR ranging ±FSR/2 to exclude mode-hopping events. Formally, the used approach is valid
for description of backward single-frequency Brillouin lasers with a micro-resonator shorter
than one meter. However, the target objects of our treatment are cavities of smaller size, like
microcavities based on an integrated waveguide platform, that are subjected to an extended
frequency detuning in GHz range still remaining in the frame of our consideration. Although
our detailed calculations have been performed for a silica disk employing parameters of the real
experimental geometry [25], in general, the used approach is applicable for a wide range of the
integrated devices operating Brillouin interactions as the strongest nonlinearity. For example,
the silicon-based resonators should be considered with caution since Brillouin interactions are
markedly weak in conventional silicon photonic waveguides due to nonlinear losses in silicon
[28,29,30] that are not taken into account by the model. However, the recent advent of hybrid
silicon photonic-phononic waveguides [31] with dominating Brillouin interactions makes the
model applicable for such structures as well. Remarkable progress in silicon-based Brillouin
waveguides has been made recently through the integration of a high Brillouin gain material,
As2S3, onto a silicon-based chip [32]. A ring Brillouin laser fabricated with free spectral range
matched to the Brillouin shift with a compact spiral device within a silicon circuit is a potential
object of the detuning effects as soon as the parameters of the real experimental geometry [33]
are applied. Formally, the used approach is not applicable for forward Brillouin scattering
[31,34]. Besides, cascade generation of the multi-order Brillouin components [35] ignored in our
consideration is assumed to be technically excluded (using additional filters, for example).

2. Coupled Brillouin equations

The configuration of the Brillouin laser is shown in Fig. 1(a). The microresonator is pumped
from a strongly monochromatic laser source at the frequency ωP exciting a pump optical wave for
clockwise propagation inside the microresonator. The counterclockwise Stokes wave is generated
through the Brillouin process at the frequency and propagates inside the microresonator in counter
clock wise direction. Following [36] the Brillouin process could be described in 1-D approach as
an interaction between the complex amplitudes AF(t) and AB(t) of two optical microresonator
modes at frequencies ωF and , respectively, through a hypersound wave ρ(t) at the frequency Ω
(see, Fig1(a, b)):
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where ωF is considered to be the nearest to ωP microresonator mode frequency; K is the
overlapping integral describing efficiency of the mode coupling; Ωb is the central Brillouin
frequency shift; γe is the electrostriction coefficient; n0 is the waveguide refractive index. In
the transverse cross-section the optical modes are assumed to be the fundamental waveguide
modes. The radius of the mode trajectory is assumed to be the radius of the microresonator R; `F ,
`B and `ρ are angular moments for the clockwise, Stokes and hypersound waves, respectively.
Since Eq. (1) describes interaction of the optical modes, the angular moments `F and `B satisfy
to lF = 2πR/mF and lB = 2πR/mB, where mF and mB are fixed integers. The phase matching
conditions are satisfied assigning Ω = ωF − ωB and `ρ = `F + `B. For simplicity we set K = 1/2
[36]. The time constants τF and τB are lifetimes for the clockwise and counterclockwise optical
waves describing losses in the microresonator. These losses are superposition of the losses caused
by coupling with the input-output waveguide and the material losses. So, for the clockwise and
counterclockwise waves the lifetime constants are:

1
τF
=

1
τext
+

1
τF,0

,

1
τB
=

1
τext
+

1
τB,0

.

Fig. 1. Scheme of the Brillouin lasing in a microresonator (a). The optical resonances in
the ring cavity illustrating Brillouin interaction and frequency detuning of pump (blue) and
Brillouin (red) waves described by Eq. 1 (b) and Eq. 3 (c). Green curve illustrates the gain
spectrum.

The energies of the clockwise and counterclockwise waves in the microresonator, |AF |
2 and

|AB |
2, respectively, are linked as [37]:

|AB |
2

τB
+
|AF |

2

τ0,F
= P − PT , (2)

where, P is the pump power and PT is the optical power reflected by the microresonator.
Considering the pump (and so, clockwise) wave frequency detuning from the optical resonance

σF = ωP −ωF , we also allow offsets to counterclockwise wave and hypersound wave frequencies
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σB = ω
′
B − ωB, σρ = Ω′ −Ω, respectively. New phase-matching is achievable at σF = σB + σρ

(see, Fig. 1(c)). With new slowly varying complex amplitudes A′F = AF exp(−i(σFt + ϕF)), A′B =
AB exp(−i(σBt + ϕB)) and ρ′ = ρ exp(−i(σρt + ϕρ)), where ϕi are functions of t (i ≡ F,B, ρ),
the Eq. (1) could be replaced by:
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where, ωB ≈ ωF = ω0.

3. Steady-state solution

Unlike Eq. (1), the steady-state solution for Eq. (3) could be found as
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One can see that in steady-state, the energy of the clockwise wave does not depend on the
pump power. It is just determined by the phase mismatch of the interacting waves and by the
microresonator parameters. The equation for |AB |

2 in Eq. (4) constitutes the energy conservation,
since AF

/√
τext =

√
P +
√
PT (see, Eq. (2)) [37]. The pump and Brillouin wave powers are

connected through Eq. (2) as:
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2
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)
. (5)

Therefore, the parameters τB/τext and |A′F |2
/
τ0,F regulate the efficiency of lasing and threshold

power, respectively.
In a general (non-resonant) case (Ωb > Ω), the dependences of the optical energies on the

frequency offset σF could be found from the phase matching conditions and Eq. (3):
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σF−((Ω

2
b−Ω

2)/ 2Ω)
1+ΓτB ,

σρ =
σFΓτB+((Ω

2
b−Ω

2)/ 2Ω)
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(6)

The Brillouin laser frequency is determined by the difference between the Brillouin shift and
the inter-mode spacing Ωb − Ω and by the detuning σF. The frequency offsets disturb phase
relations between the interacting waves changing the system steady-state. Indeed, when Ωb = Ω,
zero pump wave detuning means that σB = σρ = 0 and so, in steady-state, ϕF − ϕB − ϕρ = π/2
and ϕP − ϕF = 0. Any frequency detuning changes the phase relations followed by a change of
system steady-state, in particular, the waves energies.
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The implicit and explicit expressions for the clockwise and counterclockwise wave energies as
functions of the frequency offset could be obtained from Eq. (3):
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e `
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Although this formalism is applicable for a wide range of the integrated devices, below we

use it to analyze behavior of the Brillouin lasing at λ = 1550 nm (ω0 = 1.22 · 1015) in a chip
integrable pure silica microdisk. Such laser design has been recently reported [25] as a part of
the dual-microcavity laser system delivering radiation of a superior spectral purity. With the
microresonator radius of ∼2.8 mm and mode area of 25 µm2 [36] the pump power of 1 mW and 3
mW corresponds to P = 2.3 · 1020W

/
(m2F) and P = 6.9 · 1020W

/
(m2F), respectively. Table 1

lists other system parameters.

Table 1. Parameters of the microresonator

Parameter Value Parameter Value

τF = τB (2π · 2 · 106)−1s γe 1.5

τext (2π · 1.33 · 106)−1s n0 1.5

Γ (2π · 15.64 · 106)s−1 ρ0 2200 kg/m3

Ωb (2π · 11.55 · 109)s−1 `/R 1.22 · 107 m−1

First, let us consider the resonant case (Ωb = Ω), when the Brillouin shift is exactly the
spectral spacing between two microresonator modes (i.e. a multiple FSR). Figure 2(a) display
the clockwise and counterclockwise waves energies as functions of the pump detuning frequency
σF. The energy of the clockwise wave increases parabolically with the detuning σF. The curve
is symmetrical in respect to σF sign. In agreement with Eq. (4) the clockwise wave energy does
not depend on the pump power. At low pump powers, the threshold value of the clockwise wave
energy is minimal at zero detuning σF. Generation of the counterclockwise wave occurs in a
narrow spectrum range σB → 0. Importantly, the band of possible changes of σB in 1 + ΓτB
narrower than the band bounded between two threshold points of σF (see Eq. (6)). An increase
of the pump power increases the energy of the counterclockwise wave and broadens the spectrum
range available for the counterclockwise wave generation. The spectrum band bounded between
two threshold points of σF also increases. Note, the dependence of the counterclockwise wave
energy on the Brillouin frequency detuning is almost flat. In other words, there is an extended
Brillouin frequency range, where the counterclockwise wave energy does not depend on the
pumping frequency.
Let us now compare the considered resonant case with the case when the Brillouin shift

exceeds the microresonator inter-mode spacing Ωb > Ω (Fig. 2(b)). In this non-resonant case,
the frequency of counterclockwise wave is pulled toward to the peak of the gain spectrum [38].
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Fig. 2. (a) The steady-state Brillouin wave energy as function of the detuning σB for
different pump powers (left) and the clockwise wave energy as function of the detuning
σF (right) for the resonant case (Ωb = Ω) when the Brillouin frequency shift is a multiple
microcavity FSR. (b) The same, but for non-resonant case when the Brillouin shift is detuned
by (Ωb −Ω)

/
2π = 20. Symbols denote clockwise wave energy levels corresponding to the

Brillouin threshold. The results of numerical simulation (Eq. (3)) (dashed) at the pump
power of 3mW. Note, scales for σB (left) and σF (right) are different.

For example, the detuning ∆/2π = 20 MHz shifts the Brillouin generation band by 2.5–3 MHz.
The dependence of the clockwise wave energy on σF is not symmetrical anymore, the minimum
of the parabola is shifted to the point σF = ∆. The clockwise wave energy is higher, the band
of σF available for laser generation is narrower than in the resonant case. Accordingly, the
generation band of available σB is narrower as well. Moreover, there is a spectrum range where
the dependence of energy |AB |

2 on the Stokes frequency detuning σB is double-valued. However,
the top branch only corresponds to a stable solution. The maximum of the counterclockwise
wave energy is localized in the band corresponding to minimal σB values limited by the condition
of cos(ϕP − ϕF) = 1. It highlights the frequency pulling effect. Importantly, there is a range ∆,
where at sufficiently high pump powers the maximum value of the counterclockwise wave energy
exceeds the level obtained for the resonant case ∆ = σB = σF = 0. In particular, one can see
from Fig. 2 that at ∆/2π = 20 MHz, the pumping with a power higher than 1 mW causes an
increase of the lasing wave peak energy in comparison with the resonant case ∆ = σB = σF = 0.
Assuming that the detuning ∆ is high enough for pulling to overtake the characteristic losses
σB > 1/τB, we can estimate the parameters enabling the increasing of Brillouin power:

(2σBτB − 1)
2(σBτB)

2 >
1
τF

√
gτext
PτB

.
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4. Numerical modelling

In this section we present results of numerical simulation of Eq. (3) and compare them with
the results of steady-state analysis. To simulate generation of the Brillouin wave from the noise
level a term describing low thermal density fluctuations (Langevin noise source) has been added
to the equation for hypersound wave in Eq. (1). The Langevin white noise source f (t) equally
contributes the real fr and imaginary fi parts

〈
fr(t)f ∗r (t′)

〉
= Cδ(t′ − t), where C = kTρ0Γ

/
Vυ2, V

is the volume of the acoustic mode, k is the Boltzmann constant, υ is the speed of the hypersound
[39]. In the steady-state lasing regime the noise term implies the amplitude and phase fluctuations
of the interacting waves. Without the noise the interacting waves are completely coherent.
Evolution of the interacting wave energies from the zero to the steady-state level have been
simulated at different pump power levels employing 4-order Runge-Kutta algorithm.

The simulation results corresponding to the theoretical consideration at the pump power of 3
mW are presented in Fig. 2. In the both resonant (Ωb = Ω) and non-resonant (Ωb > Ω) cases
they well fit the steady-state curves of Eq. (7). The only difference is the parts of the curves
corresponding to instable solutions that are omitted in simulations. Besides, the simulation curve
is extended to the σF ranges, where lasing does not occur, since the clockwise wave energy is
below the threshold.
Let us analyze how the Brillouin lasing in microresonator changes with an increase of the

pump power. Considering the resonant case (Ωb = Ω). The transmission of the microresonator
PT/P as a function of the frequency detuning σF shown in Fig. 3(a) is defined by Eq. (2). At low
P→ 0, it corresponds to the transmission spectrum of the microresonator determined by τF,0
and τext only (dotted line in Fig. 3(a)). As the pump power increases and the counterpropagating
wave is generated, the detuning σB becomes linked to the detuning σF (Eq. (6)). The pump
power efficiently transfers to the counterclockwise wave energy. The transmittance of the
microresonator increases and gets maximum. Therefore, within whole pump frequency detuning
band available for lasing the energy of the clockwise wave does not depend longer on the
pump power. The simulation results well reproduce these analytical predictions based on the
steady-state approximation. Besides, in terms of optical powers and spectral bands, the results
are in agreement with the experimental observations [25].
Figure 3(b) depicts the output power of the generated wave |AB |

2
/
τext as a function of the

pump power. One can see that with zero detuning σF the pump power threshold is minimal.
From Eq. (4) it is expressed as:

P0 =
gτext
4τBτ2F

.

Decreasing of the microresonator transmission PT/Pwith the pump power in accordance with Eq.
(5), leads to decreasing of the differential generation efficiency. As predicted analytically from
the steady-state solution, the lasing threshold increases with non-zero pump frequency detuning.
Surprisingly, at non-zero pump frequency detuning there is a pump power level at which the
output laser power exceeds its value at σF = 0. It is also in agreement with the prediction of
steady-state solution Eq. (7) (see Fig. 2(a)) that the energy level |AB |

2 corresponding to the
non-zero detuning values exceeds its value in the central part at σF = 0.
In the non-resonant case (Ωb > Ω) the transmission curve shown in Fig. 3(c) possesses

asymmetry highlighting the frequency pulling. The clockwise and counterclockwise waves
energies are well approximated by the analytical expressions based on Eq. (7). With a fixed
pump power level, the detuning σF available for lasing is narrower than in the resonant case
(Ωb = Ω). Narrowing the detuning range of available σF causes corresponding narrowing the
range of available frequencies σB. These effects are explained by the increase of the pump
threshold power in comparison with the resonant case (Ωb = Ω) that is high enough even for
resonant pumping σF = 0. Moreover, the threshold increases with the detuning σF. Thus, the
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Fig. 3. (a) The fractions of the pump wave power inside the microresonator and reflected by
the microresonator as functions of the pump frequency detuning σF (right). The Brillouin
wave intensity as a function of σB (left). Pump power is 1mW (solid), 3mW (dashed).
The microresonator transmittance without Brillouin lasing (dotted). (b) The Brillouin laser
power as a function of the pump power at various offsets σF . The spectral distance between
the clockwise and counterclockwise waves coincides with the SBS-shift (a, b). The resonant
case (Ωb = Ω) (a, b) and non-resonant case with (Ωb −Ω)

/
2π = 20MHz (c, d) are shown.

enhanced threshold allows to achieve much higher lasing power than in the resonant case Ωb = Ω

(Fig. 3(d)).
Figure 4 provides more details of the reported effect. It evaluates the clockwise and counter-

clockwise wave energies as functions of the frequency offsets at different values of Ωb −Ω. In
agreement with Eq. (6) the dependence of the detuning σB on the valueΩb−Ω is linear. A drastic
increase of the clockwise wave intensity followed by narrowing the band of σF available for lasing
and fast rise of the clockwise wave intensity just above the threshold are also in agreement with

Fig. 4. The intensities of the clockwise and counterclockwise waves as functions of the
detuning σF and σB, respectively, at different values of (Ωb −Ω)/2π. The pump power is
1mW (a), 3mW (b). Note, different scales are used with σF and σB.
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the previous observations. Figure 4 confirms the specific feature established above: in a certain
range of detuning (Ωb −Ω) and at a sufficiently high pump power levels, the maximum value of
the lasing wave energy is higher in comparison with its value in resonance ∆ = σB = σF = 0.
The pumping power of 1 mW is quite enough to increase the peak energy of the counterclockwise
wave in the detuning range of 0 < (Ωb −Ω)

/
2π ≤ 30 MHz. The absolute maximum energy

|AB |
2 is fixed at the pump detuning σF ≈ 1.5MHz and (Ωb −Ω)

/
2π = 20 MHz. With a further

(Ωb −Ω) increase the lasing energy falls rapidly. With the pump power increased to 3 mW, the
maximal value of possible Brillouin wave detuning σB available for lasing increases significantly.
In the whole considered range 0 < (Ωb −Ω)

/
2π ≤ 50MHz the maximum of the lasing wave

energy exceeds its value at the resonance Ωb = Ω. The absolute maximum of the lasing wave
energy is achieved at the pump frequency detuning σF ≈ 3MHz and (Ωb −Ω)

/
2π = 20MHz.

5. Noise performance of the Brillouin microlaser

We have also performed numerical simulations in order to evaluate the noise properties of the
laser radiation emitted by the microresonator. The RIN (relative intensity noise) spectral density
of the laser radiation is defined as

S(ω) =
2〈
|AB |

2〉2
+∞∫
−∞

〈
δ |AB(t)|2δ |AB(t + τ)|2

〉
exp(iωτ)dτ.

This quantity has been evaluated in the cases of (Ωb −Ω)
/
2π = 0 and (Ωb −Ω)

/
2π = 20 MHz,

and at different pump frequency detuning σF . The simulation has been performed with the pump
power of 3 mW. In the resonant case (Ωb = Ω) (Fig. 5(a)) the flat dependence of the laser noise
intensity on the frequency detuning extended up to 10 MHz causes a weak dependence of the RIN
spectral density on the pump frequency detuning σF. The RIN is approximately -137 dB/Hz at
σF = 0, and then increases with σF . At σF/2π = 5 MHz the RIN is approximately -125 dB/Hz.

Fig. 5. The relative noise intensity (RIN) spectral density for the Brillouin lasing in
microresonator at different pump frequency detuning. The resonant case (Ωb = Ω) (a) and
non-resonant case with (Ωb −Ω)

/
2π = 20MHz (b).

Surprisingly, in a non-resonant case, the RIN of the emitted radiation could be significantly
reduced as an optimal non-zero pump frequency detuning is used. It can be seen in Fig. 5(b) the
pump frequency detuning of σF/2π = 5MHz reduces the RIN level down to -153 dB/Hz, i.e.
by ∼13 dB/Hz in respect to the resonant pumping (σF = 0) and by ∼16 dB/Hz in respect to the
resonant case (Ωb = Ω). This effect is explained by narrowing the laser generation band followed
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by suppression of the laser power response to the phase and amplitude noise fluctuations at the
pump frequency detuning σF corresponding the maximal energy conversion to the generated
wave. Despite a strong phase-amplitude coupling observed as a pronounced peak near 5-6 MHz
(Fig. 5(b)), in a wide frequency band of 10 kHz -50 MHz the RIN level is lower than in the
resonant case. So, the optimal pump frequency detuning allows to improve the noise performance
of the Brillouin microlaser.

6. Conclusion

We have reported on the analytical treatments and computer simulations of Brillouin lasing in
integrated microresonator. In contrast to the previous works [36,40], we focus on a non-resonant
case, when the Brillouin frequency shift is not a multiple of the microresonator inter-mode spacing.
In particular, we have explored that despite an increase of the lasing threshold power and pulling
the gain maximum from the optical mode, the lasing intensity can be higher in the non-resonant
case than in the resonant one. To enable the enhanced lasing the pump frequency should be
detuned from the resonant mode frequency providing an optimal detuning. Apart increase of
the lasing threshold power, narrowing of the detuning frequency range available for lasing also
occurs in the non-resonant case. Moreover, when the pump frequency detuning is optimized, the
Brillouin laser noise is reduced. Analytical results are in good agreement with the numerical
simulations and do not contradict the experimental observations [25]. The results of the work
are important for design of Brillouin micro-lasers with improved performance characteristics in
integrated circuits where cascaded generation of the high-order Brillouin component is technically
excluded. In particular, the interconnection between the pump and Stokes frequencies explored
here in the terms of σF, σB (for the cases of resonant and nonresonant Brillouin interaction) is
important for implementation of advanced stabilization algorithms enabling laser generation of a
superior spectral purity [25].
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