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1 Introduction

This paper is devoted to the construction of the conserved charges that are associated to

the gauge symmetry entailed by massless fermionic higher-spin fields and that generalise

the supercharge surface integrals of supergravity. We focus on Anti de Sitter (AdS) back-

grounds and we employ the canonical approach to conserved charges developed for general

relativity [1] and already extended to spin 3/2 gauge fields in the context of AdS (su-

per)gravity [2, 3]. The results reported in the following thus complement our companion
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study of fully-symmetric bosonic fields [4]. The framework and the motivations for the

study of surface charges in higher-spin theories were already illustrated in [4], so that here

we confine ourselves to recall the key points of our strategy and to stress the new features

introduced by Fermi fields.

We compute charges starting from the Fang-Fronsdal action [5] on AdS backgrounds [6].

This is the action describing the free dynamics of massless fermions of spin s + 1/2; nev-

ertheless we expect that our final expression for the charges will continue to apply in the

non-linear theory, at least in some regimes and for a relevant class of solutions. As discussed

at length in [4], this expectation relies on the idea that asymptotically the fields become

weak and the linearised theory applies. It is also supported by numerous examples of

charges linear in the fields in gravitational theories (see e.g. [7]), although one should keep

in mind that counterexamples exist as well. These typically involve scalar fields coupled

to gravity for which the back reaction of the scalar field on the metric cannot be neglected

even asymptotically [8–11]. One may therefore foresee similar effects also in higher-spin

theories, since the known non-linear models usually require matter fields in the spectrum

for consistency (see e.g. the reviews [12, 13]). Knowledge of the linearised charges is anyway

a key input to tackle also the regimes where non-linear corrections become relevant and we

defer to future studies the analysis of the possible impact of matter couplings.

A similar perspective has been employed in a study [14] of the asymptotic symmetries

of supersymmetric Vasiliev’s theories in four space-time dimensions [15–20], which have

been inferred from the effect of vacuum-preserving gauge transformations on linearised

solutions of the equations of motion. Our work complements these results — obtained

without any reference to an action principle – by providing a solid framework for the anal-

ysis of conserved charges and their associated asymptotic symmetries. One virtue of the

Hamiltonian derivation of surface charges is indeed that these generate asymptotic symme-

tries via the Dirac bracket. In the context of fermionic higher-spin theories, however, fully

fledged investigations of this interplay between charges and asymptotic symmetries have

been limited to three-dimensional examples [21–26]. Aside from providing further tools

for the study of asymptotic symmetries in supersymmetric higher-spin theories, our results

can also accompany “unfolding” techniques [27–30] in determining the fermionic charges of

the proposed black hole solutions of Vasiliev’s equations [31–33] or generalisations thereof.

Since we build charges within the canonical formalism, we first need to cast the Fang-

Fronsdal action in Hamiltonian form. Given that the action is of first order in the deriva-

tives, this step essentially requires to distinguish the dynamical variables from the Lagrange

multipliers enforcing the first-class constraints that generate the gauge symmetry. In flat

space this analysis has been performed in [34] for fields of arbitrary half-integer spins and

revisited in the spin-5/2 case in [35] and more recently in [36]. Hamiltonian actions in-

volving a different field content —- inspired by the frame formulation of general relativity

— have also been considered for higher-spin fermions in both flat [37] and (A)dS back-

grounds [38]. Here we extend the presentation of the spin-5/2 action in [34, 36] to AdS

and (partly) to higher spins.

Once the constraints have been determined, we build the canonical generators of gauge

transformations, which contain boundary terms. These boundary terms are non-vanishing
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in the case of “improper gauge transformations” [39] — i.e., transformations that take

the form of gauge transformations but produce a non-trivial effect on the physical system

because they do not go to zero fast enough at infinity — and are identified with the

higher-spin surface charges. Improper gauge transformations are determined by boundary

conformal Killing spinor-tensors (precisely defined in the text by definite equations), up

to proper gauge transformations. Hence, to each conformal Killing spinor-tensor of the

boundary is associated a well-defined higher-spin surface charge.

To illustrate the logic of the procedure, in section 2 we first detail the rewriting in

canonical form of the AdS Fang-Fronsdal action for a spin-5/2 Dirac field. We then pro-

vide boundary conditions on the dynamical variables and on the parameters of the gauge

transformations preserving them. We finally use this information to evaluate the charges

at spatial infinity and we conclude by discussing the peculiarities of the three-dimensional

case. In section 3 we move to arbitrary half-integer spin: first of all we observe that, for

the sake of computing charges, it is sufficient to know the form of the constraints in flat

space. We therefore bypass a detailed Hamiltonian analysis of the AdS theory and we

build surface charges from flat-space constraints. We then present boundary conditions

on the dynamical variables inspired by the behaviour at spatial infinity of the solutions of

the free equations of motion (recalled in appendix C) and we verify that they guarantee

finiteness of the charges. We conclude with a summary of our results and with a number

of appendices. Appendices A and B recall our conventions and some useful facts about

first-order actions, while appendix D discusses the conformal Killing spinor-tensors which

play a crucial role in the study of charges and asymptotic symmetries.

2 Spin-5/2 example

To apply the techniques developed within the canonical formalism to compute surface

charges, we begin by rewriting the AdS Fang-Fronsdal action in a manifestly Hamiltonian

form. The charges are then identified with the boundary terms that enter the canonical gen-

erator of improper gauge transformations. Finally, we propose boundary conditions on the

dynamical variables and on the deformation parameters that give finite asymptotic charges.

2.1 Hamiltonian and constraints

Our starting point is the Fang-Fronsdal action1 for a massless spin-5/2 Dirac field on

AdSd [6], described by a complex-valued spinor-tensor ψαµν which is symmetric in its base-

manifold indices µ, ν (see also e.g. the review [42]):2

S = − i
∫
ddx
√
−ḡ
{
ψ̄µν /Dψµν + 2 ψ̄µνγ

νγλγρDλψρ
µ − 1

2
ψ̄ /Dψ + ψ̄µνγ

µDνψ + ψ̄D · 6ψ

− 2
(
ψ̄µνDµ 6ψν + ψ̄µνγ

µD · ψν
)

+
d

2L

(
ψ̄µνψµν − 2 ψ̄µνγ

νγρψµρ −
1

2
ψ̄ψ

)}
. (2.1)

1Actions for spin-5/2 gauge fields in four dimensional Minkowski space have also been presented inde-

pendently in [40, 41].
2The sign in front of the mass-like term is conventional. One can change it provided one also changes the

sign of the L−1 terms in the gauge transformation (2.2), consistently with the option to send γµ → −γµ.

See section 2.6 for a discussion of the effect of this transformation (when d = 3).
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Spinor indices will always be omitted, while D stands for the AdS covariant derivative (A.3),

L is the AdS radius,3 slashed symbols denote contractions with γµ and omitted indices

signal a trace, so that e.g. 6ψµ = γνψµν and ψ = gµνψµν . In the previous formulae we

employed “curved” γ matrices, which are related to “flat” ones as γµ = eµAγ̂
A, where eµA

is the inverse vielbein. Our conventions are also detailed in appendix A. The action (2.1)

is invariant under the gauge transformations

δψµν = 2

(
D(µεν) +

1

2L
γ(µεν)

)
(2.2)

generated by a γ-traceless spinor-vector. In (2.2) and in the following, parentheses denote

a symmetrisation of the indices they enclose and dividing by the number of terms in the

sum is understood.

Being of first order, the action (2.1) is almost already in canonical form. However, one

would like to distinguish the actual phase-space variables from the Lagrange multipliers that

enforce the first-class constraints associated to the gauge symmetry (2.2). In flat space the

rewriting in canonical form of the Fang-Fronsdal action for a spin-5/2 Majorana field in d =

4 has been presented in [34–36]; to extend it to Dirac fields on Anti de Sitter backgrounds

of generic dimension, we parameterise the AdS metric with the static coordinates

ds2 = −f2(xk)dt2 + gij(x
k)dxidxj . (2.3)

We also choose the local frame such that the non-vanishing components of the vielbein and

the spin connection are

e0 = fdt , ei = ej
idxj , ω0i = eij∂jfdt . (2.4)

To separate dynamical variables and Lagrange multipliers within the components of ψµν , we

recall that time derivatives of the gauge parameter can only appear in the gauge variations

of Lagrange multipliers (see e.g. [43, 44] and § 3.2.2 of [45]). This criterion allows one to

identify the dynamical variables with the spatial components ψij of the covariant field and

with the combination

Ξ = f−2ψ00 − 2 γ0γiψ0i . (2.5)

The remaining components of ψµν play instead the role of Lagrange multipliers. The

covariant gauge variation (2.2) breaks indeed into

δψij = 2

(
∇(iεj) +

1

2L
γ(iεj)

)
, (2.6a)

δΞ = − 2 /∇/ε +
d+ 1

L
/ε , (2.6b)

δψ0i = ε̇i + f2γ0

(
∇i/ε −

1

2
/Γεi − Γi /ε −

1

2L
(εi + γi/ε)

)
, (2.6c)

3All results of this subsection apply also to de Sitter provided that one maps L→ iL.
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where we remark that Latin indices are restricted to spatial directions, while ∇ is the

covariant derivative for the spatial metric gij and Γi denotes the Christoffel symbol Γ0
0i.

The latter depends on g00 as

Γi = f−1∂if . (2.7)

Moreover, from now on slashed symbols denote contractions involving only spatial indices,

e.g. /ε = γiεi. The cancellation of time derivatives in (2.6b) follows from Fronsdal’s con-

straint on the gauge parameter:4

γµεµ = 0 ⇒ ε0 = f2γ0γiεi . (2.8)

The previous splitting of the fields is confirmed by the option to cast the action (2.1)

in the following canonical form:

S =

∫
ddx

{
1

2

(
Ψ†A ω

ABΨ̇B − Ψ̇†A ω
ABΨB

)
− ψ†0k F

k[Ψ]−F†k [Ψ†]ψ0
k −H[Ψ,Ψ†]

}
, (2.9)

where we collected the phase-space variables by defining

ΨA =

(
ψkl
Ξ

)
, ωAB =

(
ωkl|mn ωkl|•

ω•|mn ω•|•

)
. (2.10)

The kinetic term is specified by the symplectic 2-form5 ωAB with components

ωkl|mn = i
√
g

(
gk(mgn)l − 2 γ(kgl)(mγn) − 1

2
gklgmn

)
, (2.11a)

ωkl|• = ω•|kl = − i

2

√
g gkl , (2.11b)

ω•|• =
i

2

√
g , (2.11c)

where
√
g involves only the determinant of the spatial metric. The symplectic 2-form

satisfies ωAB = −
(
ωBA

)†
and its inverse ωAB — which enters the definition of the Dirac

brackets given below – reads

ωkl|mn =
i
√
g

(
− gk(mgn)l +

2

d
γ(kgl)(mγn) +

1

d
gklgmn

)
, (2.12a)

ωkl|• = ω•|kl =
i

d
√
g
gkl , (2.12b)

ω•|• = − i
√
g

d+ 1

d
. (2.12c)

4The rewriting of the gauge variations in (2.6) also relies on the identities ωt
0kγ̂k = f Γkγ

k and

Γk00 = f2gklΓl, that hold thanks to (2.3) and (2.4), while Γ0
00 = Γ0

kl = Γk0l = 0.
5With respect to appendix B — which recalls some general facts about first-order Grassmanian actions

like (2.9) — the symplectic 2-form has here implicit spinor indices and should incorporate a spatial delta

function: ΩAB (~x, ~x′) = ωABδ (~x− ~x′).
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The constraints enforced by the Lagrange multipliers ψ0k are instead

Fk = i
√
g

{
2
(
∇· ψk − γk∇· 6ψ − /∇6ψk

)
−∇kψ + γk /∇ψ −∇kΞ− γk /∇Ξ

+
d

2L
(2 6ψk + γkψ − γkΞ)

}
,

(2.13)

while the Hamiltonian reads

H = i f
√
g

{(
ψ̄kl /∇ψkl +

1

2
Γmψ̄klγ

mψkl
)
− 3

2

(
Ξ̄ /∇Ξ +

1

2
ΓkΞ̄γ

kΞ

)
+ 2

(
ψ̄klγ

kγmγn∇mψnl +
1

2
Γmψ̄klγ

kγmγnψn
l

)
− 1

2

(
ψ̄ /∇ψ +

1

2
Γkψ̄γ

kψ

)
− 2

(
ψ̄kl∇k 6ψl + ψ̄klγ

k∇· ψl + Γmψ̄klγ
kψlm

)
+
(
ψ̄klγ

k∇lψ + ψ̄∇· 6ψ + Γkψ̄ 6ψk
)

−
(

Ξ̄∇· 6ψ + ψ̄klγ
k∇lΞ + ΓkΞ̄6ψk

)
+

1

2

(
Ξ̄ /∇ψ + ψ̄ /∇Ξ + ΓkΞ̄γ

kψ
)

− 3

4
Γk

(
Ξ̄γkψ − ψ̄γkΞ

)
+

d

4L

(
2 ψ̄klψ

kl − 4 ¯6ψk 6ψk − ψ̄ψ − 3 Ξ̄Ξ + Ξ̄ψ + ψ̄Ξ
)}

.

(2.14)

Note that integrating by parts within H generates contributions in Γk due to the overall

dependence on f(xk). The terms collected within each couple of parentheses in (2.14) give

an hermitian contribution to the action thanks to this mechanism.

Following the steps outlined in appendix B (to which we refer for more details), the

knowledge of the symplectic 2-form allows to derive the Dirac brackets between fields:

{ψkl(~x), ψ†mn(~x ′)}D =
i
√
g

(
− gk(mgn)l +

2

d
γ(kgl)(mγm) +

1

d
gklgmn

)
δ(~x− ~x ′) , (2.15a)

{ψkl(~x),Ξ†(~x ′)}D = {Ξ(~x), ψ†kl(~x
′)}D =

i

d
√
g
gkl δ(~x− ~x ′) , (2.15b)

{Ξ(~x),Ξ†(~x ′)}D = − i
√
g

d+ 1

d
δ(~x− ~x ′) . (2.15c)

These are the same expressions as in flat space (compare e.g. with section 3 of [36]). This

was to be expected since the AdS action differs from the Minkowski one only through its

mass term and its covariant derivatives (which are modified only by the addition of algebraic

terms), neither of which modifies the kinetic term, containing one time derivative.

2.2 Gauge transformations

The action (2.1) is invariant under (2.2) for a γ-traceless εµ and this induces the vari-

ations (2.6a) and (2.6b) for the variables which are dynamically relevant. The con-

straints (2.13) that we have just obtained are of first class on AdS (see (2.20) below), and

they generate these gauge transformations through their Dirac brackets with the fields.

The canonical generator of gauge transformations is indeed

G[λk, λ† l] =

∫
dd−1x

(
λ† kFk + F†k λk

)
+Q[λk, λ† l] , (2.16)
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where Q is the boundary term one has to add in order that G admit well defined functional

derivatives, i.e. that its variation be again a bulk integral [39]:

δG =

∫
dd−1x

(
δψ†klA

kl + δΞ†B +A†klδψkl +B†δΞ
)
. (2.17)

The gauge variations of the dynamical variables are recovered from the Dirac brackets with

the constraint, including its surface addition, as follows:

δψkl = {ψkl,G}D = ωkl|mnA
mn + ωkl|•B , (2.18a)

δΞ = {Ξ,G}D = ω•|klA
kl + ω•|•B , (2.18b)

where the ωAB are the components of the inverse of the symplectic 2-form, given in (2.12).

Inserting into (2.16) the constraints (2.13), one obtains

Akl = i
√
g

{
2
(
∇(kλl) − γ(k∇l)/λ− γ(k /∇λl)

)
+ gkl

(
/∇/λ−∇·λ

)
− d

2L

(
2 γ(kλl) + gkl/λ

)}
,

B = i
√
g

{
−∇ · λ− /∇/λ+

d

2L
/λ

}
. (2.19)

Substituting the values of ωAB from (2.12), one gets back the gauge transformations (2.6)

(for ψkl and Ξ) with the identification λk = εk.

The variations (2.18) leave the constraints and the Hamiltonian invariant up to the

constraints themselves:

δFi = 0 , δH = −
(
δψ†0k − ε̇

†
k

)
Fk −F† k

(
δψ0k − ε̇k

)
. (2.20)

On the one hand, when combined with the variation of the kinetic term, these relations just

reflect the gauge invariance of the Fang-Fronsdal action (2.1) on AdS.6 On the other hand,

given the link between gauge transformations and Dirac brackets recalled above, they also

imply that both the constraints and the Hamiltonian are of first class and that there are

no secondary constraints. This is confirmed by the associated counting of local degrees of

freedom (see e.g. § 1.4.2 of [45]):

# d.o.f. = 2[ d2 ]
(

(d− 1)d

2
+ 1︸ ︷︷ ︸

dynamical variables

− 2 (d− 1)︸ ︷︷ ︸
1st class constr.

)
= 2[ d−2

2 ](d− 3)(d− 2) . (2.21)

In d = 4 the right-hand side is equal to four as expected, and in arbitrary d it reproduces

the number of degrees of freedom of a spin-5/2 Dirac fermion (compare e.g. with [46]).

The boundary term Q[λk, λ† l] will be of crucial importance in the following, since it

gives the asymptotic charges. Its variation has to cancel the boundary terms generated by

6The variation of the constraints vanishes provided that the spatial metric be of constant curvature.

To reproduce the variation of H in (2.20) one has instead to impose that the full space-time metric be of

constant curvature.
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the integrations by parts putting the variation of G[λk, λ† l] in the form (2.17). Being linear

in the fields, these variations are integrable and yield:7

Q[λk, λ† l] = −i
∫
dd−2Sk

√
g
{

2λ†jψj
k − 2λ†jγ

jγlψl
k − 2λ†jγkγlψjl − λ†kψ

+ λ†jγ
jγkψ − λ†k Ξ− λ†jγjγk Ξ

}
+ h.c.

(2.22)

In the definition of Q, we also adjusted the integration constant so that the charge vanishes

for the zero solution. Note that, since the constraint (2.13) contains a single derivative,

the expression above for the boundary term on AdS is the same as that one we would have

obtained in Minkowski. For clarity, in this example we displayed the complete Hamiltonian

form of the AdS Fang-Fronsdal action; still knowledge of the constraints in flat space suffices

to compute charges. In section 3 we shall follow this shortcut when dealing with arbitrary

half-integer spins.

2.3 Boundary conditions

The previous considerations remain a bit formal in the sense that the surface integrals (2.22)

might diverge. This is where boundary conditions become relevant. In fact, for generic

theories, the problem of cancelling the unwanted surface terms that appear in the variation

of the Hamiltonian and the problem of defining boundary conditions are entangled and must

be considered simultaneously, because it is only for some appropriate boundary conditions

that the requested charges are integrable and that one can perform the cancellation. The

reason why we got above (formal) integrability of the charges without having to discuss

boundary conditions is that the constraints are linear. One can then construct formal

expressions for the charges first since integrability is automatic.

To go beyond this somewhat formal level and to evaluate the asymptotic charges,

however, we have to set boundary conditions on the dynamical variables. In analogy with

the strategy we employed for Bose fields [4], we propose to use as boundary conditions the

falloffs at spatial infinity of the solutions of the linearised field equations in a convenient

gauge. We check in section 2.5 that these conditions make the charges finite.

In appendix C we recall the behaviour at the boundary of AdS of the solutions of the

Fang-Fronsdal equations of motion; in spite of being of first order, these equations admit

two branches of solutions, related to different projections that one can impose asymptoti-

cally on the fields.8 In a coordinate system in which the AdS metric reads

ds2 =
dr2

r2
+ r2 ηIJdx

IdxJ , (2.23)

7Here dd−2Sk ≡ dd−2x n̂k, where n̂k and dd−2x are respectively the normal and the product of differen-

tials of the coordinates on the d− 2 sphere at infinity (e.g. d2x = dθdφ for d = 4).
8The existence of two branches of solutions associated to different projections on the boundary values of

the fields is not a peculiarity of higher spins. For spin-3/2 fields on AdS it has been noticed already in [3],

while for spin-1/2 fields it has been discussed e.g. in [49, 50].
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the solutions in the subleading branch behave at spatial infinity (r →∞) as

ψIJ = r
5
2
−dQIJ(xK) +O(r

3
2
−d) , (2.24a)

ψrI = O(r−d−
1
2 ) , (2.24b)

ψrr = O(r−d−
7
2 ) . (2.24c)

We remark that capital Latin indices denote all directions which are transverse to the radial

one (including time) and that here and in the following we set the AdS radius to L = 1.

The field equations further impose that QIJ satisfies the following conditions:

∂JQIJ = γ̂JQIJ = 0 , (2.25a)

(1 + γ̂r)QIJ = 0 , (2.25b)

where a hat indicates “flat” γ matrices, that do not depend on the point where the ex-

pressions are evaluated. For instance, γ̂r = δrAγ̂
A. Eqs. (2.24) and (2.25) define our

boundary conditions.

In the case of spin 3/2 included in the discussion of section 3.2, the boundary conditions

dictated by the subleading solution of the linearised e.o.m. agree with those considered for

N = 1 AdS supergravity in four dimensions [3].9 This theory is known in closed form,

and finiteness of the charges and consistency have been completely checked. Moreover, the

agreement in the spin-3/2 sector extends a similar matching between the subleading falloffs

of linearised solutions and the boundary conditions generally considered in literature for

gravity [4]. These are our main motivations to adopt the boundary conditions defined by

subleading linearised solutions for arbitrary values of the spin. See also section 2.6, where

we show how the conditions above allow one to match results previously obtained in the

Chern-Simons formulation of three-dimensional higher-spin gauge theories [21–26].

Since the action is of first order, the constraints (2.13) only depend on the dynamical

variables ψij and Ξ, that somehow play both the role of coordinates and momenta. The

boundary conditions (2.24) and (2.25), obtained from the covariant field equations, can

therefore be easily converted in boundary conditions on the canonical variables:

ψαβ = r
5
2
−dQαβ +O(r

3
2
−d) , Ξ = − r

1
2
−dQ00 +O(r−d−

1
2 ) , (2.26a)

ψrα = O(r−d−
1
2 ) , ψrr = O(r−d−

7
2 ) . (2.26b)

In the formulae above we displayed explicitly only the terms which contribute to the charges

(see section 2.5) and we used Greek letters from the beginning of the alphabet to indicate

the coordinates that parameterise the d − 2 sphere at infinity. Furthermore, we used the

γ-trace constraint (2.25a) to fix the boundary value of Ξ.

9This is actually true up to a partial gauge fixing allowing one to match the falloffs of the radial

component. We refer to section 3.2 for more details.
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2.4 Asymptotic symmetries

In order to specify the deformation parameters that enter the charge (2.22), we now identify

all gauge transformations preserving the boundary conditions of section 2.3. We begin by

selecting covariant gauge transformations compatible with the fall-off conditions (2.24),

and then we translate the result in the canonical language.

Asymptotic symmetries contain at least gauge transformations leaving the vacuum

solution ψµν = 0 invariant. These are generated by γ-traceless Killing spinor-tensors of the

AdS background, which satisfy the conditions

D(µεν) +
1

2
γ(µεν) = 0 , γµεµ = 0 , (2.27)

and generalise the Killing spinors that are considered in supergravity theories (see [47] for

a discussion of the Killing spinors of AdSd along the lines we shall follow for higher spins).

We are not aware of any classification of γ-traceless Killing spinor-tensors of AdS spaces

of arbitrary dimension, but they have been discussed for d = 4 [14] and they are expected

to be in one-to-one correspondence with the generators of the higher-spin superalgebras

classified in [48]. In section D we shall also show that the number of independent solutions

of (2.27) is the same as that of its flat limit, whose general solution is given by (D.7). These

arguments indicate that — as far as the free theory is concerned — non-trivial asymptotic

symmetries exist in any space-time dimension and we are going to classify them from

scratch in the current spin-5/2 example. Along the way we shall observe that, when d > 3,

asymptotic and exact Killing spinor-tensors only differ in terms that do not contribute to

surface charges.

To identify the gauge transformations that preserve the boundary conditions (2.24),

one has to analyse separately the variations of components with different numbers of radial

indices. In the coordinates (2.23), if one fixes the local frame as

er
A = −1

r
δr
A , eI

J = ωI
rJ = r δI

J , ωµνr = ωI
JK = 0 , (2.28)

one obtains the conditions

δψIJ = 2
(
∂(IεJ) +

r

2
γ̂(I| (1− γ̂r) ε|J)

)
+ 2 r3 ηIJεr = O(r

5
2
−d) , (2.29)

δψrI =
1

r

(
r∂r −

4 + γ̂r
2

)
εI +

(
∂I +

r

2
γ̂I (1− γ̂r)

)
εr = O(r−d−

1
2 ) , (2.30)

δψrr =
2

r

(
r∂r +

2− γ̂r
2

)
εr = O(r−d−

7
2 ) . (2.31)

Fronsdal’s γ-trace constraint /ε = 0 implies instead

γ̂rεr = r−2 γ̂IεI , (2.32)

thus showing that the radial component of the gauge parameter, εr, is not independent.

It is anyway convenient to start analysing the conditions above from (2.31), which is a

homogeneous equation solved by

εr = r−
1
2 λ+(xk) + r−

3
2 λ−(xk) +O(r−d−

5
2 ) , with γ̂rλ± = ±λ± . (2.33)
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Substituting in (2.30) one obtains

εI = r
5
2 ζ+

I + r
3
2 ζ−I +

r
1
2

2

(
∂Iλ

+ + γ̂Iλ
−)+

r−
1
2

2
∂Iλ

− +O(r
1
2
−d) , (2.34)

where the new boundary spinor-vectors that specify the solution satisfy

γ̂rζ±I = ± ζ±I . (2.35)

The gauge parameter is further constrained by (2.29) and (2.32). The latter equa-

tion implies

/ζ+ ≡ γ̂Iζ+
I = 0 , λ+ = /ζ− , (2.36)

and the differential conditions

/∂λ+ = −(d+ 1)λ− , /∂λ− = 0 . (2.37)

As shown in appendix D.3, the relations (2.37) are however not independent from the con-

straints imposed by (2.29), so that we can ignore them for the time being. We stress that

in the equations above and in the rest of this subsection, contractions and slashed sym-

bols only involve sums over transverse indices and flat γ matrices, so that /∂λ± = γ̂I∂Iλ
±.

Eq. (2.29) implies instead

δψIJ = 2 r
5
2
(
∂(IζJ)

+ + γ̂(IζJ)
− + ηIJλ

+
)

+ 2 r
3
2
(
∂(IζJ)

− + ηIJλ
−)

+ r
1
2
(
∂I∂Jλ

+ + 2 γ̂(I∂J)λ
−)+ r−

1
2 ∂I∂Jλ

− = O(r
5
2
−d) .

(2.38)

The cancellation of the two leading orders requires

λ+ = − 1

d− 1

(
∂ · ζ+ + /ζ−

)
= −1

d
∂ · ζ+ , λ− = − 1

d− 1
∂ · ζ− , (2.39)

plus the differential conditions presented below in (2.41). In appendix D.3 we prove that

these constraints also force the cancellation of the second line in (2.38) when d > 3. At the

end of this subsection we shall instead comment on how to interpret the additional terms

that one encounters when d = 3.

To summarise: parameterising the AdSd background as in (2.23) and fixing the local

frame as in (2.28), linearised covariant gauge transformations preserving the boundary

conditions (2.24) are generated by

εI = r
1
2 ζ+I + r−

1
2 ζ−I − r−

3
2

2d

(
∂I∂ · ζ+ +

d

d− 1
γ̂I∂ · ζ−

)
− r−

5
2

2(d− 1)
∂I∂ · ζ− +O(r−

3
2
−d) , (2.40a)

εr = − r
3
2

d
∂ · ζ+ − r

1
2

d− 1
∂ · ζ− +O(r−d−

1
2 ) , (2.40b)
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where the spinor-vectors ζ±I are subjected the chirality projections (2.35) and satisfy10

∂(IζJ)
+ − 1

d− 1
ηIJ ∂ · ζ+ = − γ̂(IζJ)

− +
1

d− 1
ηIJ γ̂ · ζ− , (2.41a)

∂(IζJ)
− − 1

d− 1
ηIJ ∂ · ζ− = 0 , (2.41b)

γ̂ · ζ+ = 0 , (2.41c)

γ̂ · ζ− = − 1

d
∂ · ζ+ . (2.41d)

The left-hand sides of (2.41a) and (2.41b) have the same structure as the bosonic con-

formal Killing-vector equation in d − 1 space-time dimensions. For this reason we call

here the solutions of (2.41) “conformal Killing spinor-vectors”. When d > 3 there are

2[ d−1
2 ](d− 2)(d+ 1) independent solutions that we display in appendix D, while when d = 3

the space of solutions actually becomes infinite dimensional (see section 2.6).

As discussed in section 2.2, Fang-Fronsdal’s gauge parameters coincide with the de-

formation parameters entering the charge (2.22). Asymptotic symmetries are therefore

generated by deformation parameters behaving as

λα = r
1
2 ζ+α +O(r−

1
2 ) , λr = O(r

3
2 ) . (2.42)

As in (2.26), Greek letters from the beginning of the alphabet denote coordinates on the

d− 2 sphere at infinity and we specified only the terms that contribute to surface charges.

To conclude this subsection, we remark that an infinite number of solutions is not the

unique peculiarity of the three-dimensional setup: in this case one indeed obtains

δψIJ = −r
− 1

2

2
∂I∂J∂ · ζ− +O(r−

3
2 ) (2.43)

even considering gauge parameters that satisfy (2.40) and (2.41). One can deal with this

variation in two ways: if one wants to solve the Killing equation (2.27), one has to impose

the cancellation of ∂I∂J∂ · ζ− and the additional condition is satisfied only on a finite

dimensional subspace of the solutions of (2.41). If one is instead interested only in pre-

serving the boundary conditions (2.26), which is the only option when the background is

not exact AdS space, a shift of ψIJ at O(r−
1
2 ) is allowed. In analogy with what happens

for Bose fields [4, 51], the corresponding variation of the surface charges is at the origin

of the central charge that appears in the algebra of asymptotic symmetries. In d = 3 the

spinor-vector ζ−I entering the variation (2.43) indeed depends on the spinor-vector ζ+I

entering the charges (see section 2.6).

2.5 Charges

Having proposed boundary conditions on both canonical variables (see (2.26)) and de-

formation parameters (see (2.42)), we can finally obtain the asymptotic charges. In the

10These conditions also allow (2.40) to satisfy the γ-trace constraint (2.32), which is not manifest in the

parameterisation of the solution we have chosen.
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coordinates (2.23), the normal to the d−2 sphere at infinity is such that n̂r = 1 and n̂α = 0.

At the boundary the charge (2.22) thus simplifies as

lim
r→∞

Q[λk, λ† l] = i

∫
dd−2x

√
g
{

2λ†αγrγβψαβ − λ†αγαγr (ψ − Ξ)
}

+ h.c. (2.44)

The terms which survive in the limit give a finite contribution to the charge; one can make

this manifest by substituting their boundary values (where we drop the label + on ζ+I to

avoid confusion) so as to obtain

Q = 2i

∫
dd−2x

{
ζ̄IQ0I + Q̄0I ζ

I
}
. (2.45)

This presentation of Q relies on the γ-trace constraints on both QIJ and ζI and on the

chirality conditions (1 + γ̂r)QIJ = 0 and (1 − γ̂r)ζI = 0. Remarkably, the result partly

covariantises in the indices transverse to the radial direction. The boundary charge thus

obtained is manifestly conserved: it is the spatial integral of the time component of a

conserved current since

JI ≡ 2i Q̄IJζJ + h.c. ⇒ ∂ · J = 2i
(
∂IQ̄IJζJ + Q̄IJ∂(IζJ)

)
+ h.c. = 0 , (2.46)

where conservation holds thanks to (2.25a) and (2.41a). Eq. (2.45) naturally extends the

standard presentation of the bosonic global charges of the boundary theories entering the

higher-spin realisations of the AdS/CFT correspondence (see e.g. section 2.5 of [4]).

2.6 Three space-time dimensions

We conclude our analysis of the spin-5/2 example by evaluating the charge (2.45) in three

space-time dimensions, where several peculiarities emerge and we can compare our findings

with the results obtained in the Chern-Simons formulation of supergravity [52, 53] and

higher-spin theories [21–26].

To proceed, it is convenient to introduce the light-cone coordinates x± = t ± φ on

the boundary. Two inequivalent representations of the Clifford algebra, characterised by

γ̂0γ̂1 = ±γ̂2, are available in d = 3. Since we conventionally fixed e.g. the relative sign in

the gauge variation (2.2), we shall analyse them separately by choosing

γ̂± =

(
0 2

0 0

)
, γ̂∓ =

(
0 0

−2 0

)
, γ̂r =

(
1 0

0 −1

)
. (2.47)

Equivalently, one could fix the representation of the Clifford algebra once for all and analyse

the effects of a simultaneous sign flip in the gauge variation (2.2) and in the chirality

projections (2.25b) and (2.35).

One can exhibit the peculiar form of surface charges in d = 3 by studying the general

solutions of the conditions (2.25) and (2.41) on QIJ and ζI . The constraints on QIJ are

solved by

Q∓∓ =

(
0

Q(x∓)

)
, Q+− = Q±± =

(
0

0

)
, (2.48)
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where the signs are selected according to the conventions in (2.47). Note that the divergence

constraint is satisfied by suitable left or right-moving functions as for bosons, but the

interplay between the γ-trace constraint (2.25a) and the chirality projection (2.25b) forces

one of the two chiral functions to vanish. Similarly, the constraints on ζ±I are solved by

ζ(+)∓ =

(
ζ(x∓)

0

)
, ζ(−)∓ =

1

3

(
0

∂∓ζ(x∓)

)
, ζ(+)± = ζ(−)± =

(
0

0

)
, (2.49)

where we enclosed between parentheses the label denoting the chirality, which appears in

the covariant ζ±I of section 2.4.

When considering the representation of the Clifford algebra with γ̂0γ̂1 = ±γ̂2, the

charge (2.45) therefore takes the form

Qd=3 = 2i

∫
dφ ζ∗(x∓)Q(x∓) + c.c. , (2.50)

so that a single Fang-Fronsdal field is associated to infinitely many asymptotic conserved

charges, corresponding to the modes of an arbitrary function which is either left or right-

moving. On the contrary, a bosonic Fronsdal field is associated to both left and right-

moving charges [4, 51]. From the Chern-Simons perspective, the counterpart of this ob-

servation is the option to define supergravity theories with different numbers of left and

right supersymmetries [54]. One can similarly define higher-spin gauge theories in AdS3

by considering the difference of two Chern-Simons actions based on different supergroups

(modulo some constraints on the bosonic subalgebra — see e.g. section 2.1 of [55]), while

models with identical left and right sectors are associated to an even numbers of Fang-

Fronsdal fields.

3 Arbitrary spin

We are now going to generalise the results of the previous section to a spin s+ 1/2 Dirac

field, omitting the details that are not necessary to compute surface charges. As discussed

at the end of section 2.2, these can be directly computed from the flat-space Hamiltonian

constraints (which differ from the AdSd ones through algebraic terms) and the boundary

conditions of fields and gauge parameters. We will focus on these two elements.

3.1 Constraints and gauge transformations

Our starting point is again the Fang-Fronsdal action for a massless spin s+ 1/2 Dirac field

on AdSd [6]:

S = −i
∫
ddx
√
−ḡ
{

1

2
ψ̄ /Dψ +

s

2
¯6ψ /D6ψ − 1

4

(
s

2

)
ψ̄′ /Dψ′ +

(
s

2

)
ψ̄′D · 6ψ − s ψ̄D6ψ

+
d+ 2(s− 2)

4L

(
ψ̄ψ − s ¯6ψ 6ψ − 1

2

(
s

2

)
ψ′ψ′

)}
+ h.c.

(3.1)

The conventions are the same as in the spin-5/2 example (we will use the same static

parametrisation of AdSd, etc., from section 2), except that we will now leave all in-

dices (tensorial and spinorial) implicit. The field is a complex-valued spinor-tensor
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ψαµ1···µs = ψα(µ1···µs), which is fully symmetric in its s base-manifold indices µ1, . . . , µs. It

will generally be denoted by ψ and its successive traces will be indicated by primes or by

an exponent in brackets: ψ[k] is the kth trace, while we often use ψ′ to denote a single

trace.

The novelty of the general case is that there is an algebraic constraint on the field in

addition to that on the gauge parameter: its triple γ-trace is required to vanish, 6ψ′ = 0.

The only algebraically independent components of the field have therefore zero, one or two

tensorial indices in the time direction: ψk1···ks , ψ0k2···ks and ψ00k3···ks .

The action (3.1) is invariant under gauge transformations

δψ = s

(
Dε+

1

2L
γ ε

)
(3.2)

generated by a γ-traceless spinor-tensor of rank s − 1. In (3.2) and in the following, a

symmetrisation of all free indices is implicit, and dividing by the number of terms in the

sum is understood.

Similarly to the spin-5/2 analysis, we note that the action (3.1) is almost already in

canonical form. To identify the Lagrange multipliers which enforce the first-class con-

straints associated to the gauge symmetry (3.2), one can again select combinations whose

gauge variation contains time derivatives of the gauge parameter. This leads to identify

the dynamical variables with the spatial components ψk1...ks of the covariant field and with

the combination

Ξk1···ks−2 = f−2ψ00k1···ks−2 − 2 γ0γjψ0jk1···ks−2 . (3.3)

The remaining independent components of the covariant fields, ψ0k1···ks−1 ≡ Nk1···ks−1 , play

instead the role of Lagrange multipliers. The covariant gauge variation (3.2) breaks indeed

into (with all contractions and omitted free indices being from now on purely spatial):

δψ = s

(
∇ε+

1

2L
γε

)
, (3.4a)

δΞ = − 2 /∇/ε − (s− 2)∇ε′ + 1

2L

[
2 (d+ 1 + 2 (s− 2)) /ε − (s− 2) γε′

]
, (3.4b)

δN = ε̇+ f2γ0

[
(s− 1)∇/ε −

1

2
/Γε− (s− 1) Γ /ε −

1

2L
(ε+ (s− 1) γ/ε)

]
. (3.4c)

This choice of variables is further confirmed by injecting it back into the action (3.1), and

using the Fronsdal constraint that sets the triple γ-trace of the field to zero, which leads

to the following identities

ψ0···0k2n+1···ks = f2n
[
nΞ

[n−1]
k2n+1···ks + 2nγ0 /N

[n−1]
k2n+1···ks − (n− 1)ψ

[n]
k2n+1···ks

]
, (3.5a)

ψ0···0k2n+2···ks = f2n
[
nγ0/Ξ

[n−1]
k2n+2···ks + (2n+ 1)N

[n]
k2n+2···ks − nγ

0 6ψ[n]
k2n+2···ks

]
. (3.5b)

This brings the action into the canonical form

S =

∫
ddx

{
1

2

(
Ψ†A ω

ABΨ̇B − Ψ̇†A ω
ABΨB

)
−N †F [Ψ]−F†[Ψ†]N −H[Ψ,Ψ†]

}
, (3.6)
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where we collected the phase-space variables by defining

ΨA =

(
ψk1...ks

Ξk3...ks

)
, ωAB =

(
ωk1···ks|l1···ls ωk1···ks|• i3···is

ω•j3...js|l1...ls ω•j3...js|• i3...is

)
. (3.7)

We will not exhibit all terms (symplectic 2-form, Hamiltonian, etc.) of this action, but

only those which are necessary to compute surface charges, that is the constraints. These

have s− 1 implicit spatial indices symmetrised with weight one and read

F = − i
√
g

2

[s/2]∑
n=0

(
s

2n

){
2nγ gn−1

[
/∇Ξ[n−1] + (s− 2n)∇/Ξ[n−1]

+ 2 (n− 1)∇· /Ξ[n−2]

− /∇ψ[n] + (s− 2n)∇6ψ[n] + 2n∇ · 6ψ[n−1]
]

+ (s− 2n) gn
[

2n∇· Ξ[n−1]

+ (s− 2n− 1)∇Ξ[n] + 2 (n− 1)∇· ψ[n] + (s− 2n− 1)∇ψ[n+1] + 2 /∇6ψ[n]
]}

+ · · ·

(3.8)

The dots stand for algebraic contributions coming from the mass term in the action and

possible contributions in Γi, which do not contribute to the surface charge.

Through their Dirac brackets (built from the inverse of the symplectic 2-form), these

constraints generate the gauge transformations (3.4a) and (3.4b), under which the Hamil-

tonian and the constraints are invariant (which confirms that they are first class). The

canonical generator of gauge transformations is again

G[λ, λ†] =

∫
dd−1x

(
λ†F + F†λ

)
+Q[λ, λ†] , (3.9)

where Q is the boundary term one has to add in order that G admits well defined functional

derivatives, i.e. that its variation be again a bulk integral:

δG =

∫
dd−1x

(
δψ†A+ δΞ†B +A†δψ +B†δΞ

)
. (3.10)

To compute surface charges we are only interested in Q (whose expression is inde-

pendent of the terms we omitted in the constraint (3.8)). Its variation has to cancel the

boundary terms generated by the integrations by parts putting the variation of G in the

form (3.10). Being linear in the fields, these variations are integrable and yield (we display

explicitly the index k contracted with dd−2Sk.):

Q[λ, λ†] =
i

2

∫
dd−2Sk

√
g

[s/2]∑
n=0

(
s

2n

){
2n
[
/λ
†[n−1]

γk
(

Ξ[n−1] − ψ[n]
)

+ (s− 2n) /λ
†[n−1]k

(
6ψ[n] + /Ξ

[n−1]
)

+2 (n−1) /λ
†[n−1]/Ξ

[n−2]k
+ 2n /λ

†[n−1] 6ψ[n−1]k
]

+ (s− 2n)
[

(s− 2n− 1)λ†[n]k
(

Ξ[n] + ψ[n+1]
)

+ 2nλ†[n]Ξ[n−1]k

+ 2 (n− 1)λ†[n]ψ[n]k + 2λ†[n]γk 6ψ[n]
]}

+ h.c.

(3.11)

In the definition of Q, we again adjusted the integration constant so that the charge vanishes

for the zero solution.
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3.2 Boundary conditions and asymptotic symmetries

As in the spin-5/2 example, we derive boundary conditions on the dynamical variables

from the falloff at spatial infinity of the solutions of the Fang-Fronsdal equations in a

convenient gauge, adopting the subleading branch. As shown in appendix C, with the

parameterisation (2.4) of the local frame the relevant solutions behave at spatial infinity

(r →∞) as

ψI1···Is = r
5
2
−dQI1···Is(xM ) +O(r

3
2
−d) , (3.12a)

ψr···rI1···Is−n = O(r
5
2
−d−3n) , (3.12b)

where capital Latin indices denote directions transverse to the radial one as in section 2.3.

From now on we also set again L = 1. The boundary spinor-tensorQI1···Is is fully symmetric

as the Fang-Fronsdal field and satisfies

∂ · Q = /Q = 0 , (3.13a)

(1 + γ̂r)Q = 0 , (3.13b)

where we omitted free transverse indices. Eqs. (3.12) and (3.13) define our boundary

conditions. For s = 1 and d = 4 the requirements on ψI agree with those proposed for

non-linear N = 1 supergravity in eq. (V.1) of [3]. Our ψr decays instead faster at infinity,

but the leading term that we miss in (3.12b) can be eliminated using the residual gauge

freedom parameterised by the function a(t, θ, φ) in eq. (V.5) of [3]. In conclusion, on a

gravitino our boundary conditions agree with those considered in non-linear supergravity

up to a partial gauge fixing that does not affect the charges.

The covariant boundary conditions (3.12) fix the behaviour at spatial infinity of the

dynamical variables as

ψα1···αs = r
5
2
−dQα1···αs +O(r

3
2
−d) , (3.14a)

ψr···rα1···αs−n = O(r
5
2
−d−3n) , (3.14b)

Ξα1···αs−2 = − r
1
2
−dQ00α1···αs−2 +O(r−d−

1
2 ) , (3.14c)

Ξr···rα1···αs−n−2 = O(r
1
2
−d−3n) , (3.14d)

where Greek indices from the beginning of the alphabet denote angular coordinates in the

d − 2 sphere at infinity. Moreover, we displayed only the dependence on the boundary

values of the fields in the terms that actually contribute to surface charges.

The next step in the procedure we illustrated in section 2 requires to identify all gauge

transformations that do not spoil the boundary conditions (3.14). We are now going to

provide necessary conditions for the preservation of the asymptotic form of the fields, which

generalise those given for s = 2 in (2.40) and (2.41). A proof that they are also sufficient

(along the lines of the proof presented for s = 2 in appendix D.3) will be given elsewhere.
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We stress, however, that the rank-s counterparts of (2.40) and (2.41) also characterise the

exact γ-traceless Killing spinor-tensors of AdSd, which satisfy

Dε+
1

2
γ ε = 0 , /ε = 0 . (3.15)

The general solution of these equations is provided in appendix D for s = 2. It shows

that the number of independent solutions is the same as in the flat-space limit, where

Killing spinor-tensors are easily obtained (see (D.9)). In the following we assume that this

concurrence holds for arbitrary values of the spin and, hence, that the conditions we are

going to present admit as many independent solutions as integration constants in (D.9).

To characterise the gauge parameters which generate asymptotic symmetries, one has

to analyse separately the variations of components with different numbers of radial indices.

We continue to omit transverse indices and we denote them as

ψn ≡ ψr···rI1···Is−n . (3.16)

Similarly, we denote by εn the component of the gauge parameter with n radial indices.

With the choice (2.4) for the local frame, the variations of the field components must satisfy

δψn =
n

r

(
r∂r −

2(2s− 3n+ 1) + γ̂r

2

)
εn−1 + (s− n)

(
∂ +

r

2
γ̂ (1− γ̂r)

)
εn

+ 2

(
s− n

2

)
r3η εn+1 = O(r

5
2
−d−3n) .

(3.17)

The constraint 6ψ′ = 0 actually implies that one can focus only on the variations of ψ0,

ψ1 and ψ2, since all other components are not independent. One also has to consider the

constraint /ε = 0, which implies

γ̂rεn+1 = r−2/εn (3.18)

and shows that the only independent component of the gauge parameter is the purely

transverse one, that is ε0 ≡ εI1···Is−1 .

The equations (3.17) require11

ε0 = r2(s−1)
(
r

1
2 ζ+ + r−

1
2 ζ−

)
+

s−1∑
k=1

r2(s−k−1)
(
r

1
2αk + r−

1
2βk

)
+O(r

1
2
−d) (3.19)

together with the chirality projections

(1∓ γ̂r)ζ± = 0 (3.20)

and similar restrictions on the subleading components: (1 − γ̂r)αk = (1 + γ̂r)βk = 0. The

γ-trace constraint on the gauge parameter is then satisfied by

ε2n = (−1)n
s−n−1∑
k=n

r2(s−2n−k−1)
(
r

1
2α

[n]
k + r−

1
2β

[n]
k

)
+O(r

1
2
−d−6n) , (3.21a)

ε2n+1 = (−1)n
s−n−2∑
k=n

r2(s−2n−k)−5
(
r

1
2 /β

[n]
k − r

− 1
2 /α

[n]
k

)
+O(r−d−

5
2
−6n) . (3.21b)

11This can be shown e.g. by considering the redundant variation of ψs ≡ ψr···r, which gives a homogeneous

equation for εs−1 ≡ εr···r as in section 2.4. One can then fix recursively the r-dependence of all other

components of the gauge parameter.
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Substituting these expressions in (3.17) one obtains

δψ0 = s r2(s−1)
{
r

1
2
[
∂ζ+ + γζ− + (s− 1) η /ζ−

]
+ r−

1
2
[
∂ζ− − (s− 1) η /α1

]}
(3.22a)

+ s
s−1∑
k=1

r2(s−k−1)
{
r

1
2 [∂αk + γβk + (s− 1) η /βk] + r−

1
2
[
∂βk − (s− 1) η /αk+1

]}
,

δψ1 =

s−1∑
k=1

r2(s−k)−3
{
r

1
2
[
−2k αk + (s− 1) (∂/βk−1 − γ/αk)− (s− 1)(s− 2) η α′k

]
+ r−

1
2
[
−2k βk − (s− 1)

(
∂/αk + (s− 2)η β ′k

)]}
. (3.22b)

In complete analogy with the analysis of section 2.4, the cancellation of the first line

in (3.22a) requires

∂ζ+ − s− 1

d+ 2s− 4
η ∂ · ζ+ + γ̂ ζ− = 0 , (3.23a)

∂ζ− − s− 1

d+ 2s− 5
η ∂ · ζ− = 0 , (3.23b)

γ̂ · ζ+ = 0 , (3.23c)

γ̂ · ζ− +
1

d+ 2s− 4
∂ · ζ+ = 0 . (3.23d)

These conditions generalise the conformal Killing equations (2.41) to arbitrary values of

the rank. Their general solution is given below in (3.28) when d = 3, while for d > 3 it will

be given elsewhere. Still, as anticipated, the detailed analysis of the s = 2 case presented in

appendix D makes us confident that the equations (3.23) admit a number of independent

solutions equal to the number of integration constants in (D.9).

The subleading orders in (3.22) allow instead to fix the subleading components of the

gauge parameter in terms of ζ±. For instance, one can manipulate these expressions to

obtain the recursion relations presented in appendix D.3. Let us stress that, in analogy

with what we observed for s = 2, (3.22a) and (3.22b) provide a set of equations that are

compatible only if one takes into account the constraints (3.23). We do not have yet a

proof of the latter statement, but the analysis given for s = 2 in appendix D gives strong

indications that this is a robust assumption.

The deformation parameters that generate gauge transformations preserving the

boundary conditions can then be related to Fang-Fronsdal’s gauge parameters by com-

paring the Lagrangian field equations with their rewriting in (B.8). In particular, the

Dirac brackets with the constraints can be inferred from the terms with Lagrange multi-

pliers contained in the equations expressing the time derivatives of the dynamical variables

in terms of the spatial derivatives of ψµν . This shows that the gauge parameter can be

identified with the canonical deformation parameter also for arbitrary values of the spin.

As a result, the latter behaves at spatial infinity as

λα1···αs−1 = r
1
2 ζ+α1···αs−1 +O(r−

1
2 ) , λr···rα1···αs−n−1 = O(r

1
2

+n) , (3.24)
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where ζ+ satisfies the conformal Killing equations (3.23) and, as in (3.14), Greek indices

from the beginning of the alphabet denote angular coordinates in the d−2 sphere at infinity.

3.3 Charges

Having proposed boundary conditions on both canonical variables (see (3.14)) and de-

formation parameters (see (3.24)), we can finally evaluate the asymptotic charges. The

charge (3.11) simplifies at the boundary as

lim
r→∞

Q[λ, λ†] = i

∫
dd−2x

√
g

[s/2]∑
n=0

(
s

2n

){
n /λ
†[n−1]

γr
(

Ξ[n−1] − ψ[n]
)

+ (s− 2n)λ†[n]γr 6ψ[n]
}

+ h.c. ,

(3.25)

where all implicit indices are now purely spatial and transverse and we dropped the label

+ on ζ+ to avoid confusion.

The terms which survive in the limit give a finite contribution to the charge; one can

make this manifest by substituting their boundary values so as to obtain

Q = s i

∫
dd−2x

{
ζ̄I2...IsQ0I2...Is + Q̄0I2...Is ζ

I2...Is
}
, (3.26)

where we used the γ-trace constraints on both Q and ζ and the chirality conditions (1 +

γ̂r)Q = 0 and (1 − γ̂r)ζ = 0. The result partly covariantises in the indices transverse to

the radial direction as in the spin-5/2 example, thus making the conservation of the charge

manifest. It is indeed the spatial integral of the current JI = ζ̄K2...KsQIK2...Ks + h.c., which

is conserved thanks to (3.13a) and (3.23).

In three space-time dimensions the charge (3.26) is actually given by a left or right-

moving function also for arbitrary half-integer values of the spin. As in section 2.6, one

can deal with the two inequivalent representations of the Clifford algebra by choosing the

γ matrices as in (2.47). The constraints on Q are then solved by

Q∓···∓ =

(
0

Q(x∓)

)
, Q±···± = Q+···+−···− =

(
0

0

)
, (3.27)

where different signs correspond to the choices γ0γ1 = ±γ2. Similarly, the conformal

Killing equations (3.23) are solved by

ζ(+)∓···∓ =

(
ζ(x∓)

0

)
, ζ(−)∓···∓ =

1

2s− 1

(
0

∂∓ζ(x∓)

)
, (3.28a)

ζ(±)±···± = ζ(±)+···+−···− =

(
0

0

)
, (3.28b)

where we enclosed again between parentheses the label denoting the chirality of the spinor-

tensors. The charge (3.26) takes therefore the form

Qd=3 = s i

∫
dφ ζ∗(x∓)Q(x∓) + c.c. , (3.29)

which generalises the result for the spin-5/2 case discussed in section 2.6.
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4 Conclusions

We have explicitly constructed higher-spin charges for fermionic gauge fields of arbitrary

spin on AdS backgrounds in any number of spacetime dimensions, extending our anal-

ogous work on bosonic gauge fields [4]. We have followed Hamiltonian methods. The

charges appear as the surface integrals that must be added to the terms proportional

to the constraints in order to make the generators of gauge transformations well-defined

as phase-space generators. These integrals are finite with the boundary conditions that

we have given, which crucially involve chirality-type projections generalising those of [3].

Improper gauge transformations — associated to non-vanishing surface integrals — are

determined by conformal Killing spinor-tensors of the boundary, and the corresponding

charges take a simple, boundary-covariant expression in terms of them — even though

the intermediate computations are sometimes rather involved. While bosonic higher-spin

charges have been discussed also following other approaches [30, 56], to our knowledge our

treatment provides the first presentation of fermionic higher-spin charges that applies to

any number of space-time dimensions.

We confined our analysis to the linearised theory, which suffices to derive the charges.

In this context, however, the charges are abelian and their Dirac brackets vanish (mod-

ulo possible central extensions in d = 3). To uncover a non abelian algebra, one must

evaluate the brackets in the non-linear theory, since the bulk terms do play a role in that

computation. A similar situation occurs for Yang-Mills gauge theories, where the surface

terms giving the charges coincide with those of the abelian theory. The non-abelian struc-

ture appears when one computes the algebra of the charges [58], a step which involves

the full theory (or, generically, at least the first non-linear corrections in a weak field

expansion [51]).

By working within the linearised theory, we have been able to associate conserved

charges to any gauge field of given spin, although the spectra of interacting higher-spin

theories are typically very constrained. We also worked with Dirac fields, that can be

defined for any d, but the Majorana and/or Weyl projections that one may need to con-

sistently switch on interactions can be easily implemented in our approach. In general,

we have not found obstructions to define non-trivial higher-spin charges in any number of

space-time dimensions and for arbitrary multiplicities of any value of the spin, consistently

with the chance to define higher-spin algebras with fermionic generators in any dimen-

sion [48, 57]. Possible constraints could emerge from interactions, but let us point out that

once one starts considering half-integer higher spins, more exotic options than standard su-

persymmetry may become available. For instance, one can define higher-spin theories with

increasing multiplicities for the fermionic fields without introducing any obvious pathology

— apart from difficulties in identifying a superconformal subalgebra within their algebra of

asymptotic symmetries (see e.g. [14, 26]) — or try to define “hypersymmetric” theories (see

e.g. [36]) — with fermionic gauge symmetries but without any gravitino at all. To analyse

these phenomena it will be very interesting to combine our current results with those ob-

tained for Bose fields [4], and to analyse the effect of interactions on the algebra of surface

charges, e.g. introducing them perturbatively in a weak field expansion (see [51, 59, 60] for

related work restricted to bosonic models).
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A Notation and conventions

We adopt the mostly-plus signature for the space-time metric gµν and we often distinguish

among time and spatial components by breaking space-time indices as µ = (0, i). Tangent-

space indices are collectively denoted by capital Latin letters, but when we separate time

and spatial directions we use the same letters as for the indices on the base manifold, i.e.

A = (0, i). The γ matrices then satisfy

{γ̂A, γ̂B} = 2 ηAB , (γ̂0)† = − γ̂0 , (γ̂i)† = γ̂i , (A.1)

where the hat differentiates them from their curved counterparts involving the inverse

vielbein:

γµ = eµA γ̂
A . (A.2)

For instance, with the choice (2.4) for the local frame one has γ̂0 = fγ0. Similarly, the

Dirac conjugate is defined as ψ̄ = ψ†γ̂0, while the γ matrices displayed explicitly in the

Fronsdal action (see e.g. (2.1) or (3.1)) are curved ones.

The space-time covariant derivative acts on a spin s+ 1/2 field as

Dρψµ1···µs = ∂ρψµ1···µs +
1

8
ωρ

AB[γ̂A, γ̂B]ψµ1···µs − sΓλρ(µ1
ψµ2···µs)λ , (A.3)

and it satisfies Dµγν = 0. In the definition we omitted spinor indices as in the rest of the

paper. Moreover, indices between parentheses are meant to be symmetrised with weight

one, i.e. one divides the symmetrised expression by the number of terms that appears

in it. The spatial covariant derivative ∇ is defined exactly as in (A.3), but with indices

constrained to take values only along spatial directions. It also satisfies ∇iγj = 0.

On an (A)dS background the commutator of two covariant derivatives reads

[Dµ, Dν ]ψρ1···ρs =
s

L2

(
gν(ρ1

ψρ2···ρs)µ − gµ(ρ1
ψρ2···ρs)ν

)
− 1

2L2
γµνψρ1···ρs , (A.4)

where γµν = 1
2 [γµ, γν ]. This relation defines the (A)dS radius L and suffices to fix the mass

term in the Fronsdal action (3.1).
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When expanding tensors in components, we actually distinguish among four types of

indices, depending on whether the time and/or radial coordinates are included or not.

Greek letters from the middle of the alphabet include all coordinates, small Latin letters

include all coordinates except t, capital Latin letters include all coordinates except r, while

Greek letters from the beginning of the alphabet denote the angular coordinates on the

unit d− 2 sphere. In summary:

µ, ν, . . . ∈ {t, r, φ1, . . . , φd−2} , i, j, . . . ∈ {r, φ1, . . . , φd−2} ,
I, J, . . . ∈ {t, φ1, . . . , φd−2} , α, β, . . . ∈ {φ1, . . . , φd−2} . (A.5)

Slashed symbols always denote a contraction with a γ matrix, whose precise meaning

depends on the context: the contraction may be with the full γµ or with its spatial coun-

terpart γi. In section 2 omitted indices denote a trace that, similarly, may result from a

contraction with the full space-time metric gµν or with the spatial metric gij . In most of

section 3 we omit instead all indices, which are always assumed to be fully symmetrised

according to the conventions given above. Traces are instead denoted by an exponent

between square brackets, so that, for instance,

ψ[n] ≡ ψµ1···µs−2nλ1···λn
λ1···λn , Dψ ≡ D(µ1

ψµ2···µs+1) , γ ψ ≡ γ(µ1
ψµ2···µs+1) . (A.6)

In appendix C we reinstate indices with the following convention: repeated covariant or

contravariant indices denote a symmetrisation, while a couple of identical covariant and

contravariant indices denotes as usual a contraction. Moreover, the indices carried by a

tensor are substituted by a single label with a subscript indicating their total number. For

instance, the combinations in (A.6) may also be presented as

ψ[n] = ψµs−2n , Dψ = Dµψµs , γ ψ ≡ γµψµs . (A.7)

B First-order Grassmannian actions

Let us consider an action of the form

S
[
Ψ, Ψ̄

]
=

∫
dt
{
θA
(
Ψ̄
)

Ψ̇A + ˙̄ΨA θ̄
A(Ψ)−H

(
Ψ, Ψ̄

)}
, (B.1)

where the ΨA are complex Grassmann variables (of which all indices are incorporated into

a capital Latin letter).

Its variation is given by

δS =

∫
dt

{
δΨ̄A

[
ΩABΨ̇B −

∂LH

∂Ψ̄A

]
+

[
˙̄ΨAΩ̄AB − ∂RH

∂ΨB

]
δΨB

}
, (B.2)

where

ΩAB =
∂LθB

∂Ψ̄A
− ∂Rθ̄A

∂ΨB
, Ω̄AB =

∂Rθ̄A

∂ΨB
− ∂LθB

∂Ψ̄A
. (B.3)

Note that we have ΩAB =
(
Ω̄BA

)∗
= − Ω̄AB. We assume that ΩAB is invertible. It is then

called the symplectic 2-form.
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If we define the inverse of this 2-form as ΩABΩBC = δAC (and a similar relation holds

for its conjugate), the equations of motion become

Ψ̇A = ΩAB
∂LH

∂Ψ̄B
, (B.4)

˙̄ΨA =
∂RH

∂ΨB
Ω̄BA . (B.5)

This suggests to define a Dirac bracket such that Ḟ = {F,H}D. It is

{F,G}D =
∂RF

∂ΨA
ΩAB

∂LG

∂Ψ̄B
+

∂RG

∂ΨA
Ω̄AB

∂LF

∂Ψ̄B
. (B.6)

It is antisymmetric and satisfies
{

ΨA, Ψ̄B

}
D

= ΩAB, the other brackets vanishing identi-

cally. These brackets would in fact appear as Dirac brackets had one introduced conjugate

momenta for the variables ΨA and eliminated the corresponding second class constraints

that express these momenta in terms of the ΨA through the Dirac bracket procedure. This

short-cut of the orthodox Dirac method is well known and mentioned e.g. in [45].

A term of the form −
∫
dt
{
ūa f

a[Ψ] + f̄a
[
Ψ̄
]
ua
}

added to the action (B.1), with La-

grange multipliers ua and first-class fa, f̄a, will generate gauge transformations accord-

ing to

δΨA =
{

ΨA, f̄
a
[
Ψ̄
]
ua
}
D

= ΩAB
∂Lf̄a

∂Ψ̄B
ua . (B.7)

These gauge transformations can also be read directly from the components of the La-

grangian equations of motion containing time derivatives of the dynamical variables,

through the identification

Ψ̇A = {ΨA, H}D + {ΨA, f̄
a
[
Ψ̄
]
}ua . (B.8)

If the kinetic term of the action is quadratic as in (2.9), the “momenta” θA are linear

in the positions ΨA and we have:

θA =
1

2
Ψ̄BΩBA , (B.9)

θ̄A =
1

2
Ω̄ABΨB = − 1

2
ΩABΨB , (B.10)

showing that the Ψ’s and the Ψ̄’s are conjugate.

C Covariant boundary conditions

In this appendix we recall the falloff at the boundary of AdSd of the solutions of the Fang-

Fronsdal equations of motion (see also [61]). To achieve this goal we partially fix the gauge

freedom, and we also exhibit the falloffs of the parameters of the residual gauge symmetry

(which include the γ-traceless Killing spinor-tensors of AdSd).

We set the AdS radius to L = 1 and we work in the Poincaré patch parameterised as

ds2 =
1

z2

(
dz2 + ηIJdx

IdxJ
)
. (C.1)
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We also fix the local frame as

eµ
A =

1

z
δµ
A , ωI

zJ =
1

z
δI
J , ωz

µν = ωI
JK = 0 , (C.2)

where we take advantage of the form of the vielbein to identify “flat” and “curved” indices.

In these coordinates the spatial boundary is at z → 0. All results can be easily translated

in the coordinates (2.3) used in the main body of the text, in which the boundary is at

r → ∞. We denote by capital Latin indices all directions transverse to the radial one

(including time).

C.1 Falloff of the solutions of the free equations of motion

We wish to study the solutions of the Fang-Fronsdal equation on a constant-curvature

background of dimension d [6] which, in the index-free notation of section 3, reads

i

(
/Dψ − sD6ψ +

d+ 2(s− 2)

2
ψ +

s

2
γ 6ψ
)

= 0 . (C.3)

To this end it is convenient to partially fix the gauge freedom (3.2) by setting to zero the

γ-trace of the field (see [62] or section 2.2 of the review [46] for a discussion of this partial

gauge fixing in flat space). This leads to the system of equations

i

(
/D +

d+ 2(s− 2)

2

)
ψ = 0 , (C.4a)

6ψ = 0 . (C.4b)

These conditions also imply that the divergence of the field vanishes: taking the γ-trace of

the first equation one indeed obtains

0 = γµ /Dψµ = − /D6ψ + 2D · ψ , (C.5)

that implies D · ψ = 0 thanks to the second equation. Imposing (C.4b) does not fix

completely the gauge freedom: eqs. (C.4) admit a residual gauge symmetry with parameters

constrained as (
/D +

d+ 2(s− 1)

2

)
ε = 0 , (C.6a)

D · ε = 0 , (C.6b)

/ε = 0 , (C.6c)

where the cancellation of the divergence follows from the other two conditions as above.12

12Eqs. (C.6) manifestly guarantee that gauge transformations of the form (3.2) preserve the γ-trace

constraint (C.4b). The divergence constraint (C.5) is also preserved thanks to

δ D · ψ =

(
� +

1

2
/D − (s− 1)(2d+ 2s− 5)

2

)
ε =

(
/D − d+ 2s− 3

2

)(
/D +

d+ 2(s− 1)

2

)
ε .
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To analyse the falloff at z → 0 of the solutions of (C.4) one has to treat separately field

components with a different number of indices along the z direction. We denote them as

ψznIs−n ≡ ψz···zI1···Is−n . (C.7)

The γ-trace constraint (C.4b) then gives

γ̂z ψzµs−1 + γ̂ · ψµs−1 = 0 , (C.8)

where here and below contractions only involve indices transverse to z. Using (C.8), the

components of the equation of motion (C.4a) read

γ̂z
(
z ∂z −

d− 2(s− n)− 1

2

)
ψznIs−n +

d+ 2(s− 2)

2
ψznIs−n

+ z γ̂J∂JψznIs−n − (s− n) γ̂Iψzn+1Is−n−1 = 0 ,

(C.9)

where here and in the rest of this appendix repeated covariant or contravariant indices

denote a symmetrisation. To analyse these equations it is convenient to begin from the

divergence constraint they imply,(
z ∂z − d+

3

2

)
ψzµs−1 + z ∂ · ψµs−1 = 0 , (C.10)

which entails ψznIs−n ∼ z∆+n. Even if the equations are of first order, two values of ∆ are

admissible due to the dependence on γ̂z in (C.9). Asymptotically one can indeed split each

component of the field as

ψznIs−n = ψ+
znIs−n

+ ψ−znIs−n , (C.11)

where the ψ± are eigenvectors of γ̂z, i.e.

γ̂zψ±znIs−n = ∓ψ±znIs−n . (C.12)

Substituting this ansatz in (C.9), the terms in the second line are subleading for z → 0

and the first line vanishes provided that

ψ±z···z I1···Is−n ∼ z
∆±+n with

{
∆+ = d− 5

2

∆− = 3
2 − 2s

. (C.13)

This implies that asymptotically one has to force a projection as already noticed for s = 3/2

and d = 4 [3] (see also [63, 64] for the extension to arbitrary d and [49, 50] for s = 1/2). A

comparison with the fall-off conditions for Bose fields recalled in (C.9) of [4] shows that

∆Fermi
± = ∆Bose

± ± 1

2
, (C.14)

while for s = 0 one recovers the asymptotic behaviour of a Dirac fermion of mass

m2 = −2(d− 3).
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C.2 Residual gauge symmetry

The fall-off conditions of the parameters of the residual gauge symmetry are fixed by

eqs. (C.6). The divergence and trace constraints give(
z ∂z − d+

3

2

)
εzµs−2 + z ∂ · εµs−2 = 0 , (C.15)

γ̂z εzµs−2 + γ̂ · εµs−2 = 0 , (C.16)

and the first condition implies εznjs−n−1 ∼ zΘ+n. By using these identities in (C.6a)

one obtains

γ̂z
(
z ∂z −

d− 2(s− n) + 1

2

)
εznIs−n−1 +

d+ 2(s− 1)

2
εznIs−n−1

+ z γ̂J∂JεznIs−n−1 − (s− n− 1) γ̂Iεzn+1Is−n−2 = 0 .

(C.17)

This equation has the same form as (C.9), apart from the shift s→ s−1 and a modification

in the mass terms. As a result, by decomposing the gauge parameters as ε = ε+ + ε− with

γzε±znIs−n−1 = ∓ ε±znIs−n−1 (C.18)

and following the same steps as above one obtains

ε±z···z I1···Is−n−1
∼ zΘ±+n with

{
Θ+ = d− 1

2

Θ− = 3
2 − 2s

. (C.19)

A comparison with the fall-off conditions in (C.12) of [4] shows that

ΘFermi
± = ΘBose

± ± 1

2
(C.20)

also for gauge parameters.

One can compare these results with the conditions satisfied by a gauge transformation

preserving the AdS background, for which

δψ = s

(
Dε+

1

2
γ ε

)
= 0 , /ε = 0 . (C.21)

These constraints also imply D · ε = 0. Expanding (C.21) one obtains(
z ∂z + (2s− n− 2) +

1

2
γ̂z
)
εznIs−n−1 = O(zΘ+n+1) . (C.22)

This equation is analysed more in detail in section 3.2; here it is worth noting that the

solutions in the Θ− branch of (C.19) also solve (C.22).
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C.3 Initial data at the boundary

In this subsection we display the constraints on the initial data at the boundary imposed

by the equations of motion and the γ-trace constraint, and how the number of independent

components is further reduced by the residual gauge symmetry. First of all, note that the

solutions of (C.4) are generically of the form

ψzmIs−m =

∞∑
n=0

z∆++m+nq
(m,n)
Is−m

(xk) or ψzmIs−m =

∞∑
n=0

z∆−+m+nρ
(m,n)
Is−m

(xk) , (C.23)

where all spinor-tensors in the series have a definite (alternating) chirality:13

γ̂zq(m,n) = (−1)n+1q(m,n) , γ̂zρ(m,n) = (−1)nρ(m,n) . (C.24)

The γ-trace constraint (C.8) then allows one to solve all components ψznIs−n with n ≥ 1

in terms of the purely transverse one, ψIs . The equation of motion (C.9) finally fixes the

subleading components of ψIs in terms of the leading one.

Within the admissible fall-off conditions, the ∆+ branch is the one which is relevant

for the analysis of surface charges. We denote its leading contributions in ψIs as

ψIs = z∆+Q−Is(x
K) + z∆++1Q+

Is
(xK) +O(z∆++2) , (1∓ γ̂z)Q±Is = 0 . (C.25)

For completeness, we shall also analyse the constraints imposed on the leading contributions

in the ∆− branch, denoted as

ψIs = z∆−Ψ+
Is

(xK) + z∆−+1Ψ−Is(x
J) +O(z∆−+2) , (1∓ γ̂z)Ψ±Is = 0 . (C.26)

The spinor-tensors Q−Is and Ψ+
Is

are boundary fields of opposite chirality (or, when the

dimension of the boundary is odd, Dirac fields with different eigenvalues of γ̂z) of conformal

dimensions, respectively, ∆c = d + s − 5
2 and ∆s = 3

2 − s. They thus correspond to the

fermionic conserved currents and shadows fields of [61].14

Combining the e.o.m. (or, equivalently, the divergence constraint) and the γ-trace

constraint gives

∂JQ−JIs−1
= 0 , γ̂JQ−JIs−1

= ηJKQ+
JKIs−2

= 0 . (C.27)

Eq. (C.9) also allows one to fix the γ-traceless component of Q+ as(
Q+
Is

)Tr ≡ Q+
Is
− s

d+ 2s− 3
γ̂I /Q

+
Is−1

= − 1

d+ 2s− 3
/∂Q−Is . (C.28)

The γ-trace of Q+ remains free as the divergenceless part of Q−. In the ∆− branch the

γ-trace constraint similarly imposes

γ̂JΨ+
JIs−1

= ηJKΨ−JKIs−2
= 0 . (C.29)

13The components of e.g. the q
(m,n)
Is−n

can be considered as spinors defined on the (d − 1)-dimensional

boundary of AdS. When d is odd, (C.24) is a chirality projection. When d is even, a priori the boundary

values of ψIJ would be collected in a couple of Dirac spinors and (C.24) selects one of them.
14If one performs a dilatation xµ → λxµ then ψI′s = λ−sψIs , while on the right-hand side of (C.25)

or (C.26) one has z′∆± = λ∆±z∆± . As a result, both Q and Ψ must transform as QI′s = λ−(∆++s)QIs ,

from where one reads the conformal dimensions. To compare them with eqs. (5.8) and (6.6) of [61], consider

that dhere = (d+ 1)there.
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The full γ-traceless Ψ+ remains instead unconstrained, while all Ψ− is now fixed as

Ψ−Is = − 1

d+ 2s− 5

(
/∂Ψ+

Is
− s

d+ 2s− 4
γ̂I ∂ ·Ψ

+
Is−1

)
. (C.30)

Note that, in analogy with Bose field [4], the total number of independent data that

asymptotically can be chosen arbitrarily15 is the same in both branches, even if they are

distributed in different ways in (C.25) and (C.26).

The number of independent initial data is further reduced by the residual gauge sym-

metry. The components of the field vary as

z δψznIs−n = n

(
z ∂z + 2s− n− 1 +

γ̂z

2

)
εzn−1Is−n +

s− n
2

γ̂I(1− γ̂z) εznIs−n−1

+ (s− n)
(
z ∂IεznIs−n−1 − (s− n− 1)ηIIεzn+1Is−n−2

)
.

(C.31)

Gauge transformations generated by

εznIs−n−1 = zΘ++n ξ
(n)
Is−n−1

(xK) +O(zΘ++n+1) , (1 + γ̂z) ξ
(n)
Is−n−1

= 0 , (C.32)

naturally act on the ∆+ branch of solutions of the e.o.m.: they allow to set to zero the

ψznIs−n components with n ≥ 1 (and therefore also /Q+
), while they leave Q− invariant.

On the other hand, gauge transformations generated by

εznIs−n−1 = zΘ−+n ε
(n)
Is−n−1

(xK) +O(zΘ−+n+1) , (1− γ̂z) ε(n)
Is−n−1

= 0 , (C.33)

naturally act on the ∆− branch and they affect the leading contribution as

δΨ+
Is

= s ∂IεIs−1 −
s

d+ 2s− 3

(
γ̂I/∂εIs−1 + (s− 1)ηII∂ · εIs−2

)
, (C.34)

where we defined ε ≡ ε(0) and the variation is γ-traceless as it should. This gauge freedom

reduces the number of independent components Ψ+ such that it becomes identical to that

of the conserved current Q−. It also leaves the coupling i
(
Ψ̄+Q− + Q̄−Ψ+

)
invariant.

D Conformal Killing spinor-tensors

In this appendix we present the general solution of the conformal Killing equations (2.41)

for spinor-vectors in d > 3 (for d = 3 see section 2.6). We then estimate the number of

independent solutions of the conformal Killing equations (3.23) for spinor-tensors of arbi-

trary rank. We conclude by proving the identities that we used in section 2.4 to show that

asymptotic symmetries are generated by parameters satisfying only the conditions (2.40)

and (2.41). We also display recursion relations that, for arbitrary values of the rank, al-

low one to express all subleading components of the parameters generating asymptotic

symmetries in terms of the leading ones.

15Of course, regularity in the bulk should fix the vev in terms of the source. We do not discuss this issue

here as we focus on the asymptotic behaviour of the theory. Integration in the bulk necessitates the full

theory beyond the linear terms.
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D.1 Conformal Killing spinor-vectors

Ignoring the spinorial index, eq. (2.41b) has the same form as the conformal Killing vector

equation in Minkowski space. It is therefore natural to consider the ansatz

ζ+
I = v+

I −
(
xJ γ̂

J
)
v−I , ζ−I = v−I , (D.1)

where the v±I have the same dependence on xI as conformal Killing vectors:

v±I ≡ a
±
I + ω±IJ x

J + b± xI + c±J
(
2xIx

J − x2δI
J
)
, (1∓ γ̂r)v±I = 0 . (D.2)

Eqs. (D.1) generalise the general solution of the conformal Killing spinor equations [47] and,

indeed, they solve (2.41a) and (2.41b) for constant spinor-tensors a±I , ω±IJ , b± and c±I only

subjected to the chirality projections inherited from ζ±I . The γ-trace conditions (2.41c)

and (2.41d) impose relations between these spinor-tensors, that one can conveniently anal-

yse by decomposing them in γ-traceless components. For instance, the γ-traceless projec-

tions of a±I and of the antisymmetric ω±IJ are defined as

â±I ≡ a
±
I −

1

d− 1
γ̂I /a

± , (D.3a)

ω̂±IJ ≡ ω
±
IJ +

2

d− 3
γ̂[I γ̂

Kω±J ]K −
1

(d− 2)(d− 3)
γ̂IJ γ̂

KLωKL . (D.3b)

The constraints relate the γ-traces of a±I , ω±IJ and c±I to other spinor-tensors in (D.2), such

that the general solution of the full system of equations (2.41) is given by

ζ+
I = â+

I + xJ
{
ω̂+
IJ − γ̂(I â

−
J) +

d+ 1

d− 3
γ̂[I â

−
J ] +

d

d− 1
ηIJb

+ − d

(d− 1)(d− 2)
γ̂IJb

+

}
+ xJxK

{
2(d− 2)

d− 3
ηI(J ĉ

+
K) −

d− 1

d− 3
ηJK ĉ

+
I −

2

d− 3
γ̂I(J ĉ

+
K) + γ̂(J ω̂

−
K)I

− d

d− 2

(
ηI(J γ̂K)b

− − 1

d− 1
ηJK γ̂Ib

−
)}

+ xJxKxL
{
η(JK γ̂L)ĉ

−
I − 2 ηI(J γ̂K ĉ

−
L)

}
(D.4)

and

ζ−I = â−I −
1

d− 1
γ̂Ib

+ + xJ
{
ω̂−IJ −

4

d− 3
γ̂[I ĉ

+
J ] + ηIJb

− +
2

(d− 1)(d− 2)
γ̂IJb

−
}

+ xJxK
{

2 ηI(J ĉ
−
K) − ηJK ĉ

−
I

}
.

(D.5)

D.2 Comments on arbitrary rank

In the previous subsection we have seen that, in the rank-1 case, the general solution of

the conformal Killing equations (3.23) in d − 1 dimensions depends on the integrations

constants collected in the γ-traceless spinor-tensors â±I , ω̂±IJ , b± and ĉ±I . Hence, in analogy

with what happens for “bosonic” conformal Killing tensors [65], there are as many inte-

gration constants as independent γ-traceless Killing spinor-tensors of a Minkowski space

of dimensions d. The equations

δ(flat)ψµν = 2 ∂(µεν) = 0 , γµεµ = 0 (D.6)
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are indeed solved by

εµ = Aµ +Bµνx
ν , γµAµ = γµBµν = B(µν) = 0 , (D.7)

and the number of independent components of the constants Aµ and Bµν in d dimensions

equates that of â±I , ω̂±IJ , b± and ĉ±I in d− 1 dimensions. This indicates that the number of

independent γ-traceless Killing spinor-tensors on AdS and Minkowski backgrounds is the

same (at least up to rank 1).

The pattern of independent spinor-tensors entering (D.2) can be understood from

the branching rules for representations of the orthogonal group (see e.g. § 8.8.A of [66]).

Denoting a Young tableau with s boxes in the first row and k boxes in the second by

{s, k}, a γ-traceless {s, k}-projected spinor-tensor in d + 1 dimensions decomposes in a

sum of two-row projected spinor-tensors in d dimensions as16

{s, k}d =

s∑
r=k

k∑
l=0

n(d){r, l}d−1 , (D.8)

where the multiplicity factor n(d) is equal to 1 when d is odd and to 2 when d is even.

Applying this rule to Aµ and Bµν , one recovers the spinor-tensors entering (D.2). When

d is odd, the ± doubling in (D.2) allows to reproduce the components of a Dirac εµ from

two sets of Weyl spinor-tensors. When d is even, the doubling accounts for the factor n(d)

in (D.8).

A full derivation of the solutions of the conformal Killing equations (3.23) will be given

elsewhere (see also [68] for related work based on superspace techniques). Here we assume

that the pattern emerged in the rank 0 and 1 examples extends to arbitrary values of

the rank. Accordingly, we assume that, for d > 3, the number of independent γ-traceless

Killing spinor-tensors on AdS and Minkowski backgrounds is the same. In the limit L→∞
the solutions of the Killing equations (3.15) are given by

εµ1···µs =

s∑
k=0

Aµ1···µs|ν1···νkx
ν1 · · ·xνk , γρAρµ2···µs|ν1···νk = A(µ1···µs|µs+1)ν1···νk−1

= 0 .

(D.9)

Their number is therefore equal to the number of components of a γ-traceless (Weyl) spinor-

tensor in d+ 1 dimensions with the symmetries of a rectangular {s, s} Young tableau, that

is to

dimO(d+1){s, s} = 2[ d2 ] (d+ s− 2)!(d+ s− 3)!(d+ 2s− 1)

s!(s+ 1)!(d− 1)!(d− 3)!
. (D.10)

16This rule can be also checked by considering that the number of components of a {s, k}-projected

γ-traceless Dirac spinor-tensor in d dimensions is (see e.g. (A.39) of [67])

dimO(d){s, k} = 2[ d
2 ] (s− k + 1)

(s+ 1)!k!

(d+ s− 3)!(d+ k − 4)!

(d− 2)!(d− 4)!
(d+ s+ k − 2) .
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D.3 Independent conditions on asymptotic symmetries

Identities involving conformal Killing spinor-vectors. In order to verify that the

conditions (2.40) and (2.41) on the gauge parameter εµ fully characterise asymptotic sym-

metries for spin-5/2 fields, one has to prove that (2.37) holds and that the second line

in (2.38) vanishes. This requires

d− 1

d
/∂∂ · ζ+ + (d+ 1) ∂ · ζ− = 0 , (D.11)

/∂∂ · ζ− = 0 , (D.12)

d− 1

d
∂I∂J∂ · ζ+ + 2 γ̂(I∂J)∂ · ζ− = 0 , (D.13)

∂I∂J∂ · ζ− = 0 . (D.14)

We wish to prove that the identities above follow from (2.41). One can obtain scalars

from these equations only by computing a double divergence or a divergence and a γ-trace

(since the Killing equations are traceless). Eliminating /ζ± via (2.41c) and (2.41d), the

double divergences of (2.41a) and (2.41b) become, respectively,

d− 1

d
�∂ · ζ+ + /∂∂ · ζ− = 0 , (D.15)

d− 2

d− 1
�∂ · ζ− = 0 . (D.16)

Computing a divergence and a γ-trace one obtains instead

d− 1

d
/∂∂ · ζ+ + (d+ 1)∂ · ζ− = 0 , (D.17)

d− 1

d
�∂ · ζ+ − (d− 3)/∂∂ · ζ− = 0 . (D.18)

Eq. (D.17) directly shows that (D.11) is not independent from (2.41). Moreover, combin-

ing (D.15) and (D.18), for d > 2 one obtains

�∂ · ζ+ = �∂ · ζ− = /∂∂ · ζ− = 0 , (D.19)

so that (D.12) is not independent as well. All in all, this implies that the γ-trace con-

straint (2.37) is satisfied when the conformal Killing equations (2.41) hold.

One can prove (2.41b)⇒ (D.14) by acting with a gradient on (2.41b) and manipulating

the result as in appendix D of [4]:

0 = 2 ∂K

(
∂(IζJ)

− − 1

d− 1
ηIJ ∂ · ζ−

)
= 3

(
∂(I∂JζK)

− − 2

d− 1
η(IJ∂K)∂ · ζ−

)
− ∂I∂JζK− +

4

d− 1
ηK(I∂J)∂ · ζ−

= 3

(
∂(I∂JζK)

− − 1

d− 1
η(IJ∂K)∂ · ζ−

)
− ∂I∂JζK− +

2

d− 1
ηK(I∂J)∂ · ζ−

− 1

d− 1
ηIJ∂K∂ · ζ− .

(D.20)
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The terms between parentheses in the last step vanish independently because they are

the symmetrisation of the first line. Contracting the other three terms with ∂K one then

obtains (for d > 1)

(d− 3)∂I∂J∂ · ζ− + ηIJ�∂ · ζ− = 0 . (D.21)

The last addendum vanishes thanks to (D.16) (double divergence of (2.41b)), so that (D.14)

is satisfied when d > 3. In d = 3 the missing cancellation originates the variation of surface

charges discussed at the end of section 2.4.

One can prove that (D.12) is not independent in a similar way. First of all, let us

manipulate (2.41a) (here combined with (2.41d)) as in (D.20):

0 = 2 ∂K

(
∂(IζJ)

+ − 1

d
ηIJ ∂ · ζ+ + γ̂(IζJ)

−
)

= 3

(
∂(I∂JζK)

+ − 2

d
η(IJ∂K)∂ · ζ+ + 2 γ̂(I∂JζK)

−
)
− ∂I∂JζK+ +

4

d
ηK(I∂J)∂ · ζ+

− 2 γ̂(I∂J)ζK
− − 2 γ̂K∂(IζJ)

−

= 3

(
∂(I∂JζK)

+ − 1

d
η(IJ∂K)∂ · ζ+ + γ̂(I∂JζK)

−
)
− ∂I∂JζK+ +

2

d
ηK(I∂J)∂ · ζ+

− 1

d
ηIJ∂K∂ · ζ+ + γ̂(I|∂Kζ|J)

− − γ̂(I∂J)ζK
− − γ̂K∂(IζJ)

− .

(D.22)

The terms between parentheses in the last step vanish because they are the symmetrisation

of the first line. The remaining contributions thus yield another vanishing combination,

whose contraction with ∂K gives

d− 2

d
∂I∂J∂ · ζ+ + γ̂(I∂J)∂ · ζ− −�γ̂(IζJ)

− + /∂∂(IζJ)
− = 0 . (D.23)

One can show that /∂∂(IζJ)
− vanishes using first (2.41b) and then (D.19). The term �γ̂(IζJ)

−

is instead proportional to the second contribution, since the divergence of (2.41b) implies

�ζI
− = −d− 3

d− 1
∂I∂ · ζ− . (D.24)

All in all, (D.23) becomes

d− 2

d− 1

(
d− 1

d
∂I∂J∂ · ζ+ + 2 γ̂(I∂J)∂ · ζ−

)
= 0 , (D.25)

thus completing the proof that (D.13) is not independent from (2.41). Note that — in

contrast with the proof of (D.14) — this is true also in d = 3, as it is necessary to obtain

a variation of ψIJ satisfying the boundary conditions of section 2.3.

Asymptotic Killing spinor-tensors. In order to show that asymptotic symmetries are

generated by gauge parameters of the form (3.19) that are fully characterised by ζ±, one

should express the spinor-tensors αk and βk in terms of the former. This can be done by
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imposing the cancellation of the variations (3.22). The first variation vanishes provided that

∂αk + γ βk + (s− 1) η /βk = 0 , (D.26a)

∂βk−1 − (s− 1) η /αk = 0 , (D.26b)

while δψ1 vanishes provided that

2k βk + (s− 1)
(
∂/αk + (s− 2) η β ′k

)
= 0 , (D.27a)

2k αk − (s− 1)
(
∂/βk−1 − γ /αk − (s− 2) η α′k

)
= 0 . (D.27b)

The last two equations allow one to fix recursively all αk and βk in terms of α0 = ζ+ and

β0 = ζ− (considering also that the γ-trace constraint (3.18) implies /α
[k]
k = β

[k+1]
k = 0).

Consistency with (D.26) is not manifest; yet, in analogy with what we proved above for

s = 2, it must follow from (3.23). Assuming compatibility of the full system of equations,

one can first solve (D.26b) by taking successive traces so as to obtain

/α
[n]
k =

k−n−1∑
j=0

C(n, j) ηj
{

2(n+ j + 1) ∂ · β[n+j]
k−1 + (s− 2(n+ j + 1)) ∂β

[n+j+1]
k−1

}
, (D.28)

C(n, j) =
(−1)j n!(s− 2n− 2)!(d+ 2(s− n)− 2j − 7)!!

2j+1(n+ j + 1)!(s− 2n− 2j − 2)!(d+ 2(s− n)− 5)!!
. (D.29)

Combining this result with (D.27b) one gets

αk =
s− 1

2k

{
∂/βk−1 −

1

2(d+ 2s− 5)
γ
(
2 ∂ · βk−1 + (s− 2) ∂β ′k−1

)}
+

k−1∑
j=1

A(j, k)
{
ηj
[
2j ∂ · /β[j−1]

k−1 + /∂β
[j]
k−1 + (s− 2j − 1) ∂/β

[j]
k−1

]
− (2j + 1)(s− 2j − 1)

2(j + 1)(d+ 2s− 2j − 5)
ηjγ

[
2(j + 1) ∂ · β[j]

k−1 + (s− 2j − 2) ∂β
[j+1]
k−1

]}
(D.30)

with

A(j, k) =
(−1)j(s− 1)!(d+ 2s− 2j − 5)!!

k 2j+1j!(s− 2j − 1)!(d+ 2s− 5)!!
. (D.31)

In a similar fashion, (D.27a) gives directly

βk =
k∑
j=0

B(j, k) ηj
{

2j ∂ · /α[j−1]
k + (s− 2j − 1) ∂/α

[j]
k

}
, (D.32)

B(j, k) =
(−1)j+1(s− 1)!

2j+1(s− 2j − 1)!
∏j
l=0 [l(d+ 2s− 2l − 5) + k]

. (D.33)
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