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Abstract. During renewable energy system design, parameters are generally fixed or characterized by a 

precise distribution. This leads to a representation that fails to distinguish between uncertainty related to 

natural variation (i.e. future, aleatory uncertainty) and uncertainty related to lack of data (i.e. present, 

epistemic uncertainty). Consequently, the main driver of uncertainty and effective guidelines to reduce the 

uncertainty remain undetermined. To assess these limitations on a grid-connected household supported by 

a photovoltaic-battery system, we distinguish between present and future uncertainty. Thereafter, we 

performed a robust design optimization and global sensitivity analysis. This paper provides the optimized 

designs, the main drivers of the variation in levelized cost of electricity and the effect of present uncertainty 

on these drivers. To reduce the levelized cost of electricity variance for an optimized photovoltaic array and 

optimized photovoltaic-battery design, improving the determination of the electricity price for every specific 

scenario is the most effective action. For the photovoltaic-battery robust design, the present uncertainty on 

the prediction accuracy of the electricity price should be addressed first, before the most effective action to 

reduce the levelized cost of electricity variance can be determined. Future work aims at the integration of a 

heat demand and hydrogen-based energy systems.    

1 Introduction 

PhotoVoltaic (PV) systems are the main driver of the 

global renewable energy capacity growth [1]. However, 

to reach 100% renewable electricity supply by 2050, PV 

systems alone are inadequate due to solar intermittency. 

To address this intermittency, battery energy storage 

enables to store electricity and overcome the time-

period when solar irradiance is insufficient to cover the 

demand [2]. Designing such PV-battery systems are 

subject to parameter uncertainty, such as the uncertainty 

on the solar irradiance, electricity demand and 

investment costs over the lifetime [3]. Arun et al. 

consider the solar irradiance stochastic in the sizing of 

PV-battery systems and provide the sizing curves for 

different levels of confidence [4]. Maleki et al. consider 

the solar irradiance, the wind speed and the load as 

stochastic and propagate these uncertainties through the 

model by Monte Carlo Simulation [5]. Zheng et al. 

consider the climate conditions and economic 

parameters uncertain through precise distributions and 

illustrate the conditions in which battery capacity is 

optimized in a renewable microgrid [6].  
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In these studies that consider uncertainty, the 

applications are limited to generic uncertainty 

characterization. Such precise distribution 

representation does not differentiate between 

uncertainty related to lack of data (i.e. present, epistemic 

uncertainty), and uncertainty related to the actual natural 

variation of the parameter (i.e. future, aleatory 

uncertainty). Therefore, it is unclear what measures 

should be taken to reduce the uncertainty efficiently on 

the predicted techno-economic objective. In this work, a 

new method is applied to characterize, propagate and 

evaluate parameter uncertainty in a hybrid renewable 

energy system framework. The method integrates over 

the different scenarios possible for parameters subject to 

variation in the future (e.g. electricity price, electricity 

demand) and considers the uncertainty on each scenario 

itself (i.e. natural variation on the outcome for each 

scenario). The results can be presented in a single 

probability box, which enables to compare design 

performances directly, as opposed to providing separate 

results for each scenario. The method is integrated in a 

robust design optimization approach, which aims to 

minimize the mean and standard deviation of the 

probability box upper-bound.  
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In section 2, the system model is described, followed 

by the uncertainty characterization, uncertainty 

quantification and robust design optimization strategies. 

The results in section 3 provides the set of optimized 

designs and their performance in Levelized Cost Of 

Electricity (LCOE) mean and standard deviation. 

Section 3 concludes with the characterization of the 

main drivers of the LCOE uncertainty for different 

optimized designs through a global sensitivity analysis. 

Section 4 comprises the main conclusions of the work. 

2 Method 

In this section, the photovoltaic system model and 

battery system model are presented. The uncertainty 

characterization of the parameters that define these 

models is discussed, followed by the uncertainty 

quantification method to propagate these uncertainties 

through the model and quantify their effect on the model 

output. Finally, the robust design optimization algorithm 

is illustrated. 

2.1 Photovoltaic-battery system model  

A grid-connected household is considered, 

supported by a PV-battery system (Figure 1). The PV 

array and battery stack are connected via a DC-DC 

converter to a DC bus bar. A DC-AC inverter connects 

the DC bus bar to the load and the electricity grid. When 

the PV array complies with the demand, excess PV 

electricity is stored in the battery. Otherwise, when the 

PV electricity fails to meet the demand, the battery is 

discharged, supported by the grid as soon as the 

minimum battery State Of Charge (SOC) is reached. 

 

Fig. 1. Schematic of the PV-battery system 

The PV array is characterized by the experimentally-

validated model out of the PVlib Python library [7]. This 

model adopts the single-diode equation to characterize 

the current-voltage characteristic: 

 

UPV = IL − I0{exp[(U + IRs)/(ndNsUth)] −1} − ( U + IRs)/(Rsh).
                      (1) 

 

The parameters in Equation 1 are characterized through 

the method presented by De Soto et al. [8], based on 

manufacturer data. 

To store excess power of the PV system, we selected 

the lead-acid battery technology. The lead-acid battery 

model is adopted from Blaifi et al. [9], which quantifies 

the voltage-current relation as: 

 

                            Ubat = Ubat + IbatRbat,          (2) 

 

where the current Ibat is positive during charging of the 

battery and negative during battery discharge. The 

resistance Rbat is characterized based on operating 

temperature, current and capacity. The battery lifetime 

is determined based on the hourly SOC variations over 

the lifetime through the Rainflow cycles counting 

method [10]. We refer to Blaifi et al. for the detailed 

quantification of the parameters in Equation 2 during 

charge and discharge [9].  

2.2 Climate and load data 

In this work, Brussels (Belgium) is considered as the 

evaluated location. To characterize the climate and the 

dwelling demand, a Typical Meteorological Year 

(yearly solar irradiance: 1118 kWh/year, average yearly 

ambient temperature: 10.7 °C) and a synthetic dwelling 

demand profile for one year with hourly resolution 

(electricity demand: 3.98 MWh/year) are adopted, 

respectively [11, 12]. We adopted the method presented 

by Montero Carerro et al. to adapt the demand profile to 

the climate and human behaviour in Belgium [13]. 

2.3 Robust design optimization 

To characterize the robust design optimization 

framework, first the design parameters and objective are 

present. Then, the uncertainty characterization and 

uncertainty quantification methods are illustrated, 

followed by the overall optimization algorithm. 

2.3.1 Design parameters and objective 

The capacity of the PV array and battery stack are 

selected as independent design parameters, which 

means that the optimization algorithm can exclude 

storage whenever beneficial (i.e. set the battery stack 

capacity to 0 kWh). The LCOE is selected as the techno-

economic system objective and can be determined  by 

the annual system cost and the annual electricity demand 

Edem [14]: 

 

       LCOE = (CAPEXa + OPEXa + Cr,a + Ce,a)/Edem.                (3) 

 

To determine the annual system cost, the annualized 

investment cost CAPEXa, operational cost OPEXa, 

replacement cost Cr,a and the grid electricity cost Ce,a at 

retail price (wholesale price is assumed equal to 30% of 

the retail price) are added together. We refer to Zakeri et 

al. for the detailed quantification of the parameters [14].  

 Additionally, the Self-Sufficiency Ratio (SSR) is 

defined as the amount of electricity covered by the PV-
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battery system, divided by the total electricity demand. 

The SSR is an indicator for adopters of the HRES, as it 

illustrates the resilience against large electricity price 

increases and the protection against power cuts. 

Table 1. Uncertainty characterization of the input 

parameters.   

 Type Mean 
Standard 

deviation 

annual 

electricity 

demand 

present 

+ future 

[3.61, 5.22] 

MWh/year 

[0.01, 0.16] 

MWh/year 

wholesale 

electricity price 

present 

+ future 

[57, 89] 

€/MWh 

[0.3, 4.8] 

€/MWh 

annual solar 

irradiance 
future 

1118 

kWh/year 
2.9%  

yearly average 

ambient 

temperature 

future 10.7°C 0.3°C 

CAPEXPV present 
[430, 780] 

€/kWp  
 

CAPEXbat present 
[102, 352] 

€/kWh  
 

Interest rate present [4, 8] %   

2.3.2 Uncertainty characterization 

The uncertainty on the model parameters are 

characterized by their present (epistemic) and future 

(aleatory) uncertainty [15]. The present uncertainty is 

related to lack of knowledge and can be reduced by 

gaining more information on the parameter (e.g. several 

scenarios can be constructed for the electricity price 10 

years from now). The future uncertainty relates to the 

unknown evolution of the parameter, which is usually 

predicted with a certain error (e.g. the uncertainty on the 

electricity price for each scenario). To characterize the 

present and future uncertainty on a parameter, a 

parametric probability-box (p-box) is used [16]. Such a 

p-box is defined by a range on the mean µ and standard 

deviation σ: µ ϵ [µmin, µmax], σ ϵ [σmin, σmax]. The true-

but-unknown distribution (Gaussian), characterized by 

µ and σ, represents the future uncertainty of each 

parameter, while the range on the statistical moments 

represents the present uncertainty (Uniform). 

The wholesale electricity price and electricity 

demand are characterized by a p-box. For the electricity 

price, 6 scenarios define the present uncertainty, i.e. 

base case scenario, decentral scenario and large-scale 

renewable energy system scenario, each determined in 

the coal-before-gas merit order and gas-before-coal 

merit order [17]. The future uncertainty comes from the 

prediction error for each scenario, based on the 

prediction errors on the electricity price reported in the 

retrospective review of the Annual Energy Outlook [18]. 

A similar philosophy is applied for the electricity 

demand, where 4 different scenarios represent the 

present uncertainty and the prediction error indicates the 

future uncertainty [18,19]. The solar irradiance and 

ambient temperature are characterized by a Typical 

Meteorological Year (TMY), which is assumed valid 

over the lifetime of the system. Nevertheless, the 

interannual variability, determined based on historical 

data between 1995 – 2015, represents the future 

uncertainty [20]. Finally, the fixed interest rate, CAPEX 

of the PV array [21] and CAPEX of the battery stack 

[22] are subject to present uncertainty. These parameters 

are fixed at the beginning of the project and are therefore 

only subject to the current lack of confidence during 

system design. A summary of the uncertainty 

characterization is provided in Table 1. 

2.3.3 Uncertainty quantification 

To propagate the uncertainties through the model 

and quantify the statistical moments of the LCOE, we 

considered a computationally efficient sparse 

Polynomial Chaos Expansion (PCE) method, which has 

been developed in our research group [23] and adapted 

to be able to propagate both precise distributions and 

parametric probability boxes [16]. The PCE method 

enables to characterize a surrogate model MPCE of the 

real model M, based on a set of orthogonal polynomials 

Ψ and corresponding coefficients u, which are 

quantified through a set of real model evaluations: 

 

                  MPCE(ξ) = ∑ 𝑢
𝑝
𝑖=0 iΨi ≈ M(ξ).                        (4) 

 

Once the coefficients are quantified, analytical post-

processing can be performed to determine the Sobol’ 

indices. These indices indicate the contribution of each 

stochastic parameter to the variance of the objective and 

provides valuable information on the system behaviour 

under uncertainty. Additional details on this sparse PCE 

method are described by Abraham et al. [23]. In this 

work, a polynomial order of 3 is required to approximate 

the real model behaviour accurately (<1% error on the 

statistical moments, compared to a Monte Carlo 

Simulation result). 

2.3.4 Robust Design Optimization 

In this RDO framework, minimizing the mean and 

standard deviation of the LCOE are selected as 

objectives [24]. While minimizing the LCOE mean is 

beneficial for the average expected cost of electricity 

paid by the system owner, reducing the LCOE standard 

deviation increases the probability of operating near that 

LCOE mean in reality. As in this specific uncertainty 

characterization the model output is characterized by a 

probability box, the mean and standard deviation of the 

upper probability bound of the probability box are 

selected, to guarantee a robust prediction on the LCOE 

[25]. The sparse PCE method is coupled to the 

Nondominated Sorting Genetic Algorithm (NSGA-II) to 

find the set of designs that presents the trade-off between 

minimizing the mean and standard deviation of the 

LCOE [26-28]. Hence, for every evaluated design, the 

sparse PCE method is applied to quantify the statistical 

moments. The optimization algorithm is characterized 

with a population of 20 samples, a crossover and 

mutation probability of 0.9 and 0.1 respectively. 
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3 Results 

In this section, the robust design optimization 

provides the set of optimized designs. The Sobol’ 

indices are quantified for three optimized designs and 

guidelines are extracted from the Sobol’ indices to 

reduce the LCOE variance of these designs.  

3.1 Robust design optimization 

The robust design optimization results illustrate the 

trade-off between minimizing the mean and minimizing 

the standard deviation of the LCOE upper probability 

bound (Fig. 2.). The lowest mean (318 €/MWh) is 

achieved by a PV array of 2.2 kWp. Reducing the LCOE 

standard deviation is subsequently achieved by 

increasing the PV array capacity, followed by the 

inclusion of a battery stack. This subsequent increase in 

capacity improves the SSR, which consequently 

decreases the dependency on the grid electricity price 

uncertainty. To illustrate, the PV-design with the lowest 

LCOE mean achieves an SSR of 29 %, while the PV-

battery robust design (i.e. lowest LCOE standard 

deviation) achieves an SSR of 58%. The designs 

achieving an SSR >58% carry an uncertainty in 

electricity demand and solar irradiance which 

overcompensates the reduction in uncertainty related to 

grid electricity and are therefore not considered in the 

Pareto set of optimized design.      
 

  

Fig. 2. The Pareto front illustrates the trade-off between 

minimizing the LCOE mean and minimizing the LCOE 

standard deviation. 

3.2 Global sensitivity analysis 

Table 2. Characteristics of the three analysed designs. 

 
NPV 

[kWp]  

Nbat 

[kWh] 

µmax,LCOE 

[€/MWh] 

σmax,LCOE 

[€/MWh] 

PV 

design 
2.2  317.6 12.0 

PV-

battery 

design 

3.2 1.9 361.4 11.3 

PV-

battery 

design 

robust 

5.1 7.3 440.1 10.4 

 

Three typical designs are selected out of the set of 

optimized designs (Table 2): the PV design with the 

lowest LCOE mean, the PV-battery design with the 

lowest LCOE mean and the PV-battery robust design 

(i.e. lowest LCOE standard deviation). The p-boxes of 

these designs overlap due to the present uncertainty on 

the system parameters (Fig. 3.). To illustrate for the PV-

design, the true-but-unknown LCOE mean situates 

between 214 €/MWh and 318 €/MWh and the true-but-

unknown LCOE standard deviation lies between 0.9 

€/MWh and 12.0 €/MWh. Additionally, it remains 

inconclusive if these designs are beneficial over full 

grid-dependency in terms of LCOE. Nevertheless, the 

PV-design and PV-battery design p-boxes are slightly 

more beneficial on average than full grid-dependency. 

 

Fig. 3. The probability-boxes of the optimized designs 

illustrate that due to the present uncertainty on the system 

parameters, it remains inconclusive if the designs are 

beneficial over full grid-dependency. 

To determine the effect of the input parameter 

uncertainty on the LCOE standard deviation, the Sobol’ 

indices for the three designs are quantified. Due to the 

characterization of the LCOE by a p-box, infinite 

possibilities for the true-but-unknown CDF are present 

in between the p-box bounds. As each possible CDF 

corresponds to a deterministic Sobol’ index for each 

input parameter, the Sobol indices related to the p-box 

are characterized by a precise distribution for each input 

parameter. As the Sobol’ indices indicate the effect of 

the uncertainty on the LCOE standard deviation, only 

the stochastic parameters subject to future uncertainty 

are characterized by a Sobol’ index, while the present 

uncertainty of the stochastic parameters contributes to 

the variance of the Sobol’ indices.  

For the PV-design, the distributions of the Sobol’ 

indices illustrate that the future uncertainty on the 

electricity price and on the solar irradiance are the main 

contributors to the LCOE standard deviation (Fig. 4.). 

The future uncertainty on the electricity price 

corresponds to an average Sobol’ index of 0.92, while 

the future uncertainty on the solar irradiance 

corresponds to an average Sobol’ index of only 0.08. As 

both Sobol’ index distributions are characterized by a 

standard deviation of 0.13, it can be concluded with a 3σ 

confidence level that the future uncertainty on the 

electricity price dominates the LCOE standard 

deviation. Hence, improving the determination of the 

electricity price outcome for every specific scenario is 
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presented as a guideline to improve the LCOE 

robustness of the PV-battery design.  

Fig. 4. For the PV-design, the Sobol’ indices illustrate the the 

future uncertainty on the electricity price dominates the LCOE 

standard deviation. 

Similar conclusions can be drawn for the PV-battery 

design. For this design, the average Sobol’ index for the 

electricity price, solar irradiance and electricity demand 

correspond to 0.88, 0.07 and 0.05, respectively (Fig. 5.). 

Due to the increased SSR of this design as opposed to 

the PV design, the uncertainty on the electricity demand 

gains importance in the LCOE standard deviation. 

Nevertheless, despite the significant standard deviation 

on the electricity price Sobol’ index (0.18), the future 

uncertainty on the electricity price dominates the LCOE 

standard deviation with a 3σ confidence level.  

 

Fig. 5. For the PV-battery design, the Sobol’ indices illustrate 

the the future uncertainty on the electricity price dominates the 

LCOE standard deviation.  

For the PV-battery robust design, the uncertainty on 

the electricity demand gains significant importance as 

opposed to the two other designs. The Sobol’ index 

mean and standard deviation of the electricity demand 

correspond to 0.23 and 0.25, respectively, while the 

Sobol’ index mean and standard deviation of the 

electricity price correspond to 0.65 and 0.28, 

respectively (Fig. 6.). Hence, due to uncertainty on the 

Sobol’ indices, which is driven by the overall present 

uncertainty on the system, it remains undetermined 

which input parameter uncertainty should be addressed 

to reduce the LCOE standard deviation efficiently. A 

global sensitivity analysis on these Sobol’ index 

distributions illustrates that the standard deviation on the 

electricity demand Sobol’ index is characterized mainly 

by the uncertainty on the prediction accuracy of the 

electricity demand (0.38), the uncertainty on the 

prediction accuracy of the electricity price (0.37) and the 

uncertainty on the possible electricity demand scenarios 

(0.28). The standard deviation of the electricity price 

Sobol’ index is characterized by the uncertainty on the 

prediction accuracy of the electricity price (0.70), the 

uncertainty on the prediction accuracy of the electricity 

demand (0.16) and the uncertainty on the possible 

electricity demand scenarios (0.15). Conclusively, 

increasing the level of confidence on the prediction 

accuracy of the electricity price is the main action to 

reduce the uncertainty on the Sobol’ indices. This action 

will reveal the most dominant future uncertainty and 

therefore enables to suggest the appropriate external 

action to reduce the LCOE standard deviation.        

 

Fig. 6. For the PV-battery robust design, the present 

                 f         ff         S    ’        .  

For all the designs, the present uncertainty on the 

CAPEX parameters and the interest rate is negligible. 

Hence, to characterize the most important driver of the 

LCOE standard deviation, increasing the level of 

confidence on the CAPEX and interest rate is 

ineffective. Additionally, both the present and future 

uncertainty on the ambient temperature have no 

significant effect on the uncertainty characterization of 

the LCOE for every optimized design.     

4 Conclusion 

The robust design optimization of a PV-battery 

system, characterized by a clear distinction between 

present and future uncertainty, illustrates a trade-off 

between minimizing the LCOE mean and minimizing 

the LCOE standard deviation. At the expense of an 

increase in LCOE mean, the LCOE standard deviation 

is reduced by subsequently increasing the PV array and 

battery stack capacity, which subsequently reduces the 

dependency on grid electricity to comply with the 

demand.  

The p-boxes of an optimized PV-design, PV-battery 

design and PV-battery robust design illustrate that due 

to the present uncertainty, it remains inconclusive which 

designs will outperform full grid-dependency in terms 

of LCOE in reality. Nevertheless, on average the PV-

design and PV-battery design indicate to be beneficial 

over full grid-dependency.  

To reduce the LCOE standard deviation of the PV-

design and PV-battery design, reducing the future 

uncertainty related to the grid electricity price is 

concluded as the most efficient action to improve the 
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LCOE robustness. Therefore, improving the 

determination of the electricity price outcome for every 

specific scenario is proposed. 

For the PV-battery robust design, the present 

uncertainty becomes significant and should be 

addressed first. The present uncertainty on the 

prediction accuracy of the electricity price proves to be 

the dominant factor and should be reduced by gaining 

more information on the expected prediction accuracy 

for each specific scenario. Once this uncertainty is 

addressed, the most significant guideline to reduce the 

LCOE standard deviation can be extracted.  

For every optimized design, the present uncertainty 

on the CAPEX parameters and interest rate are 

negligible in the uncertainty quantification framework 

and should therefore not be addressed. Moreover, both 

the present and future uncertainty on the ambient 

temperature do not influence the LCOE variation of the 

optimized designs. 

Future work aims for the integration of a heat 

demand, a heat pump and hydrogen-based energy 

systems.  
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