Software Tools for Technology Transfer manuscript No.
(will be inserted by the editor)

A Case Study to Evaluate the Suitability of Graph Transformation

Tools for Program Refactoring

Javier Pérez'*, Yania Crespo', Berthold Hoffmann?, Tom Mens?

! Departamento de Informética, Universidad de Valladolid, Spain

e-mail: {jperez|yania}@infor.uva.es

e-mail: hof@informatik.uni-bremen.de

w

e-mail: tom.mens@umons.ac.be

Received: date / Revised version: date

Abstract This article proposes a case study to evaluate the
suitability of graph transformation tools for program refac-
toring. In order to qualify for this purpose, a graph transfor-
mation system must be able to (i) import a graph-based rep-
resentation of models of Java programs , (i7) allow these mod-
els to be transformed interactively with well-known program
refactorings, and (iii) export the resulting models in the same
graph-based format used as input. The case study aims to en-
able comparison of various features of graph transformation
tools, such as their expressiveness and their ability to interact
with the user. The model of Java programs is presented and
some examples for translating Java source code into the model
are provided. The refactorings selected for the case study are
specified in detail.

Key words: refactoring — graph transformation — case study
— Java program graphs

1 Introduction

Model-driven design of object-oriented software is a very ac-
tive area of research in software engineering. Analysis and
design models as well as programs can be represented as
graphs (e.g., diagrams in UML), and these software artefacts
often need to be transformed during the development process.
Therefore, graph transformation seems to be an ideal formal-
ism to specify model and program transformations [15].
Refactoring is a particular kind of software transforma-
tion that aims to improve the structure of software while pre-
serving its behaviour. Many authors have already studied how
refactoring can be specified with graph transformation [1,2,
5,8,9,11,13,17]. Hence there is enough interest in the graph
transformation community to propose a case study in this

* Work partially done while on leave at Université de Mons.

Fachbereich Mathematik und Informatik, Universitit Bremen, Germany

Institut d’Informatique, Faculté des Sciences, Université de Mons, Belgium

area, which poses challenges for all tools based on graph
transformation.

This paper describes a case study that can be used to
test certain features of graph transformation tools and ap-
proaches. Specifically, it is focused in those features that will
be desirable to support formal program-refactoring: expres-
siveness, the ability to specify complex graphs and complex
rule execution control, etc. This case study was originally
proposed for a contest organized as part of the International
Workshop on Graph-Based Tools (GraBaTs 2008). Five graph
transformation tools contributed to the contest, providing so-
lutions for this “Refactoring Case”.

The remainder of this article is structured as follows. A
brief introduction of program refactoring is given in Section 2.
The case study task is described in detail in Section 3. The
precise specification of the program model to be used as well
as some examples of translating Java code into the program
model are given in Section 4. Three refactoring specifications
to be implemented are detailed in Section 5. Section 6 de-
scribes the evaluation criteria that will be used to compare
contributions to the case study and Section 7 concludes with
a detailed discussion of the proposal.

2 Refactoring

Refactoring is an object-oriented source code transformation
technique [12]. It is aimed at modifying the structure and the
design of a system, while at the same time, keeping its ob-
servable behaviour unchanged. Some examples of refactor-
ings are: renaming a class, which is used to change the name
of a class so that the new name represents the class’ respon-
sability better than the old one; moving a method from one
class to another, so that related services can be grouped to-
gether in the same class and thus, cohesion and coupling can
be improved, etc. Improving the evolvability and reusability
of a system are among the main objectives of refactoring an
already working system.

2 Javier Pérez et al.: A Case Study to Evaluate the Suitability of Graph Transformation Tools for Program Refactoring

After the term refactoring (of object-oriented programs)
was coined by W.F. Opdyke in 1992 [12], the technique be-
came widespread only with the book of M. Fowler [4]. In
his book, Fowler collected and defined the “reference” set of
basic program refactorings, which most interactive develop-
ment environments support, and described them using exam-
ples written in Java.

In particular, the EcrLipse development environment for
Java provides very extensive support for program refactoring.
The way that the Ecripse development environment imple-
ments refactorings differs to some extent from Fowler’s ref-
erence. In fact, this is also the case for other available refac-
toring tools. In this case study, we include the specification of
three refactoring operations which shall be implemented with
a graph transformation system. The specification is mainly
inspired on how the refactorings can be achieved in EcLipsE
(modulo a number of simplifications).

The relation between refactoring and graph transforma-
tion has already been explored (and published) by various
authors, most notably with the tools AGG and Fuiasa [5,8,
9,13], thus illustrating the feasibility of the case study we
are proposing. This relation has been motivated by the need
to address some of the challenges faced by the current tool-
support for refactorings, such as: composition of refactor-
ings [7], searching refactorings [13], planning refactoring se-
quences [14], computation of conflicts and dependencies of
refactorings [10], etc. These challenges would greatly benefit
from a formal support provided by techniques such as graph
transformation.

3 The Case Study at a Glance

The purpose of the case study (called the Case in the remain-
der of this article) is to allow researchers to compare the fol-
lowing features of graph transformation tools:

— The ability to specify complex graph models,
because refactorings must deal with the representation of
models of programs, including the program source code
itself, which can lead to complex graph models.

— The expressiveness of graph transformation rules and,
in particular, the ability to specify and verify refactoring
pre- and postconditions, as well as the ability to apply
the refactoring itself. For example, in order to specify and
check preconditions, negative application conditions for
rules, relatively complex logical expressions, path expres-
sions, or other sophisticated mechanisms may be needed.

— The expressiveness of control constructs,
because some nontrivial refactoring applications may re-
quire complex control flow.

— Usability and understandability, e.g., by providing in-
teractive support for selecting, applying and controlling
transformations. Such support is required to gather spe-
cific information used to achieve the application of a par-
ticular refactoring.

— Genericity of the refactoring specification. A refactor-
ing can be customized for a particular program element.

Nevertheless, in order to be productive in a software de-
velopment platform, as well as to increase its reusability,
it must be implemented in a generic way.

— Extensibility, i.e., the ease with which the proposed so-
lution can be used to accommodate and implement new
refactorings.

— Performance requirements, such as the speed of import-
ing and exporting data, the speed of executing refactor-
ings, the amount of memory used, and so on.

3.1 Rationale

The Case is proposed with the following considerations in
mind:

1. The refactorings required for the Case range from moder-
ately complex to rather complex. As such, they may serve
as a “stress test” for contemporary tools.

2. What graph transformation tools could contribute extra
(with respect to ad hoc implementations of refactoring) is
the ability to formally reason about refactoring properties.

The main task to achieve in the Case is to use a graph
transformation tool, called the ool in the following, to im-
plement a refactoring system, which is henceforth called the
System. The specification of some requirements for the 7ool
to be implemented follows.

3.2 Required Functionality

The Tool shall be used as the basis on top of which a System
with the following features shall be developed:

1. The System reads program graphs according to the meta-
model specified in Figure 3. A set of sample graphs con-
forming to this meta-model have been obtained from a
program that models local area networks. These samples
can be found in subsection 4.1.

2. The System displays this program graph to its users. We
leave it open to the ool to decide how to display the pro-
gram graph. Many different representations are possible:
textual, tree-based, graph-based, etc.

3. The System allows users to apply the following refactor-
ings of Fowler [4]: Move Method, Encapsulate Field and
Pull Up Method. Their specification, together with a mo-
tivation of why we selected exactly these refactorings, is
given in Section 5.

4. The refactorings can be applied interactively (i.e., with
user guidance when needed).

5. The System exports transformed graphs according to the
given meta-model.

Since different graph transformation tools support differ-
ent input and output formats, we suggest to deal with input
and output models in a serialized format as GXL' files. This
is not a mandatory requirement, however, the usage of a com-
mon format is desirable because it will ease comparison and

! See the full GXL documentation under http: //www.gupro.de/GXL.

Javier Pérez et al.: A Case Study to Evaluate the Suitability of Graph Transformation Tools for Program Refactoring 3

evaluation of results. GXL has been chosen for its simplic-
ity and broad support. It is a simple XML-based specifica-
tion format for graphs, that is well-defined and known by
the graph transformation community, and supported as an in-
put/output format for various tools 2.

3.3 Optional Functionality

The features described in subsection 3.2 are mandatory. In
addition, the System may also support the following optional
features.

Implementers of the Case should explain clearly whether
and how these criteria have been addressed.
Composition and reuse of refactorings:

— Does the System allow to compose complex refactorings
from simpler ones?

— Does the System provide mechanisms to reuse existing
refactoring specifications, or parts of them?

Automatic checking of formal properties, i.c., the ability to
formally reason about refactoring transformations. Such for-
mal support will depend a lot on the chosen approach (tool
and language), and may be used to verify properties such
as consistency, completeness, correctness, termination, be-
haviour preservation, and many more. It can answer many
interesting questions such as:

— Does the System guarantee well-formedness and consis-
tency of the program graph after a refactoring step in an
automatic way, or does it help the user to manually do so?

— Does the System provide any support for checking the
behaviour-preservation property of a refactoring *?

— Does the System allow reasoning about dependencies and
constraints between refactoring operations (e.g. causal de-
pendencies, constraints imposed on the application order,
refactorings that represent mutually exclusive alternatives
and so on)?

— Does the System support detecting opportunities or giving
out suggestions of where to apply which refactorings (e.g.
to remove bad smells)?

— Does the System provide other kinds of formal support
that could be beneficial in the context of refactoring?

3.4 Challenges

The following challenges make the implementation of the
Case non-trivial:

— The program graphs to be transformed are reasonably com-
plex. The given meta-model provides enough detail to al-
low checking for many static properties of programs, not
only syntax (hierarchical structure), but also scope rules
for names and type rules in a programming language.

2 For those tools that do not support this format, a converter can be easily
written, due to the simplicity of the chosen representation (e.g. with XSLT).

3 As a suggestion, a description of these behaviour-preserving conditions
can be taken and adapted from [11] if they are needed.

— The transformations are rather complex, likely involving
complicated patterns and sophisticated application condi-
tions, and / or complex strategies for rule application.

3.5 The LAN example

A program to be refactored is provided as an example, thus
the solution implemented can be checked and evaluated with
this example in order to complete the Case. The example de-
scribes a (toy) simulation of a LAN. We have selected this ex-
ample because it is widely considered as a good case study.
It has been accepted, and it is used frequently, by both the
software evolution and graph transformation community as a
reference example [3,6].

The example simulates a LAN connecting two different
types of nodes: workstations and printservers. All nodes in
the LAN are connected in a ring topology, so each node in
the network is always connected to two other nodes, a pre-
vious and a next one. Nodes in the network send packets to
the next node in the ring using a send method. Each node
confirms the reception of a packet with an accept method.
Depending on the type of node, each one performs a differ-
ent task with the packet. Workstations simply forward the
packet while printservers extract the content of the packet
to print it. Each packet can contain two types of documents:
ASCII or PostScript. The only difference between them is that
PostScript documents can contain an array of figures while
ASCII ones cannot.

Figure 1 shows a bird’s-eye overview of the system struc-
ture in terms of packages and classes. Figure 2 shows more
details of its classes in terms of their operations and attributes.

Additionally we provide files with the meta-model and
the example models (from the LAN program), which can
be downloaded from http://www.infor.uva.es/ jperez/
GraBaTs2008/refactoringCaseProposal.tar.gz. The con-
tent of this file includes:

— a meta-model specifying the program graph representa-
tion for Java programs. The meta-model is provided in
XMI format and in ARGoUML* format.

— various snapshots of the LAN example source code. Each
snapshot is the result of applying one of the three refac-
torings requested in this Case.

- serialized versions —in GXL format— of some program
graphs representing the LAN example according to the
GXL models (See Section 4.1).

The specification of the program graph representation for
Java programs, with additional textual documentation of the
meta-model, is given in Section 4. Some examples are pro-
vided as well, to illustrate how to represent some particular
source code fragments in the Java program graph format.

4 ArGOUML is an open-source UML modeling tool that can be down-
loaded from http://argouml.tigris.org

Javier Pérez et al.: A Case Study to Evaluate the Suitability of Graph Transformation Tools for Program Refactoring

packets

Printserver

| Workstation

lansirmulation
< <impart == files
--- i
Figure

) : | |
E | ASCIIDocument PostscriptDocument
: < <imporks >

? Q

L import > > :
LANExample

+main{atgs: String)

Figure 1. A bird’s-eye view of the LAN example.

files:Document

#_content: String
#_name: String

<<create > >+Document(content: String, name: String)
“+getContent{): String
“+setContent (contert: String)

HoString(): String

files=ASCIIDocument

files::PostscriptDocument

<<create = >+ASCIIDOMUMENt(Contents: String, name: String)

#includeFiguretF: Figure?
+toString(): String
+sethlame(name: String)
~+gethame(): String

-_figures: Vector

sincludeFigure(f: Figure)
#getFigures(): vector
~+tastringl): String

Name(name; String)
+getMamet): String

< <create > =+PostscriptDocument (contents: String, name: String)

nodes:hode

+_name: String

+ nexthlode: Node

<<create> =+Node(name: String)

< <create> >+Node(name: String, nexthode: Node)
+sethame(name: String)
+accept(p: Packet)
-incrementJumps(p: Packet)
#send(p: Packet)

i

nodes:Printserver

-lastDocument: Document

(a) Classes in the files package

files:Document

#_content: String
#_name: String

“Hprint()
+acespt(p: Packst)

<<create = =+Printserver(name: String)
< <create > =+Printserver(name:
+FarmatDocument(): String

tring, nexthode: Node)

packets::Packet

-_document: Document
-_content: String
-Zoriginator: Node
-_destination: Node
+_jumps: int

nodes:Workstation

<<oreate>+workstation(name: String)
<<rreate>>+waorkstation{name: String, nextMade: Node)
-setPacketOriginatartp: Packet)

+originate(p: Packet)

+accept(p: Packet)

(b) Classes in the nodes package

nodes:Node

originator

<<create>>+Packet(document: Document, dest: Node)

<<create>»+Document{content: String, name: String)
+getContent(): String

+setContent{content: String)

+tostring(): String

document

<<create>>+Packet(content: String, dest: Node)
+getDocument(): Document
+setDocument{document: Document)
+setContent(content: String)

+getContent(): String

+getOriginator(): Node

+setOriginator{orig: Node)

+getDestination(): Node

+setDestination{dest: Node)

+_name: String
+_nexthode: Node

(c) Packets, Documents and Nodes

| <<create>>+Node{name: String)

destination | ¢ <create>+hode(name: String, nexthode: Node)
+setName{name: String)
+accept(p: Packet)
-increment Jumps(p: Packet)
#send(p: Packet)

Figure 2. Details on classes and their relations of the LAN example.

Javier Pérez et al.: A Case Study to Evaluate the Suitability of Graph Transformation Tools for Program Refactoring 5

4 Meta-model for Program Graphs

We propose to use the meta-model of Figure 3 to represent
Java programs. The selection of a meta-model could have
been left open, but we have considered appropriate to provide
a reference meta-model. This way, the different graph trans-
formation tools sharing the same meta-model will be more
easily comparable. This model is based on other works that
addressed the problem of formalising refactorings with graph
transformation [11, 13]. We have tailored these meta-models,
instead of choosing an already existing one, in order to pro-
duce a meta-model with an adequate level of detail for this
Case. The Java AST generated by EcLipsg, for example, would
have been too much detailed.

In order to keep the Case feasible, without removing too
much of its inherent complexity, we decided to restrict our-
selves to a subset of Java programs. In particular, the follow-
ing concepts are not included in the meta-model and thus
should not be represented by solution providers:

Inner classes and anonymous classes
Exception handling

Generic types (Java 5 or later)
Annotations (Java 5 or later)

5. Type casting

bl s

It should also be noticed that there is not an specific node
type to represent constructors. These methods are represented
as ordinary methods (except that they follow a specific name
convention).

The restrictions imposed by the meta-model of Figure 3
are completed with the following well-formedness constraints,
derived from the Java language specification:

— Constraint 1: Classes can not extend to/from interfaces.

— Constraint 2: Classes do not have multiple inheritance
(classes can not extend multiple classes).

— Constraint 3: The belongsTo relations from Variable are
mutually exclusive.

— Constraint 4: The extends, belongsTo and expression re-
lations should be acyclic.

— Constraint 5 and 6: The link relations from Access or
Update are mutually exclusive.

— Constraint 7: The this and super attributes of a call entity
cannot be simultaneously true.

These constraints are expressed as forbidden subgraphs in
Figure 4. Essentially, a forbidden subgraph expressed a con-
junction of graph patterns that are prohibited, i.e., not allowed
to occur in a well-formed Java program graph model.

The classification of Expression subtypes in the metamodel
of Figure 3 is probably incomplete, but it includes enough
synutactic elements to model programs for code refactoring
purposes. Please consider that there are many expression re-
lations between the subtypes of the Expression type, which
are not allowed by the definition of the Java language. These
constraints are not included in the model for the sake of sim-
plicity but they should be taken into account.

Another concern that deserves attention is dynamic bind-
ing. In Java, it is not possible to know statically which will
be the exact type of an entity at run time. This difficulty is
inherent to the language, hence it imposes a limitation over
the expected representation of Java programs. Only the static
types of entities, those which are well-known from the decla-
ration statements, have to be represented.

4.1 The meta-model by examples

The files and graphs for the GXL model of the whole LAN
program are too big to fit in the paper. They are included
within the downloadable material.

Nevertheless, in this section we present some graph ex-
amples that show the different abstraction levels of the graph
representation. A graph representing the highest level entities
of the LAN example —classes and packages— is displayed in
Figure 5. This graph models the system structure shown in
Figure 1.

A Java code excerpt of the Document class is shown in
the following listing. The graph representation for this class
structure, ignoring method bodies, is depicted in Figure 8.

package lansimulation. files;

public class Document {
protected String _content;
protected String _name;

public Document(String content,
setContent(content);
_name = name;

}

public String getContent() {
return _content;

}

public void setContent(String content) {
_content = content;

}

public String toString () {
return getContent () ;

}

String name) {

}

Another Java code fragment, namely the incrementJumps
method of class Node, is shown in the following listing. Its
corresponding graph representation is displayed in Figure 6.

private void incrementJumps(Packet p){
p.-jumps = p._jumps + 1;
System.out. println (”Traversing node "+this.

_name) ;

The listing of a constructor method for class Node is shown
below. Its graph representation is depicted in Figure 7.

public Node(String name, Node nextNode) {
setName (name) ;
this . _nextNode = nextNode;

Let us now compare both method’s body representations.
The former example, incrementJumps, differs from the latter

Javier Pérez et al.: A Case Study to Evaluate the Suitability of Graph Transformation Tools for Program Refactoring

extends

belongsTo —| Ii i
g 0. 0. imports

0.* 0.* Classifier 0.”
belongsTo - type
Package 1 9 1.* |name : String 1
visibility : String
0.1 | name : String 1 |isAbstract : boolean type
type 0..1
1 ZF
1l implements belongsTo
Class 0" P! 0. ﬁ 9
type A nterface
1 |isFinal : boolean
belongsTo 0.1
0..* 0..*
0.” -1
o0+ belongsTo Operation
link Variable - binding name : String 1 parameter
- . elongsTo 0.* 1 isibility - Stri
name : String 0.. visibility : String
visibility : String isAbstract : boolean
isStatic : boolean . belongsTo isStatic : boolean
isFinal : boolean 0..) isFinal : boolean {ordered}
0. expression [
0..1
Literal 0.1 0.1 | Parameter I
value : Strin,
9 belongsTo 0.1 0.1
0..1
{ordered}
ordered} link link ac{’gfﬂsra; g}me‘ef
{incdmplete}
link
0.* 0..* 0.1
Access Update Call Instantiation Operator | Return I | Block I
1

this : boolean this : boolean this : boolean name : String

super : boolean

0. 0.r 0.r
0. link
link
link
Figure 3. Meta-model for graph representation of Java programs
Interface I 2[Class] 3[Class I 2[Expression I 3[MethodBody I
. 7 : 7 7
extends : extends extends : \ belongsTo o \ belongsTo \ belongsTo
H H belongsTo : belongsTo belongsTo

) _Variable

v]

e J|| o=]]

Constraint 2 Constraint 3
I Class I [Parameter] [Class I I Literal] [Variable I I Parameter I
X 7 8 I X 7 :
link link link link . link link : link link
1 1

Constraint 6

I Variable I dI Literal] [Literal I I Parameter
X - i X A :
link link I link link : Call

: this = true

1 I 1 :

[Variable I I Parameter I

N
link link

1

3

Constraint 7

Constraint 5

Constraint 4

Figure 4. Forbidden subgraphs that represent additional constraints to the Java Program Graphs meta-model. Contraints 1, 3, 4 and 5 are composed of multiple
forbidden subgraphs (separated by dotted lines), indicating that each of these subgraph patterns is not allowed to occur in a well-formed Java graph model.

Javier Pérez et al.: A Case Study to Evaluate the Suitability of Graph Transformation Tools for Program Refactoring

Package
name="lansimulation”
A
belongsTo
belongsTo belongsTo
Package Package
name="packets" name="nodas" Package
Y imports name="files"
belongsTo belongsTa belongsTo /\ belongsTo belongsTo
Class Class Class Class
visibility="public" extends visibility="public" visibility="public" visibility="public"
isAbstract=true | isAbstract=false isAbstract=false isAbstract=false isAbstract=false
name="Node" name="Workstation" [~ |name="Printserver" name="Document" name="Figure"
extends o
isFinal="false \F_J._.-lsFma\:ralse isFinal="false isFinal=false isFinal=false
extend
imports imports/” import) bejongsTo
imports
. beklongsTo
imports
Class imports L S imborts
belongsTo |visibility="public" a visibility="public extends
i = isAbstract=false
isAbstract=false i . " . .
=) imports imports [name="PostscriptDocument
name="Packet Class . Class
isFinal="false o e W isFinal=false = Blv="00UBlc"
visibility="public visibility="public’
isAbstract=false — isAbstract=false
belongsTo name:"LANExample"Wname:"}ﬁﬂ@ocumem"
isFinal="false isFinal="false

Figure 5. A graph example representing packages’ and classes’ nodes, corresponding to the LAN system structure of Figure 1.

Operation

parameter

name="incrementjumps"”
ump order=1

visibility="pubic"
isStatic=false
isAbstract=false

Parameter

Class

type

visibility="public"
isAbstract=false
name="Packet"

belongsTo

Variable
name="_jumps"

A

visibility="public"
isStatic="false

isFinal=false IsFinal="false isfinal="false
binding link.
link _
MethodBody link’ link
belongsTo expression
order=1 _[Access | [update . [Operator | JAccess | oJAccess | [operator | JAccess |
" |this=Talse | " |this=Talse | " name="="| " [this=false| " |this=Talse | " name="+"| "this=false |
expression expression expression expression expression expression
Operation
Class Variable name="printin" Variable
visibility="public’ name="out" visibility="public" name="_name"
isAbstract=false visibility="public" isStatic="false T ———] visibility="private"
name="System" isStatic=true isAbstract=false raversing node isStatic=false
isFinal=true isfinal=true isFinal="false & isfinal="false
. . . 1 link. i
expression link link link link
Qrder=2 o |ACCESS o |ACCess N ﬁiﬂl—false o |ACCRSS _|Opera[or | __|Access |
|_|lh|s=fa|se expression |—|[h|s=false expression |super=false | actualParameter |_|lh|s=fa|se expressior |name= ha | expressio,.llhE:"uel
Figure 6. A graph example representing the incrementJumps method from class Node.
ype

"

isAbstract=true

Figure 7. A graph example representing a constructor method from class "Node’.

name="Node"
isFinal=false belongsTo
belongsTo parameter
MethodBody order=2 Daramerer
order=1
binding ~Operation Operation
name="Node" name="setName"
visibility="pubic" visibility="pubic" Class
isStatic=Ffalse isStatic="false visibiliy="public"| |
isAbstract="false isAbstract=false isAbstract=false link link
isFinal="false isFinal=false name="5tring"
? ink isFinal=true
expression :
belongsTo — order=1 ‘Ca_ll expression h’mss_|
Block P this=true > s —fale
super=false l—l
belongsTo expression
order=2 Access o | Update | _|0peralor| __|Access |
this=true " |this=true T|name="="] "|this=false|
-] expression expression
isStatic="false link
isfinal=false

8 Javier Pérez et al.: A Case Study to Evaluate the Suitability of Graph Transformation Tools for Program Refactoring

Variable Class
name="_content’ type Visibility="public"
visibility="protected" isAbstract=false
isStatic=false name="String"
isfinal="false isFinal=true

k4

Variable
name="_name" ype type
visibility="protected”
isStatic=false

belongsTo, |isfinal=false
parameter
order=1
Operation
belongsTo binding|"2Me="Document’
nding|yisibility="pubic"
parameter
MethodBody ‘Si[g"(cz?lsfe\ order=2 "
Class belongsTo IsAbstract=false pe|
visibility="public" IsFinal=false
isAbstract=false -
name="Document" Operation +| parameter
isFinal=false helongsTo bind name="setContent order=1 type
Vehoded Inding |yisibility="pubic"
y isStatic="false
isAbstract=false
QelongsTo isFinal=false
Operation
bind name="getContent" .
inding)yisibility="pubic" Lk
belongsTo\ [MethodBody \sStallc“;farluse
isAbstract=false
isFinal=false
Operation
name="toString" -
visibility="pubic" pe
MethodBody isStatic=false
isAbstract="false
isFinal=false

Figure 8. Graph representation of the Document class

that it is a constructor method. The name convention for con-
structor methods is observed. Both examples also differ in
the number of arguments, for which order labels in edges are
shown. The incrementJumps method includes feature access
through a reference to a separate object (reference p in the ex-
ample). The constructor method includes two different man-
ners of self references, explicit, using this (this._.nextNode in
the example), and implicit, call without an explicit receiver
(setName(name) in the example).

5 Precise refactoring specifications

We provide definitions of a small subset of three carefully se-
lected Fowler refactorings, based on the way they are imple-
mented in EcLipse. We have chosen this implementation be-
cause it is probably the most popular and best-known. How-
ever, solutions to this Case can choose to implement another
particular refactoring, if they consider it is needed to demon-
strate a specific interesting feature of a certain graph transfor-
mation tool.

To keep the Case feasible, it consists of implementing
only the following three refactorings: EncapsulateField, Move-
Method and PullUpMethod. The given specifications have
been extracted manually (by inspecting the source code and
testing the refactoring itself) from Ecripse 3.3.1 and 3.3.2.
These specifications are simplified and modified versions of
the actual implementations, in order to better fulfill the Case
objectives than the originals. Both the EcLipse originals and
our own specifications should be taken as initial guidelines
by implementors of solutions. Implementors of the Case are
invited to further extend their refactoring implementations to
approximate the EcLipsk variant as closely as possible, in or-

der to come to a “realistic” solution. Implementors of the
Case are also invited to implement other refactorings, such
as Push Down Method, Inline Method, Rename Method and
SO on.

5.1 Encapsulate Field

operation:

encapsulateField(Class container, Variable var, String getter-
Name, String setterName, Boolean useAccessorsAlways)
preconditions:

— The variable var must exist within the class container.

— If the getter or setter names being proposed already exist
within the container class, the methods and the variable
must be all non-static or all static.

mechanics:

The visibility of a variable field is turned private (i.e., the
variable is encapsulated) and getter and setter methods
are created to access it, if necessary.

All references to the encapsulated field (excluding those

within the container class) are updated to use the accessor

methods.

— If the useAccessorsAlways option is set to true, references
to the variable within the container class will be trans-
formed into calls to accessor methods too.

— If the visibility of the variable is not public, the user is
asked about the desired visibility of the accessor meth-
ods: when protected or default, the user can choose be-
tween the original visibility or public; when private, the
user can choose any visibility. Only methods created by
the refactoring are given the chosen visibility. If an acces-
sor method already exists and it is used in the refactoring,
its visibility remains unchanged.

— If the variable is a static field, the newly created methods
must be specified with the static modifier when creating
non-existing accessors.

— Ecuipsk offers two more options: one to specify where to

insert the newly created methods, within the source code

text, and another to generate method comments. None of
these options is interesting for the Case as they do not
impact the program graph.

5.2 Move method

operation:

moveMethod(Class source, Class target, MethodBody method,
Boolean useDelegation)

preconditions:

— The target class should be reachable from the code that
calls the moved method. EcLipseE implements this by ap-
plying the following restriction: either there is an instance
variable of the target’s type within the source class, or one
of the method parameters is of the same type as the target
class.

Javier Pérez et al.: A Case Study to Evaluate the Suitability of Graph Transformation Tools for Program Refactoring 9

The method to be moved should not have a call to super.
Static methods are not meant to be moved by this refac-
toring.

Name conflicts can be caused by methods with the same
name as the moved method, which exists either in the tar-
get class or in its super-classes. The second conflict is not
really a conflict, the moved method overrides a parent’s
one, but it is a clear problem for behavior preservation.
For this Case, we assume that methods that cause name
conflicts cannot be moved °.

mechanics:

The corresponding method body is moved from the source
class to the target class.

If the useDelegation option is set to false, the method is
moved to the target class, and all the references/calls to
the method are updated.

If the useDelegation option is set to true, the method is
copied to the target class and the original method body in
the source class is turned into a delegating call to the new
method. Updating of references is not needed.

To update references:

— if the moved method is going to be accessed through
an instance variable of the source class, then those
calls to the moved method such as: referenceToSource-
Class.method(p)) will have to be substituted, to access
that instance variable, by an expression similar to this:
referenceToSourceClass.instanceVariableOfTargetsType.
method(p).

— if one of the method’s parameters, say p, which be-
longs to the type of the target class, is going to be
used to access the moved method, the call reference-
ToSourceClass.method(p) is substituted in the caller code
by p.method().

— If members of the target class are accessed within the
body of the method being moved, references can be
updated from referenceToTargetClass.member() to sim-
ply member().

— If the method being moved accesses instance mem-
bers from the source class, a reference to the source
class must be available from within the method. There-
fore, a parameter, say p, of the source class type is
added to the moved method, and references are up-

the moved method could be executed, all the visibility
modifiers involved are changed to public in a chained
way.

5.3 Pull Up Method

operation:

pullUpMethod(Class source, Class target, MethodBody method,
Boolean makeAbstract, Class[] keepMethods)
preconditions:

— The source class must have a superclass to which mem-
bers can be pulled up.

— The target class must be a superclass of the source class.

— A method with the same signature cannot be declared
within the target superclass.

— A constructor is a special kind of method that is not meant
to be pulled up with this refactoring.

— All elements referenced from within the pulled-up method
must be accessible for the method in its new location (su-
perclass).

— All occurrences of the method to be pulled up, within sub-
classes of the target superclass, must share the same oper-
ation signature as the pulled up method.

— All occurrences of methods within subclasses of the target
superclass and with the same operation signature, must
have the same return type.

mechanics: The pulled up method is moved to the superclass.

— The user must specify which occurrences of the method
within the subclasses of the target superclass are being
kept and not removed. Methods which are not deleted will
override the pulled up method in their respective classes.
If no method is specified, the default behavior will be to
remove all occurrences. In Ecuipsg, this is implemented
with a multiple choice dialog where the user can select
which methods have to be kept and which ones have to
be deleted. For this Case, the System is not required to
provide this particular GUI, but a way to define the sets
of methods to be kept and deleted has to be provided.

— If the user specifies the makeAbstract option, an abstract
version of the pulled method is created in the target super-
class and the method body is not pulled up. Stub methods
(methods with empty bodies) have to be created in sub-

dated in the caller code from referenceToSourceClass.method(p)classes which do not implement the pulled up method and

to p.method(referenceToSourceClass).

— If the method is overridden within subclasses of the
source class, or overrides methods of a superclass of
the source class, the useDelegation version of the refac-
toring is applied.

— If the useDelegation version of the refactoring is ap-
plied, Ecripsk tags the old method as deprecated. This
particular behavior does not need to be implemented
for the Case.

— If the visibility modifiers of the moved method, or
those of the members accessed from it, prevent that

5

In Ecripse, moving methods is allowed even in these situations. We leave

it open to the developers to implement the EcLipsE variant.

are not abstract.
— Visibility of private methods must be changed to protected.

In Ecvipsk, the pull up refactoring is implemented in a slightly
different way. It can be used to pull up many members at a
time. In order to simplify the Case, we will restrict this refac-
toring to pull up a single method. Nevertheless, we leave it
optional to the developers to implement the more complex
variant as a composite refactoring.

5.4 Refactoring the LAN example

As mentioned before, the additional downloadable material
includes 9 snapshots of the LAN example. Each snapshot cor-

10 Javier Pérez et al.: A Case Study to Evaluate the Suitability of Graph Transformation Tools for Program Refactoring

responds to the application of a single step from the following
refactoring sequence:

0. Original version of the LAN simulation system
EncapsulateField(Node, _-name, getName, setName, true)
EncapsulateField(Node, _nextNode, getNextNode, setNextNode, true)
EncapsulateField(Printserver, lastDocument, getLastDocument, set-
LastDocument, false); option: private — protected
MoveMethod(Printserver, Document, formatDocument, false)
MoveMethod(Node, Packet, incrementJumps, false)
EncapsulateField(Packet, _jumps, getJumps, setJumps, true)
PullUpMethod(PostscriptDocument, Document, setName, false, {})
PullUpMethod(PostscriptDocument, Document, getName, false, {})
PullUpMethod(PostscriptDocument, Document, includeFigure, true,
{PostscriptDocument, ASClIDocument})

W=

A e A

This sequence of refactorings we suggest covers most of
the options, and it tests most of the features, of the refactor-
ing specifications given. It can also be used as a reference
sequence. Once this refactoring sequence is completed (ac-
cording to the refactoring specification provided in this sec-
tion), the resulting classes are shown in Figure 9. In order to
properly compare the Tools, the System shall reproduce this
sequence, obtaining the same results. The detailed effect of
each refactoring, each resulting source code snapshot, can be
found in the downloadable materials.

6 Evaluation Criteria

In the context of model refactoring, the Case aims at measur-
ing many different criteria, some practically oriented, others
more theoretically oriented:

Expressiveness: As was introduced in Section 3, for complex
refactorings, mechanisms are often needed to express control
flow among primitive rules, or to parameterize transforma-
tions. For checking the preconditions of refactorings, rela-
tively complex logical expressions or path expressions may
be needed. To assess the expressiveness of the used mecha-
nisms, the following questions may be used as a guideline:

— How “self-explanatory” is the specification of the refac-
torings?

— Which graph transformation language concepts help to
specify the refactorings proposed? Which control con-
structs are needed?

— Can primitive refactoring operations be reused to build
other refactorings?

— Can refactorings be composed to build larger refactor-
ings?

— Can refactorings be parameterized?

Usability and understandability: To assess this criterion,
we can ask the following questions:

— How easy is it to use the 7ool for performing refactorings?
What is the learning curve? This also includes user inter-
face aspects such as the ability to implement a refactor-
ing plug-in, the ability to apply refactorings via context-
sensitive menus or by selecting the appropriate model el-
ements that one wishes to refactor, user interaction during
the application of the refactoring and so on.

— How can refactoring selection, parameterization, and ap-
plication be triggered by the user? Can the user interact
with the refactoring process during its application?

— Is the System robust against malicious or accidentally in-
correct user input?

— Does the System provide any help to indicate the place(s)
where a chosen refactoring could be applied?

— Does the System provide any support to indicate which
refactorings could be applied at a given place?

— Does the System provide feedback to the user on poten-
tially interesting relations between refactorings? (alterna-
tives, potential conflicts, etc.)

Genericity: Is it possible to specify refactorings in a generic
way, so that they can be applied to different meta-models?
To which extent can the refactoring rules be parameterized?
Both questions are important, in order to make the refactoring
specifications less dependent from the chosen graph meta-
model, and hence become more robust to evolution of this
metamodel.

Extensibility: How easy is it do add new refactorings in the
Tool? (a) For a graph transformation expert; (b) for a novice
user. In order to check for extensibility, solution providers
shall consider to specify one or several other refactoring op-
erations.

Performance: This relates to questions pertaining memory
consumption and speed of execution:

— How much memory is used to specify graph models, refac-
torings, and the application of refactorings?

— How long does the importing and exporting of data take?

— How fast is the verification of refactoring preconditions
and the actual application of the refactoring?

Formal properties: Which formal properties of the tool can
be exploited to reason about the model refactorings, and to
ensure their correctness, consistency and behaviour preserva-
tion? Specific questions related to formal properties are:

— Are all decidable preconditions of a refactoring checked
before it is applied?

— How does the System handle preconditions that are unde-
cidable? An example of this is the condition stating that
the method bodies to be “pulled up” shall be equivalent.
This condition can not be proved or disproved.

— Does the System guarantee that the refactored graph does
again conform to all constraints of the model, and that it
preserves behaviour?

— How can postconditions be expressed? Due to the fact that
these may depend on input provided by the users during
the refactoring, they may not necessarily be convertible
into an equivalent precondition.

The developers of the System could consider to apply some
of the specified refactoring operations to another, maybe big-
ger program graph, conforming to the same GXL meta-model,
in order to check for generality of the refactorings, and for
scalability of the System.

Javier Pérez et al.: A Case Study to Evaluate the Suitability of Graph Transformation Tools for Program Refactoring

fileszBocument

#_conkenk: String
#_name: String

+getContenki): String
+setContent{content: String)
+koString(): String

files::Figure

L +farmatDocument(): String

+setMame{name: String)

+getMame(): String

P Lol | e T | <<ireate > =+ASCIIDocument {conkents: String, name: String)
#includeFiguredf: Figure) < =rreate = »+PostscriptDocument{contents: String, name: String)
+tastringl): String #includeFigurelf: Figure)

#getFigures(): Yector

+taoStringl): String

FncludesigureF Aiguea)

<<create = =+Document{content: String, name: String)

files:ASCIIDocument

files::PostscriptDocument

-_figures: Yector

packets:Packet

-_document: Document
-_content: Skring
-_otiginator: Node
-_destination: Node
-_jumnps: ink

lansimulation:LANExample

+getDocument(): Document

+main{args: Skring)

"""""""""""""""" | tsetDacument{document: Dacument)
+setiContent{content: String)

+getContent): String
+getOriginator(): Node
+setOriginator{orig: Mode)
+getDestinationd): Mode
+setDestination{dest; Node)
+setJumpsi_jumps: int)

+get Jumps(): int
+incrementJumpsinode: Node)

< =rreate = »+Packet{docurment: Document, dest: Node)
<<create = =+Packet{content: String, dest: Mode)

docurment

aephinatmn

nodes:Node

-_name: String
-_nextMode: Node

< <create > =+MNode(name: String)

+getMame(): String
+setMame{name: String)
+setMextModel_nextNode: Node)
+getMextiode(): Node
+accepk(p: Packet)

#send(p: Packet)

<<rreate = =+MNodefname: String, nextMode: Mode)

nodes::Printserver

+astDocument: Document

< =create = =+Prinkserver(name: Skring)

< =rreate = =+Printserver(name: Skring, nextNode: Node)
#setLastDocument(lastDocument: Document)
#getLastDocument(): Document

+prink()

+accepk(p: Packet)

nodes:\Workstation

< <create = =+Workstation{name: String)

< =create = =+Workstation{name: String, nextiNode: Node)
-setPacketOriginator{p: Packet)

+originatel(p: Packek)

+accepk(p: Packet)

-emeee

Figure 9. The resulting LAN example after having applied the refactoring sequence.

11

12 Javier Pérez et al.: A Case Study to Evaluate the Suitability of Graph Transformation Tools for Program Refactoring

Evaluation matrix for the Refactoring case study

Feature Approach
The Tool, e.g. | VMTS | MoTMoT | FuiaBa | AGG | PROGRES
General GT language
Import/Export format

Changes to metamodel

User interaction

Embedded code

External libraries

Rule composition

Visualization

Completeness | Encapsulate field

Move Method

Pull Up Method

Performance Memory Consumption

Speed: Refactoring

Speed: Import/Export

Speed: Visualization

Appeal Understandability
Conciseness

Scale for the above criteria
-2 | Bad
-1 | Meager
0 | Average
1 Good
2 Excellent

Table 1. Features to be used in order to evaluate Tools according to this case study.

As already said, this Case was proposed for GraBaTs
2008. In addition to the evaluation criteria presented in this
article, Contest organizers proposed the evaluation matrix shown
in Table 1. This table includes columns for a generic Tool and
for the Tools presented in the live contest. ©

7 SWOT analysis

This article proposed a case study where the task specified
can be considered of medium size, but quite demanding (for
tools and their users). The Case is representative of a quite
popular application area — program refactoring.

To conclude, we discuss the Case using a SWOT (Strengths,
Weaknesses, Opportunities, and Threats) analysis:

— Objective: The specific subject to evaluate, and the ratio-
nale behind this.

— Strengths: Positive internal attributes that benefit the goal
and are within the authors’ control.

— Weaknesses: Factors that negatively affect the achieve-
ment of the objective and are beyond the authors’ control.
They can be understood as points that can be improved in
the future.

— Opportunities: External factors beyond the authors’ con-
trol that could be helpful to achieving the objective.

% The solutions submitted to GraBaTs 2008 for this Case can
be found in http://www.fots.ua.ac.be/events/grabats2008/
solutions.html, and the result of the live contest can be obtained from
http://www.fots.ua.ac.be/events/grabats2008/awards.html.

— Threats: External factors beyond the authors’ control that
are harmful to the goal if they occur.

The usual format to document this analysis is by filling in
the Strengths, Weaknesses, Opportunities, and Threat cells,
within a 2x2 matrix We compile and discuss these points in
the following sections and we summarise them in Table 2.

7.1 Objective

The goal of the Case is to provide a framework to evaluate
and to compare graph transformation tools. Specifically, it is
focused on the evaluation of:

— the expressiveness of the tool and its graph language in
regards of rule specification, and its features for using
complex rule execution control;

— the extensibility of the tool and its language in terms of
support for reuse and composition in rule specification;

— the usability and understandability of the tool (also called
appeal), especially for non graph-transformation-savvy
users. This can be expressed in terms of conciseness, ease
of use, and suport for user interaction (e.g., to allow user
guidance during the transformation); process;

— the genericity of the developed refactoring rules, and more
precisely whether they can be used or easily adapted for
other program graph meta-models;

— performance requirements of the tool;

formal support for analysis of rule properties;

Javier Pérez et al.: A Case Study to Evaluate the Suitability of Graph Transformation Tools for Program Refactoring 13

7.2 Strengths

The relations between graph transformation and refactorings
have already been stated. The source code of a program has
a straightforward graph representation as an abstract syntax
tree (AST). Refactoring operations can be understood as struc-
tural transformations of an AST.

The Case used an ad-hoc AST-like meta-model that can
be used as a reference meta-model, against which each solu-
tion can be compared and evaluated. The use of this simpli-
fied AST forces all the solution providers to follow a common
graph representation with a level of detail that is sufficiently
close to the Java source code,

Refactoring operations have enough complexity to stress
test the characteristics of many graph transformation tools,
such as expressiveness, extensibility, performance, genericity
and usability.

Preconditions and mechanics of refactoring operations are
rather complex, so the expressiveness of a graph transforma-
tion tool and a graph transformation language is a key at-
tribute in order to develop a proper solution.

Refactorings vary in their complexity, and thus, their me-
chanics are implemented by simple or rather intrincated algo-
rithms. The Case tests the tool’s support for complex control
of transformation rules. A graph transformation tool with the
ability to specify control over the execution of transformation
rules will undoubtably allow more satisfactory solutions than
tools or approaches that do not feature this ability.

The semantics of refactorings have been extracted from
their implementation in the EcLipse development tool. There-
fore, the correct semantics of a refactoring can be verified
easily by executing it with EcLipse over real source code or
the toy examples given.

A downloadable set of source code examples is given, so
the different solutions can be evaluated and compared against
the same reference example. The proposed reference exam-
ple (the LAN example) is considered as a good case study,
accepted by both the software evolution community and the
graph transformation community [3,6].

7.3 Weaknesses

The particular chosen subset of the Java language, meta-model
representation and selected refactorings proposed in the Case,
can favour some Tools against others. More precisely, the pro-
posal of a specific meta-model for Java program graphs, could
favour the solutions developed with some graph transforma-
tion tools and graph language formalisms against others. Per-
haps, a more open proposal could allow the developers to sub-
mit a solution fulfilling the Case requirements, while using a
meta-model more adequate to each specific graph transfor-
mation tool.

Refactorings, while referring to the same transformation
kind, vary greatly in their preconditions and mechanics. The
results of any graph transformation tool comparison may be
affected by the choice of a particular set of refactorings. The

refactorings selected do not include opportunities, for exam-
ple, to evaluate amalgamation features, such as copying sub-
graphs [16]. Some refactorings, such as Push Down Method,
would offer these opportunities. Support for meta-rules, sub-
graphs, graph shapes, etc. is an interesting feature to this do-
main, since those tools implementing it will produce more
understandable and concise graphs and rules.

Another concern regarding the refactoring specifications
is the abscence of postconditions in them. The addition of
postconditions would have make the Case more complete and
would allow testing more features of graph transformation
tools. Preconditions and mechanics of the EcLipse refactor-
ings can be extracted from the definitions in [4], and by test-
ing Ecuipsk itself or examining its source code. Unfortunately,
postconditions are not available from these sources.

The complexity and huge size of the graphs involved in
the Case makes it difficult to compare the graphs produced
by the different 7ools. In future refinements or revisions, the
Case should advise to check certain small parts of the graphs
for evaluation and 7ool comparison purposes.

One evident weakness of the Case is the lack of a tool
to generate the GXL representation of a given Java program.
Since the development of such converter is not the objective
of the Case, the solution providers will have to rely just on
the toy example provided.

The given meta-model, which is an ad hoc representa-
tion of Java programs, can be misunderstood by the solution
providers. A more standard meta-model, such as an EMF
model of the Java AST, could have been proposed to tackle
this problem.

The interactiveness of the solution can be more depen-
dent of the graph transformation tool used than the particular
implementation developed by the solution provider.

7.4 Threats

The lack of a tool to convert Java programs to the GXL meta-
model specification, can discourage a solution provider to de-
velop and debug a solution to the Case, or to apply the Case
to other programs than the ones that were provided.

Solution providers may choose to focus on different refac-
torings, or different variants of the same refactoring, which
could make it difficult to compare the different tools and so-
lutions.

The performance of the solutions may depend on the plat-
form/machine on which the Tool and Case are deployed. The
results can be different if we use another machine configu-
ration (e.g. CPU speed, memory configuration, ...), or even
another operating system. This is a threat that needs to be
taken into account when doing the comparison.

Also with respect to Tool comparison, the solution providers
may provide graph examples of many different types in terms
of size and the subgraphs they focus on. This will make it
difficult to compare the different solutions.

14

Javier Pérez et al.: A Case Study to Evaluate the Suitability of Graph Transformation Tools for Program Refactoring

Positive

Negative

Intermal

Strengths

Formalisation of refactorings as graph transformations
is a well-studied problem.

A common AST-like meta-model for graph representa-
tion of Java source code is given.

Code refactorings are sufficiently complex (they are not
“toy examples”).

Each refactoring implies a different subproblem with
different characteristics and degree of complexity.
Possibility to evaluate tool support for complex control
of transformation rules.

The refactoring semantics have been extracted from the
refactorings implemented in the Eclipse IDE.

A downloadable set of source code examples is given.

Weaknesses

The chosen programming language, meta-model and
set of refactorings can favour certain tools against oth-
ers.

The chosen set of refactorings may don’t offer oportu-
nities to evaluate every graph transformation tool fea-
ture —i.e. subgraph copying—.

Complexity and size of the graphs involved.

The abscence of postconditions.

Lack of a tool to convert Java source code to Java pro-
gram graphs.

The proper instantiation of the meta-model can be mis-
understood.

The interactiveness of the solutions is highly dependent
of the graph transformation tools used.

External

Opportunities

The Case is suitable to future refinement and revision.
It can serve as a basis for a benchmark of similar case
studies.

It specifies a framework to test different aspects of
graph transformation tools.

It can be revisited easily, by changing the meta-model
or the set of refactorings selected.

It is open enough to allow the solution providers to fo-
cus on different aspects of their solutions.

It can be used to test the scalability of graph transfor-

Threats

The lack of a source code to graph converter may dis-
courage a solution provider to develop a solution for
the Case.

Solution providers may decide to focus on different
(variants of) refactorings, making it difficult to compare
their solutions.

Solution providers may focus on different subgraphs
and parts of their solutions, making it difficult to com-
pare them.

Solution providers may use different platform/machine,

mation tools.
graph transformation tools;

graph-transformation-based Tools.

— It can be used to demonstrate practical application of

— It can be used to assess the formal reasoning ability of

making it difficult to compare the performance of their
solutions.

Table 2. SWOT analysis of the case study.

7.5 Opportunities

The Case can set the basis for a test benchmark for graph
transformations tools. It is obviously open for further refine-
ment and revision. Different programming languages, differ-
ent meta-models, and different refactorings can lead to evalu-
ate many different aspects of graph transformation tools and
languages. Future revisions of this Case can use it as a tem-
plate and can ask for different refactorings. Authors of graph
transformation tools can develop solutions for other refactor-
ings, for which their tools fit best, and thus show their features
and capabilities within a common framework. However, the
Case is sufficiently open to allow the solution providers to
focus on those aspects in which their tool or solutions can
perform best.

Although not explicitly stated, the Case can also be used
to test the scalability of graph transformation tools, specially
in regards of subgraph matching, because the program graphs

involved in the process can easily contain millions of nodes
and edges.

While it is given as an optional requirement, the imple-
mentors have the chance to demonstrate how their graph trans-
formation tools can provide practical application of graph
transformation theory.

A formal approach to source code refactoring can assess
the ability to reason about formal properties of refactorings
such as parallel and sequential dependencies between refac-
torings, termination properties, and many more.

Acknowledgements. Javier Pérez and Yania Crespo have been par-
tially funded by the regional government of Castilla y Leon (project
VA-018A07) and by the spanish government (Ministerio de Cien-
cia e Innovacion, project TIN2008-05675). Tom Mens is partially
funded by the Ministére de la Communautée francaise - Direc-
tion générale de I’Enseignement non obligatoire et de la Recherche
scientifiqgue (Action de Recherche Concertée AUWB-08/12-UMH).

Javier Pérez et al.: A Case Study to Evaluate the Suitability of Graph Transformation Tools for Program Refactoring 15

The authors thank all those who have contributed to this case

study: the organisers of GraBaTs 2008, for which this case study
was originally developed, the participants that submitted solutions
for it, and last but not least Pieter Van Gorp and Erhard Weinell.

References

1.

10.

11.

12.

13.

. M. Fowler.

. G. Kniesel and H. Koch.

E. Biermann, K. Ehrig, C. Kohler, G. Taentzer, and E. Weiss.
Graphical definition of in-place transformations in the eclipse
modeling framework. In Proc. Int’l Conf. Model Driven Engi-
neering Languages and Systems, volume 4199 of Lecture Notes
in Computer Science, pages 219-257. Springer, 2006.

. P. Bottoni, F. Parisi-Presicce, G. Mason, and G. Taentzer. Speci-

fying coherent refactoring of software artefacts with distributed
graph transformations. In P. van Bommel, editor, Handbook on
Transformation of Knowledge, Information, and Data: Theory
and Applications, pages 95-125. Idea Publishing Group, 2005.

. S. Demeyer, F. Van Rysselberghe, T. Girba, J. Ratzinger,

R. Marinescu, T. Mens, B. Du Bois, D.Janssens, S. Ducasse,
M. Lanza, M. Rieger, H. Gall, and M. El-Ramly. The LAN-
simulation: A refactoring teaching example. Principles of Soft-
ware Evolution, Int’l Workshop on, 0:123-134, 2005.
Refactoring—Improving the Design of Existing
Code. Object Technology Series. Addison-Wesley, Reading,
MA, 1999.

. L. Grunske, L. Geiger, A. Ziindorf, N. Van Eetvelde,

P. Van Gorp, and D. Varro. Using graph transformation for
practical model driven software engineering. In V. Gruhn
S. Beydeda, M. Book, editor, Model-driven Software Develop-
ment, pages 91-118. Springer, 2005.

. D. Janssens, S. Demeyer, and T. Mens. Case study: Simulation

of a LAN. Electr. Notes Theor. Comput. Sci., 72(4), 2003.
Static composition of refac-
torings. Science of Computer Programming, 52(1-3):9-51,
2004. Special issue on Program Transformation, edited
by Ralf Lammel, ISSN: 0167-6423, digital object identifier
http://dx.doi.org/10.1016/j.scico.2004.03.002.

. T. Mens. On the use of graph transformations for model refac-

toring. In J. Visser R. Lammel, J. Saraiva, editor, Generative
and transformational techniques in software engineering, vol-
ume 4143 of Lecture Notes in Computer Science, pages 219—
257. Springer, 2006.

. T. Mens, G. Taentzer, and O. Runge. Analysing refactoring de-

pendencies using graph transformation. Software and Systems
Modeling, pages 269-285, September 2007.

T. Mens, G. Taentzer, and O. Runge. Analyzing refactoring
dependencies using graph transformation. Journal on Software
and Systems Modeling, 2007. To appear.

T. Mens, N. Van Eetvelde, S. Demeyer, and D. Janssens. For-
malizing refactorings with graph transformations. Journal on
Software Maintenance and Evolution: Research and Practice,
17(4):247-276, 2005.

W. F. Opdyke. Refactoring Object-Oriented Frameworks. PhD
thesis, University of Illinois at Urbana-Champaign, 1992.

J. Pérez and Y. Crespo. Exploring a method to detect behaviour-
preserving evolution using graph transformation. In Proceed-
ings of the Third Int’l ERCIM Workshop on Software Evolution,
pages 114-122. ERCIM, October 2007. Informal Workshop
proceedings.

14.

15.

16.

17.

J. Pérez and Y. Crespo. Perspectives on automated correction of
bad smells. In IWPSE-Evol *09: Proceedings of the joint inter-
national and annual ERCIM workshops on Principles of soft-
ware evolution (IWPSE) and software evolution (Evol) work-
shops, pages 99-108, New York, NY, USA, 2009. ACM.
Gabriele Taentzer, Karsten Ehrig, Esther Guerra, Juan de Lara,
L4sz16 Lengyel, Tihamér Levendovszky, Ulrike Prange, Déniel
Varrd, , and Szilvia Varré-Gyapay. Model transformation by
graph transformation: A comparative study. In ACM/IEEE 8th
International Conference on Model Driven Engineering Lan-
guages and Systems, Montego Bay, Jamaica, October 2005.

N. Van Eetvelde and D. Janssens. Extending graph rewriting for
refactoring. In Hartmut Ehrig, Gregor Engels, Francesco Parisi-
Presicce, and Grzegorz Rozenberg, editors, 2nd Int’l Conf.
Graph Transformation (ICGT’04), number 3256 in Lecture
Notes in Computer Science, pages 399-415. Springer, 2004.

J. Zhang, Y. Lin, and J Gray. Generic and domain-specific
model refactoring using a model transformation engine. In
Model-driven Software Development — Research and Practice
in Software Engineering. Springer, 2005.

