Strategy Synthesis for Multi-dimensional Quantitative Objectives

Krishnendu Chatterjee¹ Mickael Randour² Jean-François Raskin³

¹IST Austria

²UMONS

³ULB

04.09.2012

CONCUR 2012: 23rd International Conference on Concurrency Theory

Institute of Science and Technology

Strat. Synth. for Multi Quant. Obj.

MEPGs & MMPPGs 00000	Mem. bounds 0000000	Synthesis 0000	Randomization 00000	Conclusion 0000

Aim of this work

- Study games with
 - multi-dimensional quantitative objectives (energy and mean-payoff)
 - ▷ and a parity objective.
 - \rightsquigarrow First study of such a conjunction.
- Address questions that revolve around *strategies*:
 - ▷ bounds on memory,
 - ▷ synthesis algorithm,
 - \triangleright randomness $\stackrel{?}{\sim}$ memory.

MEPGs & MMPPGs	Mem. bounds	Synthesis	Randomization	Conclusion
00000	000000	0000	00000	0000

Results Overview

Memory bounds

MEPGs	MMPPGs		
optimal	finite-memory optimal	optimal	
exp.	exp.	infinite [CDHR10]	

Strategy synthesis (finite memory)

MEPGs	MMPPGs
EXPTIME	EXPTIME

Randomness as a substitute for finite memory

	MEGs	EPGs	MMP(P)Gs	MPPGs
one-player	×	×	\checkmark	\checkmark
two-player	×	×	×	\checkmark

Strat. Synth. for Multi Quant. Obj.

MEPGs & MMPPGs	Mem. bounds	Synthesis	Randomization	Conclusion
00000	000000	0000	00000	0000

1 Multi energy and mean-payoff parity games

- 2 Memory bounds
- 3 Strategy synthesis
- 4 Randomization as a substitute to finite-memory
- 5 Conclusion

MEPGs & MMPPGs	Mem. bounds	Synthesis	Randomization	Conclusion
0000	000000	0000	00000	0000

1 Multi energy and mean-payoff parity games

- 2 Memory bounds
- 3 Strategy synthesis
- 4 Randomization as a substitute to finite-memory
- 5 Conclusion

MEPGs & MMPPGs	Mem. bounds	Synthesis	Randomization	Conclusion
0000	0000000	0000	00000	0000

Turn-based games

- $G = (S_1, S_2, s_{init}, E)$
- $\bullet S = S_1 \cup S_2, S_1 \cap S_2 = \emptyset, E \subseteq S \times S$
- \mathcal{P}_1 states = \bigcirc
- \mathcal{P}_2 states =
- Plays, prefixes, **pure** strategies.

MEPGs & MMPPGs	Mem. bounds	Synthesis	Randomization	Conclusion
○●000	000000	0000	00000	0000

Integer k-dim. payoff function

- $G = (S_1, S_2, s_{init}, E, \underline{w})$
- $w: E \to \mathbb{Z}^k$, model changes in quantities
- Energy level $EL(\rho) = v_0 + \sum_{i=0}^{i=n-1} w(s_i, s_{i+1})$
- Mean-payoff MP(π) = lim inf_{$n\to\infty$} $\frac{1}{n}$ EL($\pi(n)$)

MEPGs & MMPPGs	Mem. bounds	Synthesis	Randomization	Conclusion
●●●●●	000000	0000	00000	0000

Energy and mean-payoff problems

Unknown initial credit

■ Mean-payoff threshold Given $v \in \mathbb{Q}^k$, $\exists ? \lambda_1 \in \Lambda_1$ s.t.

MEPGs & MMPPGs 0000	Mem. bounds 0000000	Synthesis 0000	Randomization 00000	Conclusion 0000

Parity problem

• $G_p = (S_1, S_2, s_{init}, E, w, \underline{p})$ • $p: S \to \mathbb{N}$

Par
$$(\pi) = \min \{ p(s) \mid s \in \mathsf{Inf}(\pi) \}$$

Even parity

 $\exists ? \ \lambda_1 \in \Lambda_1 \text{ s.t. the parity is even}$

 canonical way to express ω-regular objectives

MEPGs & MMPPGs	Mem. bounds	Synthesis	Randomization	Conclusion
	0000000	0000	00000	0000

Known results

		Memory (\mathcal{P}_1)	Decision problem
	1-dim [CdAHS03, BFL ⁺ 08]	memoryless	$NP \cap coNP$
Energy	<i>k</i> -dim [CDHR10]	finite	coNP-c
	1-dim + parity [CD10]	exponential	$NP \cap coNP$
	1-dim [EM79, LL69]	memoryless	$NP \cap coNP$
Mean-payoff	<i>k</i> -dim [CDHR10]	infinite	coNP-c (fin.)
	1-dim + parity [CHJ05, BMOU11]	infinite	$NP\capcoNP$

MEPGs & MMPPGs	Mem. bounds	Synthesis	Randomization	Conclusion
00000	0000000	0000	00000	0000
Infinite memory	?			

Example for MMPGs, even with only one player! [CDHR10]

- ▷ To obtain MP(π) = (1, 1) (with lim sup, (2, 2) !), \mathcal{P}_1 has to visit s_0 and s_1 for longer and longer intervals before jumping from one to the other.
- ▷ Any finite-memory strategy alternating between these edges induces an ultimately periodic play s.t. MP(π) = (x, y), x + y < 2.</p>

MEPGs & MMPPGs	Mem. bounds	Synthesis	Randomization	Conclusion
0000	0000000	0000	00000	0000

Restriction to finite memory

Infinite memory:

- ▷ needed for MMPGs & MPPGs,
- ▷ practical implementation is unrealistic.

MEPGs & MMPPGs	Mem. bounds	Synthesis	Randomization	Conclusion
0000	0000000	0000	00000	0000

Restriction to finite memory

Infinite memory:

▷ needed for MMPGs & MPPGs,

▷ practical implementation is unrealistic.

Finite memory:

- preserves game determinacy,
- ▷ provides equivalence between energy and mean-payoff settings,
- ▷ the way to go for strategy synthesis.

MEPGs & MMPPGs	Mem. bounds	Synthesis	Randomization	Conclusion
00000	●000000	0000	00000	0000

1 Multi energy and mean-payoff parity games

- 2 Memory bounds
- 3 Strategy synthesis
- 4 Randomization as a substitute to finite-memory
- 5 Conclusion

MEPGs & MMPPGs	Mem. bounds	Synthesis	Randomization	Conclusion
	○●○○○○○	0000	00000	0000

Obtained results

MEPGs	MMPPGs		
optimal	finite-memory optimal	optimal	
exp.	exp.	infinite [CDHR10]	

By [CDHR10], we only have to consider MEPGs. Recall that the unknown initial credit decision problem for MEGs (without parity) is coNP-complete.

MEPGs & MMPPGs N	Mem. bounds	Synthesis	Randomization	Conclusion
00000 0	00000	0000	00000	0000

• A winning strategy λ_1 for initial credit $v_0 = (2,0)$ is $\triangleright \lambda_1(*s_1s_3) = s_4,$ $\triangleright \lambda_1(*s_2s_3) = s_5,$ $\triangleright \lambda_1(*s_5s_3) = s_5.$

MEPGs & MMPPGs	Mem. bounds	Synthesis	Randomization	Conclusion
00000	000000	0000	00000	0000

- A winning strategy λ_1 for initial credit $v_0 = (2,0)$ is $\triangleright \lambda_1(*s_1s_3) = s_4,$ $\triangleright \lambda_1(*s_2s_3) = s_5,$ $\triangleright \lambda_1(*s_5s_3) = s_5.$
- Lemma: To win, P₁ must be able to enforce positive cycles of even parity.
 - Self-covering paths on VASS [Rac78, RY86].
 - Self-covering trees (SCTs) on reachability games over VASS [BJK10].

MEPGs & MMPPGs	Mem. bounds	Synthesis	Randomization	Conclusion
00000	000000	0000	00000	0000

Pebble moves \Rightarrow strategy.

MEPGs & MMPPGs	Mem. bounds	Synthesis	Randomization	Conclusion
00000	000000	0000	00000	0000

- T = (Q, R) is an epSCT for s_0 , $\Theta: Q \mapsto S \times \mathbb{Z}^k$ is a labeling function.
- Root labeled $\langle s_0, (0, \ldots, 0) \rangle$.
- Non-leaf nodes have
 - \triangleright unique child if \mathcal{P}_1 ,
 - \triangleright all possible children if \mathcal{P}_2 .
- Leafs have even-descendance energy ancestors: ancestors with lower label and minimal priority even on the downward path.

Pebble moves \Rightarrow strategy.

MEPGs & MMPPGs	Mem. bounds	Synthesis	Randomization	Conclusion
00000	000000	0000	00000	0000

Upper memory bound: SCTs for VASS games

- $\mathcal{P}_1 \text{ wins} \Rightarrow \exists \text{ SCT of depth at most exponential [BJK10]}.$
- \sim If there exists a winning strategy, there exists a "compact" one.
- \rightsquigarrow Idea is to eliminate unnecessary cycles.

Limits:

- \vartriangleright weights in $\{-1,0,1\}$,
- ▷ no parity,
- ▷ depth only.

MEPGs & MMPPGs	Mem. bounds	Synthesis	Randomization	Conclusion
00000	0000000	0000	00000	0000

Upper memory bound: SCTs for MEGs (no parity)

Exp. depth

Upper memory bound: SCTs for MEGs (no parity)

MEPGs & MMPPGsMem. boundsSynthesisRandomizationConclusion000000000000000000000000000

Upper memory bound: SCTs for MEGs (no parity)

↓ Width exp. in depth
 MEPGs & MMPPGs
 Mem. bounds
 Synthesis
 Randomization
 Conclusion

 00000
 00000000
 00000
 00000
 00000
 0000

Upper memory bound: epSCTs for MEPGs

Upper memory bound: epSCTs for MEPGs

 \rightsquigarrow merge nodes based on energy levels

MEPGs & MMPPGs	Mem. bounds	Synthesis	Randomization	Conclusion
00000	0000000	0000	00000	0000

Lower memory bound

Lemma: There exists a family of multi energy games $(G(K))_{K\geq 1} = (S_1, S_2, s_{init}, E, k = 2 \cdot K, w : E \rightarrow \{-1, 0, 1\})$ s.t. for any initial credit, \mathcal{P}_1 needs exponential memory to win.

MEPGs & MMPPGs	Mem. bounds	Synthesis	Randomization	Conclusion
00000	000000	0000	00000	0000

Lower memory bound

$$\forall 1 \le i \le K, w((\circ, s_i)) = w((\circ, t_i)) = (0, \dots, 0), \\ w((s_i, s_{i,L})) = -w((s_i, s_{i,R})) = w((t_i, t_{i,L})) = -w((t_i, t_{i,R})), \\ \forall 1 \le j \le k, w((s_i, s_{i,L}))(j) = \begin{cases} = 1 \text{ if } j = 2 \cdot i - 1 \\ = -1 \text{ if } j = 2 \cdot i \\ = 0 \text{ otherwise} \end{cases}$$

Strat. Synth. for Multi Quant. Obj.

Chatterjee, Randour, Raskin

MEPGs & MMPPGs	Mem. bounds	Synthesis	Randomization	Conclusion
00000	000000	0000	00000	0000

Lower memory bound

If \mathcal{P}_1 plays according to a Moore machine with less than 2^K states, he takes the same decision in some state t_x for the two highlighted prefixes (let x = K w.l.o.g.).

 $\Rightarrow \mathcal{P}_2 \text{ can force a decrease by 2 on some dimension every visit.} \\\Rightarrow \mathcal{P}_1 \text{ loses for any } v_0 \in \mathbb{N}^k.$

00000	0000000	0000	00000	0000
MEPGs & MMPPGs	Mem. bounds	Synthesis	Randomization	Conclusion

1 Multi energy and mean-payoff parity games

- 2 Memory bounds
- 3 Strategy synthesis

4 Randomization as a substitute to finite-memory

5 Conclusion

MEPGs & MMPPGs	Mem. bounds	Synthesis	Randomization	Conclusion
00000	0000000	0000	00000	0000

Symbolic synthesis algorithm

Algorithm CpreFP for MEPGs and MMPPGs:

- > symbolic (antichains) and incremental,
- ▷ winning strategy of at most exponential size,
- ▷ worst-case exponential time.

MEPGs & MMPPGs	Mem. bounds	Synthesis	Randomization	Conclusion
00000	0000000	0000	00000	0000

Symbolic synthesis algorithm

Algorithm CpreFP for MEPGs and MMPPGs:

- ▷ symbolic (antichains) and incremental,
- ▷ winning strategy of at most exponential size,
- ▷ worst-case exponential time.

Idea: greatest fixed point of a $\mathsf{Cpre}_\mathbb{C}$ operator.

- Compute for each state the set of winning initial credits, represented by the minimal elements of upper closed sets.
- \triangleright Parameter \mathbb{C} : range of energy levels to consider. \rightsquigarrow incremental, ensures convergence.

MEPGs & MINIPPGs Me	em. bounds	Synthesis	Randomization	Conclusion
00000 00	00000	0000	00000	0000

Symbolic synthesis algorithm: Cpre

MEPGs & MMPPGs	Mem. bounds	Synthesis	Randomization	Conclusion
00000	000000	0000	00000	0000

Symbolic synthesis algorithm: Cpre

MEPGs & MMPPGs	Mem. bounds	Synthesis	Randomization	Conclusion
00000	000000	0000	00000	0000

Symbolic synthesis algorithm: Cpre

MEPGs & MMPPGs	Mem. bounds	Synthesis	Randomization	Conclusion
00000	000000	0000	00000	0000

Symbolic synthesis algorithm: Cpre

MEPGs & MMPPGs	Mem. bounds	Synthesis	Randomization	Conclusion
00000	000000	0000	00000	0000

Symbolic synthesis algorithm: Cpre

Symbolic synthesis algorithm: CpreFP

Correctness

 $\vdash (s_{init}, (c_1, \ldots, c_k)) \in \mathsf{Cpre}^*_{\mathbb{C}} \rightsquigarrow \text{ winning strategy for initial credit } (c_1, \ldots, c_k).$

Completeness

$$\begin{split} & \triangleright \quad \text{Winning strategy and} \\ & \text{SCT of depth } I \leadsto \\ & (s_{init}, (\mathbb{C}, \dots, \mathbb{C})) \in \\ & \text{Cpre}_{\mathbb{C}}^* \text{ for } \mathbb{C} = 2 \cdot I \cdot W \\ & (\text{cf. max init. credit}). \end{split}$$

MEPGs & MMPPGs	Mem. bounds	Synthesis	Randomization	Conclusion
00000	000000	0000	● O OOO	0000

1 Multi energy and mean-payoff parity games

- 2 Memory bounds
- 3 Strategy synthesis

4 Randomization as a substitute to finite-memory

5 Conclusion

MEPGs & MMPPGs	Mem. bounds	Synthesis	Randomization	Conclusion
00000	0000000	0000	O●000	0000
Question				

When and how can \mathcal{P}_1 trade his pure finite-memory strategy for an equally powerful randomized memoryless one ?

 \triangleright Sure semantics \rightsquigarrow almost-sure semantics (i.e., probability 1).

▷ Illustration on single mean-payoff Büchi games.

MEPGs & MMPPGs 00000	Mem. bounds 0000000	Synthesis 0000	Randomization 00000	Conclusion 0000

Mean-payoff Büchi games

Remark. MPBGs require infinite memory for optimality.

 $\triangleright \mathcal{P}_1$ has to delay his visits of s_1 for longer and longer intervals.

MEPGs & MMPPGs 00000	Mem. bounds 0000000	Synthesis 0000	Randomization 00000	Conclusion 0000

Mean-payoff Büchi games

Remark. MPBGs require infinite memory for optimality.

 $\triangleright \mathcal{P}_1$ has to delay his visits of s_1 for longer and longer intervals.

Lemma: In MPBGs, ε -optimality can be achieved surely by pure finite-memory strategies and almost-surely by randomized memoryless strategies.

MEPGs & MMPPGs	Mem. bounds 0000000	Synthesis 0000	Randomization	Conclusion 0000

1 Uniform memoryless strategies:

MEPGs & MMPPGs	Mem. bounds	Synthesis	Randomization	Conclusion
00000	0000000	0000		0000

1 Uniform memoryless strategies:

• λ_1^{gfe} ensures any cycle *c* has EL(*c*) \geq 0 [CD10],

MEPGs & MMPPGs	Mem. bounds	Synthesis	Randomization	Conclusion
00000	0000000	0000		0000

1 Uniform memoryless strategies:

• λ_1^{gfe} ensures any cycle c has $EL(c) \ge 0$ [CD10],

• $\lambda_1^{\diamond F}$ ensures reaching F in at most n steps (attractor).

MEPGs & MMPPGs	Mem. bounds	Synthesis	Randomization	Conclusion
00000	0000000	0000		0000

1 Uniform memoryless strategies:

• λ_1^{gfe} ensures any cycle c has $EL(c) \ge 0$ [CD10],

- $\lambda_1^{\diamond F}$ ensures reaching F in at most n steps (attractor).
- 2 Alternate using *pure memory* or *probability distributions*. \triangleright Frequency of $\lambda_1^{gfe} \rightarrow 1 \Rightarrow MP \rightarrow MP^*$.

MEPGs & MMPPGs	Mem. bounds	Synthesis	Randomization	Conclusion
00000	000000	0000	00000	0000

Obtained results

	MEGs	EPGs	MMP(P)Gs	MPPGs
one-player	×	×		\checkmark
two-player	×	×	×	\checkmark

MEPGs & MMPPGs	Mem. bounds	Synthesis	Randomization	Conclusion
00000	000000	0000	00000	0000

1 Multi energy and mean-payoff parity games

- 2 Memory bounds
- 3 Strategy synthesis
- 4 Randomization as a substitute to finite-memory

5 Conclusion

MEPGs & MMPPGs	Mem. bounds	Synthesis	Randomization	Conclusion
00000	000000	0000	00000	0000

Conclusion

- Quantitative objectives
- Parity
- Restriction to finite memory (practical interest)
- Exponential memory bounds
- EXPTIME symbolic and incremental synthesis
- Randomness instead of memory

MEPGs & MMPPGs	Mem. bounds	Synthesis	Randomization	Conclusion
00000	000000	0000	00000	0000

Results Overview

Memory bounds

MEPGs	MMPPGs		
optimal	finite-memory optimal	optimal	
exp.	exp.	infinite [CDHR10]	

Strategy synthesis (finite memory)

MEPGs	MMPPGs
EXPTIME	EXPTIME

Randomness as a substitute for finite memory

	MEGs	EPGs	MMP(P)Gs	MPPGs
one-player	×	×		\checkmark
two-player	×	×	×	\checkmark

MEPGs & MMPPGs	Mem. bounds	Synthesis	Randomization	Conclusion
00000	000000	0000	00000	0000

Thanks. Questions ?

MEPGs & MI 00000	MPPGs	Mem. bounds 0000000	Synthesis 0000	Randomization 00000	Conclusion
	Patricia Bo Nicolas Ma Infinite runs constraints. In <u>Proc. of</u> Springer, 20	uyer, Ulrich Fahr rkey, and Jirí Srb s in weighted tim FORMATS, volu 208.	renberg, Kim G ba. hed automata v ime 5215 of <u>LN</u>	Suldstrand Larsen, with energy NCS, pages 33–47	
	Tomás Brá: Reachability states. In <u>Proc. of</u> Springer, 20	zdil, Petr Jancar, y games on exter ICALP, volume 010.	and Antonín I nded vector ad 6199 of <u>LNCS</u> ,	Kucera. dition systems wit pages 478–489.	h
	Patricia Bo Ummels.	uyer, Nicolas Ma	rkey, Jörg Olso	chewski, and Mich	ael

Measuring permissiveness in parity games: Mean-payoff parity games revisited.

MEPGs & MI 00000	MPPGs	Mem. bounds 0000000	Synthesis 0000	Randomization 00000	Conclusion
	In <u>Proc.</u> Springer,	of ATVA, volum 2011.	ne 6996 of <u>LNC</u>	CS, pages 135–149	9.
	Krishnen Energy p In <u>Proc.</u> Springer,	du Chatterjee a arity games. of ICALP, volur 2010.	nd Laurent Do	<mark>yen</mark> . CS, pages 599–61	.0.
	Arindam and Mari Resource In <u>Proc.</u> Springer,	Chakrabarti, Lu ëlle Stoelinga. interfaces. of EMSOFT, vo 2003.	uca de Alfaro, ⁻ olume 2855 of	Thomas A. Henzin LNCS, pages 117-	nger, -133.
	Krishnen and Jean Generaliz In <u>Proc.</u> Schloss [du Chatterjee, l -François Raski ed mean-payoff of FSTTCS, vo Dagstuhl - Leibr	aurent Doyen, n. and energy ga lume 8 of <u>LIPI</u> iz-Zentrum fue	Thomas A. Henz mes. cs, pages 505–516 er Informatik, 201	zinger, ö. 0.

MEPGs & MMPPGs	Mem. bounds	Synthesis	Randomization	Conclusion
00000	0000000	0000	00000	0000

Krishnendu Chatterjee, Thomas A. Henzinger, and Marcin Jurdzinski.

Mean-payoff parity games.

In <u>Proc. of LICS</u>, pages 178–187. IEEE Computer Society, 2005.

A. Ehrenfeucht and J. Mycielski. Positional strategies for mean payoff games.

International Journal of Game Theory, 8(2):109–113, 1979.

T.M. Liggett and S.A. Lippman.

Short notes: Stochastic games with perfect information and time average payoff.

Siam Review, 11(4):604–607, 1969.

Charles Rackoff.

The covering and boundedness problems for vector addition systems.

Theor. Comput. Sci., 6:223-231, 1978.

Strat. Synth. for Multi Quant. Obj.

Chatterjee, Randour, Raskin

Louis E. Rosier and Hsu-Chun Yen.

A multiparameter analysis of the boundedness problem for vector addition systems.

J. Comput. Syst. Sci., 32(1):105-135, 1986.

$$w: E \to \{-1, 0, 1\}^k$$

 $l = 2^{(d-1) \cdot |S|} \cdot (|S|+1)^{c \cdot k^2}$

Depth bound from [BJK10].

Strat. Synth. for Multi Quant. Obj.

Chatterjee, Randour, Raskin

Naive approach: blow-up by W in the size of the state space.

Naive approach: width increases exponentially with depth.

Naive approach: overall, 3-exp. memory $\leq L \cdot I$, without parity.

Upper memory bound: epSCTs for MEPGs

Refined approach: no blow-up in exponent as branching is preserved, extension to parity.

Upper memory bound: epSCTs for MEPGs

Refined approach: merge equivalent nodes, width is bounded by number of incomparable labels (see next slide).

Upper memory bound: epSCTs for MEPGs

Width bounded by $L = |S| \cdot (2 \cdot I \cdot W + 1)^k$

Refined approach: overall, **single exp. memory** $\leq L \cdot I$, for multi energy *along with* parity. Initial credit bounded by $I \cdot W$.

Upper memory bound: from MEPGs to MEGs

- Thanks to the bound on depth for MEPGs, encode parity (2 · m priorities) as m additional energy dimensions.
 - ▷ For each odd priority, add one dimension.
 - ▷ Decrease by 1 when this odd priority is visited.
 - \triangleright Increase by *I* each time a smaller even priority is visited.
- *P*₁ maintains the energy positive on all additional dimensions iff he wins the original parity objective.

Upper memory bound: merging nodes in SCTs

• Key idea to reduce width to single exp.

- $\triangleright \mathcal{P}_1$ only cares about the energy level.
- ▷ If he can win with energy v, he can win with energy $\geq v$.

Strat. Synth. for Multi Quant. Obj.

Chatterjee, Randour, Raskin

Symbolic synthesis algorithm: Cpre

•
$$\mathbb{C}=2\cdot I\cdot W\in\mathbb{N}$$
, $U(\mathbb{C})=(S_1\cup S_2) imes\{0,1,\ldots,\mathbb{C}\}^k,$

•
$$\mathcal{U}(\mathbb{C}) = 2^{\mathcal{U}(\mathbb{C})}$$
, the powerset of $\mathcal{U}(\mathbb{C})$,

• $\mathsf{Cpre}_{\mathbb{C}} : \mathcal{U}(\mathbb{C}) \to \mathcal{U}(\mathbb{C}), \, \mathsf{Cpre}_{\mathbb{C}}(V) =$

$$\begin{array}{l} \{(s_1, e_1) \in U(\mathbb{C}) \mid s_1 \in S_1 \land \exists (s_1, s) \in E, \exists (s, e_2) \in V : e_2 \leq e_1 + w(s_1, s) \} \\ \cup \\ \{(s_2, e_2) \in U(\mathbb{C}) \mid s_2 \in S_2 \land \forall (s_2, s) \in E, \exists (s, e_1) \in V : e_1 \leq e_2 + w(s_2, s) \} \end{array}$$

Exponential bound on the size of manipulated sets (~ width).
 Exponential bound on the number of iterations if a winning strategy exists (~ depth).

Let $G = (S_1, S_2, s_{init}, E, w, F)$, with F the set of Büchi states. Let n = |S|. Let Win be the set of winning states for the MPB objective with threshold 0 (w.l.o.g.). For all $s \in$ Win, \mathcal{P}_1 has two uniform memoryless strategies λ_1^{gfe} and $\lambda_1^{\Diamond F}$ s.t.

- Let $G = (S_1, S_2, s_{init}, E, w, F)$, with F the set of Büchi states. Let n = |S|. Let Win be the set of winning states for the MPB objective with threshold 0 (w.l.o.g.). For all $s \in$ Win, \mathcal{P}_1 has two uniform memoryless strategies λ_1^{gfe} and $\lambda_1^{\Diamond F}$ s.t.
 - λ_1^{gfe} ensures that any cycle *c* of its outcome has $EL(c) \ge 0$ [CD10],

- Let $G = (S_1, S_2, s_{init}, E, w, F)$, with F the set of Büchi states. Let n = |S|. Let Win be the set of winning states for the MPB objective with threshold 0 (w.l.o.g.). For all $s \in$ Win, \mathcal{P}_1 has two uniform memoryless strategies λ_1^{gfe} and $\lambda_1^{\Diamond F}$ s.t.
 - λ_1^{gte} ensures that any cycle *c* of its outcome has $EL(c) \ge 0$ [CD10],
 - $\lambda_1^{\diamond F}$ ensures reaching F in at most n steps, while staying in Win.

2 For ε > 0, we build a pure finite-memory λ₁^{pf} s.t.
(a) it plays λ₁^{gfe} for 2 · W · n/ε - n steps, then
(b) it plays λ₁^{◊F} for n steps, then again (a).

2 For ε > 0, we build a pure finite-memory λ₁^{pf} s.t.
(a) it plays λ₁^{gfe} for 2 · W · n / ε - n steps, then
(b) it plays λ₁^{◊F} for n steps, then again (a).

This ensures that

- ▷ F is visited infinitely often,
- ▷ the total cost of phases (a) + (b) is bounded by $-2 \cdot W \cdot n$, and thus the mean-payoff is at least $-\varepsilon$.

3 Based on λ₁^{gfe} and λ₁^{◊F}, we obtain almost-surely ε-optimal randomized memoryless strategies, i.e.,

$$\begin{aligned} \forall \, \varepsilon > 0, \ \exists \, \lambda_1^{rm} \in \Lambda_1^{RM}, \ \forall \, \lambda_2 \in \Lambda_2, \\ \mathbb{P}_{s_{init}}^{\lambda_1^{rm}, \lambda_2} \left(\mathsf{Par}(\pi) \ \mathsf{mod} \ 2 = 0 \right) = 1 \ \land \ \mathbb{P}_{s_{init}}^{\lambda_1^{rm}, \lambda_2} \left(\mathsf{MP}(\pi) \ge -\varepsilon \right) = 1. \end{aligned}$$
3 Based on λ_1^{gfe} and $\lambda_1^{\diamond F}$, we obtain almost-surely ε -optimal *randomized memoryless* strategies, i.e.,

$$\begin{aligned} \forall \varepsilon > 0, \ \exists \ \lambda_1^{rm} \in \Lambda_1^{RM}, \ \forall \ \lambda_2^{pm} \in \Lambda_2^{PM}, \\ \mathbb{P}_{s_{init}}^{\lambda_1^{rm}, \lambda_2^{pm}} \left(\mathsf{Par}(\pi) \ \mathsf{mod} \ 2 = 0 \right) = 1 \ \land \ \mathbb{P}_{s_{init}}^{\lambda_1^{rm}, \lambda_2^{pm}} \left(\mathsf{MP}(\pi) \ge -\varepsilon \right) = 1. \end{aligned}$$

3 Based on λ₁^{gfe} and λ₁^{◊F}, we obtain almost-surely ε-optimal randomized memoryless strategies, i.e.,

$$\begin{aligned} \forall \varepsilon > 0, \ \exists \ \lambda_1^{rm} \in \Lambda_1^{RM}, \ \forall \ \lambda_2^{pm} \in \Lambda_2^{PM}, \\ \mathbb{P}_{s_{init}}^{\lambda_1^{rm}, \lambda_2^{pm}} \left(\mathsf{Par}(\pi) \ \mathsf{mod} \ 2 = 0 \right) = 1 \ \land \ \mathbb{P}_{s_{init}}^{\lambda_1^{rm}, \lambda_2^{pm}} \left(\mathsf{MP}(\pi) \ge -\varepsilon \right) = 1. \end{aligned}$$

Strategy:

$$orall s \in S, \ \lambda_1^{rm}(s) = egin{cases} \lambda_1^{gfe}(s) ext{ with probability } 1-\gamma, \ \lambda_1^{\diamondsuit F}(s) ext{ with probability } \gamma, \end{cases}$$

for some well-chosen $\gamma \in]0,1[$.

Strat. Synth. for Multi Quant. Obj.

Büchi

- ▷ Probability of playing as $\lambda_1^{\diamond F}$ for *n* steps in a row and ensuring visit of *F* strictly positive at all times.
- \triangleright Thus λ_1^{rm} almost-sure winning for the Büchi objective.

Mean-payoff

- Consider
 - all end components
 - in all MCs induced by pure memoryless strategies of \mathcal{P}_2 .
- \triangleright Choose γ so that all ECs have expectation $> -\varepsilon$.
- ▷ Put more probability on lengthy sequences of *gfe* edges.