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1 Introduction

Devoted to enhancing multiobjective optimization through parallel computation and surrogate
modeling, the Horizon 2020 project SYNERGY [1] uses the electrocardiogram (ECG) simulator
tuning as a benchmark problem to exploit the synergistic effects of parallelization and surrogates
in solving multiobjective optimization problems. Here we report on the initial work and findings
on this task by the project partners Jozef Stefan Institute (JSI) and University Lille 1. We present
the background on ECG and its simulation, the optimization task and the initial experiments and
results, and conclude with a summary and directions for further work.

2 ECG and its simulation

The standard 12-lead ECG has been a diagnostic tool for over 70 years. It is a non-invasive
procedure used to monitor the heart’s electrical activity that arises from rhythmical contractions
of the heart muscle (myocardium) pumping the blood throughout the body. Electrical currents are
generated in myocardium as side effects of the contractions. Since the human body is electrically
conductive, electrical currents can be detected on the body surface where they are measured by
an ECG machine. ECG readings can be observed for deviations of ECG shape from the typical
or normal ECG shape, as some diseases and health conditions cause observable and well known
symptoms in the ECG.

Although the normal ECG shape and some typical defects are well known, the transfer function
that maps the ECG measured on the body surface to individual cells of myocardium is not known.
Gathering additional knowledge on the transfer function would help improve ECG based diagnostics
and enable better prediction of health condition, based on the ECG reading.

One of the basic tools for studying the transfer function and for unveiling additional knowledge
on heart activity is a computer simulator of the human heart. In this work we use the simulator [3, 4]
that was utilized to gain new insights into possible shapes of action potentials (APs) in myocardium.
APs represent voltage as a function of time for an individual cell. Voltage is measured as the
potential difference of cell exterior against the cell interior. APs of human heart cells can be modeled
as a system of non-linear time-dependent differential equations [5], which is quite time consuming.
Therefore it was approximated by a combination of exponential functions [6] to make the computer
simulation of a large number of cells feasible. The combination of exponential functions was further
refined [4], after it was discovered it contains a physiologically unrealistic symmetry. The function
AP(t) is parameterized with nine parameters kg, k1, ..., ks and can now be written as:
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In this work we widen the functionality the simulator to include the simulation of the first
100 ms of the heart beat, which was previously not done. This part of the heart beat is more
complex than the rest since it comprises very quick changes (large derivatives in APs and in the
resulting ECG) and thus requires small simulation time steps and a detailed heart model.

3 The optimization task

The ECG simulator operates in a closed loop with the optimization process in an effort to fine-
tune the simulator to produce realistic ECGs. Out of nine AP function parameters, two (ko, k2)
have predefined values, while the remaining seven are subject to optimization. As three layers
of myocardium cells are considered in the model, the total number of optimization variables is
3-7=21.

The simulator output is assessed by comparing the output of the simulation, i.e., two simulated
ECGs at different positions on the body surface, to measured ECGs at the same locations on
the body surface. The objectives are to maximize the Pearson correlation coefficients between
the measured and the simulated ECG signals for the two positions. The simulator is unable to
simulate the actual ECG amplitudes as its focus is on the signal shape. Therefore, the objectives
were selected to ensure that the difference in ECG amplitudes is not considered, while the features
of the simulated ECGs should match the measured ECG features in time.

4 Initial experiments and results

The multiobjective optimization algorithm used to tune the ECG simulator was Asynchronous
Master-Slave Differential Evolution for Multiobjective Optimization (AMS-DEMO) [7], which is
an extension of the DEMO algorithm [8,9]. AMS-DEMO was designed for solving computationally
expensive problems on homogeneous and heterogeneous parallel computer architectures. It assumes
all objectives are to be minimized. For this reason, the original optimization requirement to maxi-
mize the Pearson correlation coefficient for each of the two pairs of ECG signals was reformulated
to minimize the value of 1—Pearson correlation coefficient for each pair.

The purpose of the initial experiments was to assess the performance of AMS-DEMO on the
ECG simulator tuning problem and study how it can benefit from parallelization. In all experiments
the following algorithm parameter settings were applied: AMS-DEMO based on DEMO /parent and
using the DE /rand/1/bin scheme, crossover probability 0.5, scaling factor 0.5, populations size 100,
and the number of generations 100. No tuning of the algorithm parameters was carried out at this
stage. The experiments were performed on JSI and Lille 1 clusters.

4.1 Parallelization on JSI cluster

The NSC cluster at JSI comprises 1984 compute cores, 9216 GB RAM and 16 graphical processing
units (GPUs). It is accessible using the NorduGrid ARC client, and jobs are submitted using the
SLURM job scheduler. The optimization source code consisting of the AMS-DEMO and the ECG
simulator [2] was augmented for running on this infrastructure. Each job (AMS-DEMO run) was
specified to use Open MPI 2.0.1, 64 computing cores (on several available nodes) and up to 500 MB
RAM per core.

Five test runs were executed. The runs took from 1 day and 19 hours to 2 days and 20 hours,
depending on the cluster load, with a solution evaluation (ECG simulator run) taking 20.6 minutes
on average. The progress of the hypervolume indicator through the optimization runs is shown in
Fig. 1. The reference point was set at (2.1, 2.1), since 2 is the maximum value that can be obtained
in each objective. The maximum hypervolume was obtained in the last generation, achieving an
average of 2.69 over all runs.

4.2 Two-level parallelization on Lille 1 cluster

To further accelerate the ECG simulator tuning process, a second level of parallelism was added
at the instruction level, leveraging SIMD (single-instruction multiple-data) processing capabilities.
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Fig. 1: Hypervolume indicator throughout the test runs

The targeted hot spot was the ECG simulator, by far the most time-consuming part of the opti-
mization process. Indeed, most modern multi-core processors provide vector instruction sets that
allow to carry out multiple instructions in one clock cycle, e.g., perform identical floating-point
operations on up to four double-precision operands that reside in 256-bit wide vector registers
(AVX2). In some cases, automatic vectorization can be achieved by enabling architecture-specific
optimization at compile-time. However, a finer control of the vectorization mechanism is often
necessary, either by inserting hints to the compiler in the source code, or by explicitly using vector
intrinsics/assembly language.

Efficient vectorization of the ECG simulator is achieved by (1) a modification of the memory
layout, (2) the insertion of #pragma preprocessor directives, and (3) an appropriate alignment
of data structures in memory. As it can be seen in Table 1, the revised implementation of the
ECG simulator accelerates the evaluation of solutions by an average factor of 3.2 (of a possible 4),
compared to the auto-vectorization approach.

Table 1: Single ECG simulation: average over 10 evaluations of random solutions

Compiler/Libraries Code Tyyaluation (Min)
GCC/GNU base 9.3
ICC/Intel base 4.2
ICC/Intel vect 1.3

Combining the node-level parallelism of AMS-DEMO with the SIMD-vectorized ECG simulator,
the optimization is completed within 48 minutes, using 320 CPU cores distributed on 20 nodes of
the Lille 1 cluster (20 x 2 8-core Sandy Bridge E5-2670 processors, using OpenMPI 2.0.1 and Intel
ICC 17.0.1). As shown in Fig. 2, this amounts to performing 210 ECG simulations per minute on
average. At constant workload and up to 320 cores, the execution time of AMS-DEMO decreases
almost linearly with the number of processors. The decrease by a factor greater than 2 — when
increasing the core count from 16 to 32 — can be explained by the fact that the master process
resides on the first host processor, slowing down the workers on this node.

5 Conclusion

We have presented the initial experiments and results in parallel multiobjective optimization of the
ECG simulator that serves as a SYNERGY project benchmark problem. Concerning the solution
quality, the results show that further improvements are possible both at the level of the simulator
accuracy and the optimization algorithm tuning. In particular, the ECG simulator takes good
advantage of vector processing units, indicating acceleration potential on coprocessors like Xeon
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Fig. 2: Strong scaling of vectorized AMS-DEMO on a cluster composed of 108 dual-socket nodes (8-core
Xeon E5-2670), using 1, 2, 5, 10, 15 and 20 nodes

Phi and GPU. Further speedup should allow a refinement of the time and space discretization
in ECG simulation. The ability of performing faster and more accurate simulations can also help
building better surrogate models for the fine-tuning of the ECG simulator. We plan to investigate
the use of the latter in the near future.
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