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Abstract

The formal framework for decision making in a fuzzy environment is based on a general max±min, bottleneck-like

optimization problem, proposed by Zadeh. It is also the basis for extending the constraint satisfaction paradigm of

Arti®cial Intelligence to accommodating ¯exible or prioritized constraints. This paper surveys re®nements of the or-

dering of solutions supplied by the max±min formulation, namely the discrimin partial ordering and the leximin

complete preordering. A general algorithm is given which computes all maximal solutions in the sense of these relations.

It also sheds light on the structure of the set of best solutions. Moreover, classes of problems for which there is a unique

best discrimin and leximin solution are exhibited, namely, continuous problems with convex domains, and so called

isotonic problems. Noticeable examples of such problems are fuzzy linear programming problems and fuzzy PERT-like

scheduling problems. Ó 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

Flexible constraint satisfaction problems
(FCSP) come from putting together the fuzzy ap-
proach of Bellman and Zadeh (1970) to multiple
criteria decision-making and the constraint-di-
rected methodology for combinatorial problem-

solving, popular in the ®eld of Arti®cial Intelli-
gence (Van Hentenryck, 1989). Constraint Satis-
faction is a generic framework for combinatorial
problems whose aim is to ®nd one or all solutions
to a set of constraints. Arti®cial Intelligence o�ers
e�cient tools for representing generic constraints
in an extensional way, and constraint-based pro-
gramming languages handle such constraints in an
intensional way (Esquirol et al., 1995). Indepen-
dently, and well before the constraint-directed
problem-solving paradigm came to light, Bellman
and Zadeh revisited the setting of multiple criteria
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optimization and proposed fuzzy sets as a unique
tool for representing constraints and criteria. A
fuzzy subset over a set of potential solutions to a
problem represents ``good'' solutions in some
sense and lFi

�s� represents the degree of attain-
ment of goal i by solution s, or alternatively the
degree of satisfaction of constraint i by solution s.
An optimal solution to a set fF1; . . . ; Fng of criteria
or constraints is de®ned as any s� such that
min�lF1

�s��; . . . ; lFn
�s��� is maximal. The consis-

tency between this approach and the constraint
satisfaction paradigm of arti®cial intelligence is
obvious if the fuzzy model is particularized to the
case where F1, . . ., Fn are crisp subsets (or rela-
tions): then ®nding a max±min optimal solution
comes down to ®nding a feasible solution. As a
consequence, the fuzzy sets in the Bellman±Zadeh
approach are more convincingly interpreted as
¯exible constraints rather than objective functions.
Indeed the lack of compensation between Fi, due
to the minimum operation, makes full sense in
terms of constraints: one fully violated constraint
is enough to make the problem infeasible, while
multiple criteria-decision-making often involves
compensatory connectives (e.g. Keeney and Rai�a,
1976).

The maximin framework for constraint-satis-
faction problems has been ®rst suggested by
Freuder and Snow (1989) and fully developed by
Dubois, Fargier and Prade (Dubois et al., 1996;
Dubois et al., 1994; Fargier, 1994). A major ad-
vantage of this framework is that not only it en-
ables a better discrimination between good and
less good solutions to a set of constraints, but all
the machinery of constraint propagation extends
over to ¯exible constraints: levels of preference can
be propagated using simple extensions of existing
algorithms (e.g. Fargier, 1994; Dubois et al., 1996),
so as to visualize fuzzy sets of feasible solutions to
a problem. This approach has been successfully
applied to jobshop scheduling (Dubois et al., 1995;
Fargier, 1997) where the fuzzy constraint formu-
lation is general enough to subsume constraint
based approaches (Erschler et al., 1976; Erschler et
al., 1991) as well as some single criterion optimi-
zation methods.

However the maximin approach is limited by a
lack of discrimination among the solutions to a

¯exible constraint satisfaction problem. Namely
two solutions whose levels of satisfaction of the
most violated constraint are identical will not be
told apart even if they could be distinguished by
considering levels of satisfaction of other con-
straints. In order to remedy this situation, two
re®nements to the min-based ordering of solutions
have been proposed (Fargier et al., 1993) and
characterized (Dubois et al., 1995). They are re-
lated respectively to a partial ordering (we call
``discrimin'') of preferred subsets of logical for-
mulas in an inconsistent knowledge base as pro-
posed by Brewka (1989), and to a social welfare
ranking function called ``leximin'' (Moulin, 1988;
Sen, 1986). However, the question of how to
compute such improved optimal solutions to ¯ex-
ible CSP's remains open. The present paper is a
preliminary investigation into this question. We
de®ne a general algorithm to compute either the
discrimin or the leximin optimal solutions. Thus
classes of problems are derived for which the
discrimin optimal solution is unique. These classes
of problems contain as particular cases project
scheduling problems, traveling salesman problems,
and special forms of fuzzy linear constraint prob-
lems.

The paper is organized as follows: ®rst, the
framework of constraint satisfaction problems is
recalled, and its extension to ¯exible constraints
inside the Bellman±Zadeh model as well. Several
re®nements of the min-based ordering are pre-
sented. Then Section 3 exempli®es the limitation
of the min-based ordering of solutions on the
project scheduling problem with ¯exible ready-
dates, ¯exible due-dates and ¯exible activity du-
rations modelled by fuzzy sets. A procedure that
computes the leximin-optimal solution to this
particular problem is suggested. Section 4 presents
the general algorithm, as well as some direct
modi®cations of it to particular combinatorial
problems or to constraint satisfaction problems
with fuzzy domains. Section 5 gives an illustration
of the proposed algorithm on a bottleneck as-
signment problem. Section 6 starts the study of
some important particular cases of the problem,
namely convex or isotonic problems. For the
classes of convex or isotonic problems, we prove
the uniqueness of the discrimin solution.
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2. Flexible constraint satisfaction problems

2.1. Constraint satisfaction problems

Constraint satisfaction de®nes a general frame-
work for decision problems (Mackworth, 1977;
Montanari, 1974; Sadeh, 1991; Van Hentenryck,
1989). Solving a constraint satisfaction problem is
achieved by means of a depth-®rst technique that
tries to construct a solution via a progressive in-
stantiation of variables, and ``intelligent'' back-
track procedures that can undo previous decisions
that were proved infeasible. On the other hand, a
constraint propagation is often used to compute
the e�ects of one decision on the set of uninstan-
ciated variables and thus reduce the set of admis-
sible values of all these variables. The combined
use of these two techniques allows to e�ciently
determine if the problem is feasible, and can as
well generate all its feasible solutions.

The set of all potential solutions (feasible or
not) X is the Cartesian product of the variables
de®nition domains. Each choice of values for those
variables is called ``a solution''. A relation 1 R
represents the solutions �d satisfying the constraint
C:

�d 2 R means the constraint is satisfied; �1�

�d 62 R means the constraint is violated: �2�
More formally, a CSP P � �X;D;C;R� is de®ned
by
· a set of decision variables X � fX1; . . . ;Xng;
· a set of domains D � fD1; . . . ;Dng where Di is

the domain of Xi. X, the solutions set, is the Car-
tesian product of the domains: X � D1 � � � �
�Dn;

· a set of constraints C � fC1; . . . ;Cmg;
· a set of binary relations R � fR1; . . . ;Rmg where

Rj de®nes the set of solutions satisfying the con-
straint Cj.
The feasible solution set, Sols�P�, is de®ned by

the satisfaction of all constraints. Therefore, it is

the intersection of the di�erent satisfaction sets Ri

for each constraint Ci:

Sols�P� � R1 \ � � � \ Rm: �3�
As a matter of fact, this framework does not

deal with any objective function. The choice of the
®nal solution inside Sols�P� belongs to the Deci-
sion Maker (DM). In practice, a solution is often
picked at random by constraint satisfaction soft-
ware. If the solution set is non-empty, the problem
is said to be consistent and there exists at least one
feasible solution.

An important example of CSP is the project
scheduling problem. In a scheduling problem, the
three main kinds of constraints are the following
ones (Erschler et al., 1976; Erschler et al., 1991):
· Precedence constraints: Typically an operation

may not start before another ®nishes.
· Temporal constraints: An operation Oi has to be

performed inside a temporal window, de®ned by
a ready date RDi and a due date DDi.

· Capacity constraints: Each operation requires a
certain amount of resources and these resources
are in a limited quantity. For instance, in Job-
shop Scheduling, a machine may be allocated
to at most one operation at a time.
In the description of the constraints, we use

lower cases to denote variables and upper cases for
data. If the decision variable related to the oper-
ation Oi is its starting time, si, the precedence
constraints may be written

sk ÿ si P DUi �Oi before Ok�; �4�
where DUi is the duration of operation Oi; the
capacity constraints become, if Oi and Oj require
the same resource,

sj ÿ si P DUi or si ÿ sj P DUj �5�
and the temporal constraints (ready date and due
date) are

si P RDi; �6�

si6DDi ÿ DUi; �7�

by denoting RDi (resp. DUi and DDi) the ready
date (resp. the duration and the due date) of Oi.

1 The notation R will be used for the set this relation de®nes

in X: �d 2 R() R��d� � 1.
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The usual technique for solving a constraint-
directed Jobshop scheduling problem is to get rid
of the disjunctive constraints (5) by choosing one
side of each disjunction. Each problem obtained
by making such a choice for all disjunctive con-
straints reduces to a simpler project scheduling
problem where the only decisions left are the
starting time of operations.

When no disjunctive constraint is left, classical
PERT-CPM algorithms enable a smallest time-
window to be computed for each operation i, of
the form �rdi; ddi ÿ DUi� where rdi is the earliest
starting time of operation i and ddi the latest
ending time. This propagation is made via prece-
dence constraints.

The constraints then have the following form
(by denoting Ci the set of indices of the operations
preceded by Oi):

si 2 �rdi; ddi ÿ DUi�; �8�

sk ÿ si 2 �DUi;�1� 8k 2 Ci; �9�

where the initial value of rdi (resp. ddi) is RDi (resp.
DDi). In this way, the ®rst relation (8) builds the
initial temporal window for the variable si. By
propagating the second constraint (9), this tem-
poral window is reduced, until stability is reached.

If ®nally the temporal window of each variable
si is non empty, there exists at least one feasible
solution. Otherwise no solution is feasible. See
Erschler et al. (1976) and Erschler et al. (1991) for
strategies that cope with disjunctive constraints
(5).

2.2. Flexible constraint satisfaction problems

The Flexible Constraint Satisfaction Problem
(FCSP) (Fargier, 1994) generalizes the classical
Constraint Satisfaction Problem (CSP). The latter
indeed faces two di�culties: sometimes a CSP has
no solution, but would have one if a non-signi®-
cant change of constraints were made. In other
cases, the number of feasible solutions can be very
high, and the decision making is left with no guide-
line to choose among them. In fact, it can be useful
to represent constraints involving uncertainties on

the data values or the decision-maker (DM's)
preferences on the solution; also it may avoid ar-
ti®cial cases of inconsistency due to too rigid
a statement of constraints. Possibility theory
(Zadeh, 1978; Dubois and Prade, 1987) allows the
mathematical modeling and treatment of ¯exible
constraints. These ¯exible constraints will be rep-
resented by fuzzy relations.

Typically a ¯exible constraint may be partially
satis®ed only but its full satisfaction is preferred.
The main notion here is the satisfaction degree of a
¯exible constraint by a solution.

The set of all solutions (feasible, non-feasible or
partially feasible) X is, as previously, the Cartesian
product of the de®nition sets of all variables. Each
choice of values for these variables is considered as
a solution.

The degree to which a solution �d 2 X satis®es a
constraint C will be described by the value lR��d� ±
where R is the fuzzy relation related to the con-
straint C. For all elements �d 2 X, R gives the
preference level according to the constraint C:

lR: X! �0; 1�;
lR��d� � 1 means �d totally satisfies C;

lR��d� � 0 means �d totally violates C;

lR��d� 2 �0; 1� means �d partially satisfies C:

A ¯exible constraint C can be described by a
fuzzy relation R or by the fuzzy set de®ned by R in
X. R is the fuzzy set of solutions satisfying the
¯exible constraint C.

De®nition 1. The intersection of two fuzzy rela-
tions Ri and Rj is the fuzzy relation Ri \ Rj de®ned
by 2

lRi\Rj
��d� � min�lRi

��d�; lRj
��d��:

Therefore, lRi\Rj
��d� represents to what extent the

constraints Ci and Cj are simultaneously respected
by �d.

A FCSP (Fargier, 1994; Dubois et al.,
1994, 1996) P � �X;D;C;R� is de®ned by:

2 We assume both fuzzy relations de®ned on the same space.

If not, we would have to use the cylindrical extensions of the

relations on the union of the spaces.
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· A set of variables X � fX1; . . . ;Xng.
· A set of de®nition domains D � fD1; . . . ;Dng

where Di is the de®nition domain of Xi. X is
the Cartesian product of the de®nition domains
X � X1 � � � � � Xn.

· A set of constraints C � fC1; . . . ;Cmg. They can
be either ¯exible or classical.

· A set of fuzzy relations R � fR1; . . . ;Rmg where
Rj de®nes the solutions satisfying more or less
the constraint Cj. For the classical constraints,
the relation Rj is all-or-nothing, while for the
¯exible constraints, Rj is a fuzzy relation.

For each solution �d, the global satisfaction degree
is

Sat��d� � lR1\���\Rm
��d� � min

Ci2C
lRi
��d�: �10�

In such an approach, a strong assumption has
been made: all the preferences, represented by the
fuzzy relations Rj, can be measured with the same
scale. Therefore, it makes sense to use the ``min''
operator in order to compute the global satisfac-
tion degree. It gives, in fact, the same weight to
every constraint, even if one of them is stated
several times. As a consequence it is innocuous
that the fuzzy constraints be dependent, since the
minimum operation is idempotent.

This egalitarian approach implies that the sat-
isfaction degree of P by �d is the satisfaction degree
of the least satis®ed constraint. Moreover, Sat��d�
gives the degree to which �d belongs to the fuzzy set
of the feasible solutions of P, Sols�P�:
lSols�P���d� � Sat��d�:
Therefore, Sols�P� � R1 \ R2 \ � � � \ Rm still holds
using the fuzzy intersection.

When a CSP is solved, two solution classes are
built: on the one hand, the solutions that satisfy
all the constraints and on the other hand, the
solutions that violate at least one constraint. With
a FCSP, this division of the solution space is re-
®ned. First, there are the solutions satisfying
completely all constraints (Sat��d� � 1); then, the
solutions that violate completely at least one
constraint (Sat��d� � 0); ®nally, the solutions
whose global satisfaction degree is between 0 and
1. The latter set can be ordered according to this
degree.

De®nition 2. The consistency degree of a FCSP is
de®ned as the satisfaction degree of its best
solutions:

Cons�P� � sup
�d2X

lSols�P���d� � sup
�d2X

Sat��d�

� sup
�d2X

min
Ci2C

lRi
��d�: �11�

The so-de®ned best solutions �dopt, also called min-
optimal, are those whose global satisfaction degree
is maximal. Again, they maximize the satisfaction
degree of the least satis®ed constraints.

The whole thing thus comes down to a max-min-
like optimization problem (often called bottle-
neck).

Let us de®ne the a-cut problem of a fuzzy CSP
P as Pa � �X;D;C;Ra� where Ra � Ra

1; . . . ;Ra
m

� 	
,

and Ra
i � �d; lRi

��d�P a
� 	

is the a-level cut of Ri. Pa

is a crisp CSP which is consistent only if
a6Cons�P�.

The most complete arguments for using the min
operator when de®ning the intersection of fuzzy
sets have been provided in (Bellman and Giertz,
1973). They adopted a logic point of view, inter-
preting the intersection of two fuzzy sets as the
``logical and'' between two statements. They gave
reasonable restrictions to be imposed on the in-
tersection operator and proved mathematically
that the min operator has to be considered if all
properties of Boolean intersections are kept except
the excluded middle law and the law of con-
tradiction. Alternative justi®cations of the min
operation exist in other types of problems, for in-
stance in the exploitation of fuzzy preference re-
lations (Pirlot, 1995).

Moreover the min operator is computationally
simple, does not involve any assumption on the
preference scale and can handle ordinal prefer-
ences. Maybe the most relevant properties are that
the min operator is idempotent and non-compen-
satory. In the current framework, we are interested
in the maximization of the satisfaction degree of
all ¯exible constraints. No compensation can be
accepted between a small degree and a very large
one. The preference handling has to express that
two middle-range values are better than a small
one and a large one. Maximin optimization tends
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to equalize the satisfaction level of solutions. The
preferences are in fact treated in a similar way as
vetoes with the maximin approach. As soon as a
veto is raised (i.e. a preference is very low), the
solution is rejected, whatever is the majority of the
other opinions. 3

2.3. Coping with the drowning e�ect

Let ui denote the degree of satisfaction of con-
straint Ci 2 C, i.e., ui � lRi

��d� and �u � �u1; . . . ;
um�. For simplicity in the following, we shall use
vectors �u and �v instead of solutions �d and �d

0
, since

when �d and �d
0
are such that lRi

��d� � lRi
��d 0�8i, they

cannot be told apart.
Then, if �d and �d

0
are two min-optimal solutions,

associated with vectors �u and �v, respectively, it
holds

min
i�1;...;m

ui � min
i�1;...;m

vi � Cons�P�:

The Drowning E�ect is due to the min-based
conjunction of the di�erent satisfaction degrees.
The ``min'' operator aggregates the complete in-
formation S��u� in a unique number: Sat��d�. The
underlying ranking for the solutions is called the
min-ranking. A solution �u is better than another �v,
if Sat��u� is greater than Sat��v�:
�u >min �v() min

i
ui > min

i
vi; �12�

�u �min �v() min
i

ui � min
i

vi: �13�
This min-ranking is not able to distinguish be-
tween possibly numerous optimal solutions. The
degrees of satisfaction of constraints other than
the most violated ones are not taken into account
in the global satisfaction degree. This phenomenon
is called the Drowning E�ect.

Another more basic but weakly committing
way of ordering the solutions is the Pareto order-
ing such that �u >Pareto �v i� ui P vi; 8i, and uk > vk

for some k. Let us denote by S��d� the fuzzy set of

constraints satis®ed by �d, such that lS��d��Ci� �
lRi
��d� � ui. Equivalently, �u >Pareto �v means S��u� �

S��v� for the corresponding solutions �d and �d
0

where � denotes fuzzy set inclusion. Any ``rea-
sonable'' optimal solution to a FCSP should be
Pareto-optimal. Yet not all min-optimal solutions
are Pareto-optimal, although there is always one
that is so (Moulin, 1988; Dubois et al., 1995). The
above remarks show that the set of min-optimal
solutions needs to be re®ned in order to get rid of
non-Pareto-optimal solutions and overcome the
drowning e�ect.

In the fuzzy literature, no particular attention is
given to this problem. In most cases, the min-op-
timal solution is assumed to be unique and there-
fore e�cient, see Theorem 3.10 or Theorem 4.19 of
Sakawa (1993). If in a second step, you are looking
for a Pareto-optimal solution, a common trick is
to solve a problem with a linear criterion and with
lower bounds on satisfaction degrees (Sakawa,
1993; Delgado et al., 1990).

max
Xk

i�1

�i

s:t: lRi
��x� ÿ �i � lRi

��x��;
�i P 0;

�14�

where �x� is your min-optimal solution. In any
cases, it gives you an e�cient min-optimal solution
x. But, this approach is not clearly motivated and
seems to be partially inconsistent with the scope of
constraint satisfaction since the solution �x� is
found by a non-compensatory procedure, based
on the min-operator. Then, to obtain an e�cient
solution, Eq. (14) forgets about the non compen-
satory assumption and uses a linear aggregation.
More appropriate procedures have been designed
and we will present the relevant ones in the fol-
lowing.

2.3.1. Discrimin-optimality
An intuitively appealing re®nement of the

conjunction order has been proposed in a logical
setting by Brewka (1989) and applied to constraint
satisfaction problem by Fargier et al. (1993). It
consists in the comparison of two solutions �u and �v
according to the inclusion of some a-cuts of the
fuzzy sets S��u� and S��v�.

3 This notion of veto can also be used to explain prioritized

constraints. The higher is the priority of a constraint, the

stronger is its veto and lower is its minimal preference.
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Let S��u�a � fCi; ui P ag. The discrimin order-
ing is de®ned as follows:

�u >disc �v() 9a 2 �0; 1�:
8b 2 �0; 1�: b < a: �S��u��b � �S��v��b;
�S��u��a � �S��v��a;

(
�15�

�u �disc �v() 8a 2 �0; 1�: �S��u��a
� �S��v��a ()S��u �S��v�: �16�

Note that only the a-cuts for small values of a
are taken into account. �u is better than �v in the
sense of discrimin ordering if although the two
solutions are feasible for low levels of aspiration,
raising this level of aspiration makes �v infeasible
before �u.
>disc is a partial order. A equivalent de®nition

relies on the set of constraints not respected in the
same way by both solutions, D�u;v� (Dubois et al.,
1995):

D��u; �v� � fCi 2 C: vi 6� uig; �17�

�u >disc �v() min
Ci2D��u;�v�

ui > min
Ci2D��u;�v�

vi: �18�

With the discrimin partial order, we look for
the lowest one among the satisfaction degrees of the
constraints not equally satis®ed by the two com-
pared solutions. The discrimin ordering compares
the least satis®ed discriminating constraints.
Eqs. (17) and (18) make it clear that the discrimin
ordering re®nes the min-ordering. The maximal
solutions are said to be discrimin-optimal. Dis-
crimin-optimal solutions are also Pareto-optimal
but not conversely, in general (see Dubois et al.,
1995). The discrimin-ordering, like the Pareto one,
is only partial, and the relation de®ned by :��u >disc

�v� (complement of >disc) is not transitive. If none
of �u >disc �v and �v >disc �u hold, it does not follow
that �u �disc �v.

2.3.2. No reason for regret
Behringer proposed the ``No Reason for Regret

(NR)'' partial ordering in Behringer (1977, 1990)
as a re®nement of both min- and Pareto-opti-
malities. He showed that the NR-optimal solutions
are min and Pareto optimal, and that the converse

is not true in general. As stated in Behringer
(1990), �v is NR-better than �u if

9j: uj < vj and 8i; �uj < vi� _ �ui6 vi�:
This relation is justi®ed as follows. Assume

there is a bundle of ``abilities'' to be distributed
among m members of a government. Let �u �
�u1; . . . ; um� and �v � �v1; . . . ; vm� be two admissible
distributions, where ui is the amount member i will
receive in distribution �u. Every i tries to be as
satis®ed (ui � lRi

��u�) as possible. There is a col-
lective mechanism (unanimity, veto . . .) which
generates a feeling for equity or fairness. Distri-
bution �v will be preferred if:
1. At least one member feels better with �v

9j: uj < vj

and
2. all remaining members feel at least as good

8i: ui6 vi

or
3. for those i's who receive less satisfaction
�vi < ui�, i has ``no reason to regret'' the choice
of distribution �v instead of �u, because member i
is still better than member j was with distribu-
tion �u

uj < vi:

With distribution �u, j would have grounds on
which to complain and might put his veto,
disabling the government agreement.
We show now that the NR-order relation pro-

posed by Behringer (1977) is equivalent to the
discrimin relation.

Theorem 1.

�v >disc �u() �v >NR �u:

Proof. >disc ) >NR

�v >disc �u() min
Ci2D��u;�v�

vi > min
Ci2D��u;�v�

ui;

where D��u; �v� � fCi 2 C: ui 6� vig.
Let ul (resp. vk) be the minimum of ui (resp. vi)

on D��u; �v�. Therefore, we have
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9 Cl; ul < vk 6 vl;

8Ci 62 D��u; �v�; ui6 vi;

8Ci 2 D��u; �v�; ul < vk 6 vi:

And �v >NR �u.
>NR ) >disc

�v >NR �u() 9j: uj < vj; and

8i: �uj < vi� _ �ui6 vi�:

Therefore, for all Ci in D��u; �v�, we have either uj <
vi < ui or ui < vi. Let D1 � fCi 2 D��u; �v�; uj < vi <
uig and D2 � fCi 2 D��u; �v�; ui < vig. �D1;D2� is a
partition of D��u; �v�. D��u; �v� is not empty since
Cj 2 D2. Then

min
Ci2D1

ui > min
Ci2D1

vi > uj

and

min
Ci2D2

ui6 uj since Cj 2 D2

hence

min
Ci2D��u;�v�

ui � min
Ci2D2

ui6 uj

Now

min
Ci2D1

vi > uj P min
Ci2D��u;�v�

ui

and

min
Ci2D2

vi > min
Ci2D2

ui P min
Ci2D��u;�v�

ui

hence

min
Ci2D��u;�v�

vi > min
Ci2D��u;�v�

ui

And �v >disc �u. �

The two partial orders are thus mathematically
equivalent. But the interpretation is easier with
Discrimin, based either on the inclusion of a-cuts
or on the di�erence set D��u; �v�.

It should be stated that discrimin-maximal
makes more sense than discrimin-optimal, since the
discrimin relation is not a total order. Nevertheless
for the sake of simplicity and uniformity, we will
use the latter.

2.3.3. Leximin ranking-Leximin optimality
The previous re®nement of the min-ordering is

an approach based on the inclusion of a-cuts. The
leximin order relies on the cardinality of these cuts.
A solution �u will be preferred to another �v, ac-
cording to the leximin order, if, there is a threshold
a such that for all b < a, the number of constraints
satis®ed by �u at level at least b is equal to the
number of constraints satis®ed by �v, but �u satis®es
more constraints than �v at level a. In other words,
this is de®nition Eqs. (15) and (16), where cardi-
nalities of level cuts are compared. It checks the
cardinality of the a-cuts for the fuzzy sets S��u�
and S��v�, by increasing value of a. As soon as a
di�erence occurs, the solution whose cut has the
highest cardinality is chosen.

In this framework, we keep the complete in-
formation conveyed by S��u� but we rank the
di�erent satisfaction degrees in an increasing or-
der. Let the components of vector �u be ranked
such that ui1 6 ui2 6 � � � 6 uim and let �u� be the
vector such that u�j � uij . The leximin ordering >lm

between vectors �u and �v is de®ned on the basis of
the vectors �u� and �v� with reordered components,
ranked by means of the standard lexicographic
order >lex (Fishburn, 1974):

�u >lm �v() �u� >glex �v� �19�

() 9i6 k:
8j < i: u�j � v�j ;

u�i > v�i ;

(
�20�

�u �lm �v() 8i6 k: u�i � v�i �21�
() :��u >lm �v� ^ :��v >lm �u�: �22�

>lm is also a ranking, since �lm is transitive.
It can be shown (Fargier, 1994) that this

ranking leads to the solutions violating the small-
est number of fuzzy constraints, in the sense of a
fuzzy-valued cardinality. The di�erent orderings
have been presented in increasing order of re®ne-
ment: solutions being incomparable for one order
may be distinguished by the next one:

�u >lm �v) �u P disc�v) �u P min�v: �23�
Also, any leximin-optimal solution is discrimin-

optimal.
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Our presentation of the Leximin-optimality
comes from the Arti®cial Intelligence literature
(Benferhat et al., 1993; Fargier et al., 1993; Dubois
et al., 1996). In the context of social choice it can
be found in Moulin (1988) and Sen (1986). In
Operation Research it has been studied by Beh-
ringer (1981) It relies on min- and Pareto-opti-
mality. An older approach to leximin, known in
Numerical Analysis as ``strict Chebyshev norm'',
has been introduced by Rice (1962) and Descloux
(1963). In the spirit of this last approach, some
additional results have been proved in Dubois et
al. (1997).

Classical to the fuzzy ®eld are t-norms and t-
conorms. A t-norm T is a semigroup of the unit
interval (associative, commutative, with identity 1)
which is non-decreasing in each place. Archime-
dean t-norms are such that 8a 2 �0; 1�, aTa < a.
Any Archimedean continuous t-norm T can be
written as follows (Schweizer and Sklar, 1983):

aTb � /ÿ1 min�/�0�;/�a� � /�b��� �;

where /: �0; 1� ! �0;/�0�� is a continuous and de-
creasing function, such that /�1� � 0. Similar to
H�older norms, families of t-norms Tp can be
written as

Tp��x� � /ÿ1
p

Xn

i�1

/p�xi�
 !

�24�

for which /p�0� � �1. For our purpose, we only
consider parameterized increasing families of t-
norms such that

lim
p!1

Tp��x� � j�xj1 � min
i

xi;

e.g., the Frank family �q � 1=p�:

Tp��x� � logq 1�Pn
i�1 qxi ÿ 1� �
�qÿ 1��nÿ1�

" #
: �25�

Among other things, it is proved in Dubois et
al. (1997) that in a convex set, the solutions of the
maximization with respect to Archimedean trian-
gular norm-based ordering converge to the solu-
tion of the maximization of the leximin-based
ordering, as soon as the triangular norm converges

to the minimum operator. The same results hold
for the family of generalized arithmetic means of
the form

fp�x1; . . . ; xi� � /ÿ1
p

1

i

Xi

j�1

/p�xj�
 !

; �26�

where /p is any continuous strictly monotonic
function on �0; 1�; and for the ordered weighted
average operations proposed by Yager (1988) as
well.

These results can be considered as another ar-
gument in favour of the leximin procedure, as the
leximin appears as the limit of parametered fami-
lies of very common aggregation operators,
namely t-norms, generalized means and OWAs.

In the next section, we illustrate the notions of
min, discrimin and leximin on a project scheduling
problem. Some observations about the critical
path will give hints about a constructive procedure
for getting the optimal solution according the
di�erent orderings.

3. Scheduling problem with ¯exible constraints

Consider the project scheduling problem (Hil-
lier and Lieberman, 1989). This problem is repre-
sented by a graph, like in Fig. 1. The edges encode
the precedence constraints between the operations
depicted by the nodes. The value of each node is
the duration of the corresponding operation. The
scheduling problem requires that all the starting
times be computed.

This problem with crisp data (durations, ready
or due dates) has been extensively studied, as well

Fig. 1. Project scheduling graph.
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as its stochastic counterpart (e.g. PERT-CPM
methods (Hillier and Lieberman, 1989)). But, the
operation durations may be either not-precisely
known or ¯exible. In the ®rst case durations are
not completely known and not controllable. In the
second case, durations are not known because they
have not been decided yet. For example, if the
speed of an operation is tunable, it may be better
to allow for a longer duration leading to an in-
creased quality of the result (cf. Fig. 2). Such
preferences may also exist about the ready date
(Fig. 3) and the due date (Fig. 4). The customer
prefers to be supplied as soon as possible, but not
later than a given deadline. These constraints
about duration, ready date and due date are ¯ex-
ible. There are a matter of preference, not of ran-
domness.

3.1. Statement of the problem

Let us assume that the temporal parameters are
¯exible and assume independent fuzzy speci®ca-
tions for the ready date �gRDi�, the duration �gDUi�
and the due date �gDDi�. The set of decision vari-
ables is more complex than in the classical case. It
includes the starting date �si� and the duration �ui�
of every operation (Dubois et al., 1995; Fargier,
1994).

Some constraints remain crisp. The precedence
constraints (as well as the capacity constraints, if
any) are still represented by a crisp relation in R.
As usual, we have 8k 2 Ci (where Ci is the set of
indices of the operations preceded by Oi)

sk P si � ui: �27�

But the other constraints are ¯exible: for instance
the duration of operation Oi should be near 3 h, Oi

should last at least 1 h and not more than 3 h. All
those words in italics represent ¯exible parame-
ters.

The initial temporal window where the opera-
tion Oi has to be performed is the fuzzy interval

�gRDi;gDDi� pictured on Fig. 5.

The ¯exible constraints of this problem can be
easily obtained from the relations (8) and (9).

si 2 �gRDi;gDDi 	gDUi�; �28�

ui 2gDUi; �29�

sk P si � ui 8k 2 Ci �30�

where 	 denotes the fuzzy subtraction of two
fuzzy numbers (see Dubois and Prade, 1987).

The global satisfaction degree Sat��d� isFig. 2. Ready date.

Fig. 3. Flexible duration.

Fig. 4. Due date.

Fig. 5. Fuzzy temporal window.
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Sat��d�
� 0 �if a precedence constraint �30� is violated�

�31�

� min
Oi

min l
�fRDi ;fDDi	fDUi �

�si�; lfDUi
�ui�

� �� �
: �32�

In general, the fuzzy durations are represented
by trapezoidal fuzzy numbers, see Fig. 6.

Some simpli®cations can be achieved according
to the meaning of the ¯exibility. In this paper, we
will only study the case of tunable operations. For
the unknown durations case and for some links
between the two interpretations, we refer the
reader to (Fargier, 1994; Dubois et al., 1995).

For each value of the satisfaction degree, only
the shortest duration is meaningful. As a matter of
fact, if two durations have the same degree of
satisfaction, the shortest one will give more time to
other operations in the project to be performed.
Therefore, only the left part of the fuzzy numbergDUi will be considered:

ui 2 �gDUi;�1�: �33�

The satisfaction of constraints (29) and (30) are
simpli®ed in this context (see Dubois et al., 1995).
Indeed, the duration must be set such that
ui6 mink2Ci�sk ÿ si�. Since the membership func-

tion of �gDUi;�1� is increasing, we choose ui �
mink2Ci�sk ÿ si� and the satisfaction degree of the
constraint is

min
k2Ci

l
�fDUi ;�1�

�sk ÿ si�:

The global satisfaction degree is

Sat��d� � 0

�if a precedence constraint �30� is violated�

� min
Oi

min l
�fRDi ;fDDi	fDUi �

�si�;
��

min
k2Ci

l
�fDUi ;�1�

�sk ÿ si�
��

: �34�

Note that the variables ui seem to disappear. In
fact, they are implicitly computed and will be
chosen according to the starting times obtained
from the problem (34). The latter is equivalent to
problem (32), regarding the computation of the
degree of consistency of the fuzzy CSP.

The fuzzy PERT problem has been considered
by many authors for a long time (Dubois and
Prade, 1978; Chanas and Kamburowski, 1981;
Dubois and Prade, 1987; Lootsma, 1989; For-
temps, 1997). However in these works, the mean-
ing of the fuzzy numbers is often di�erent from
here, in the sense that fuzzy durations model un-
certainty (SlowinÂski and Teghem, 1990) rather
than preference. Here only preference pro®les are
considered and the result is a precise solution ob-
tained from ``optimal defuzzi®cation''.

3.2. Propagation of ¯exible constraints ± Consis-
tency degree

As for the classical problem, we also use con-
straint propagation so as to reduce the temporal
window of each operation.

The forward propagation step says that an
operation may begin neither before its ``ready
date'' nor before the latest ending time of the
preceding operations. For each operation, this
latest ending time is computed as the sum of the
starting time and the duration of the operation.
The backward propagation step prescribes that an
operation ®nishes before its ``due date'', as well as
before the earliest starting time of the following
operations.

Therefore, for every pair �i; j� such that i pre-
cedes j (j 2 Ci), we update ready dates and latest
ending dates of operations as follows:

erdj :� gmax� erdj; erdi �gDUi�; �35�Fig. 6. Flexible duration and �gDUi;� inf �:
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eddi :�gmin� eddi; eddj 	gDUj�; �36�
and the propagation of both kinds of constraints
gives the fuzzy temporal window allowed for the
performing of the operation. Initially, erdj �gRDj

and eddj �gDDj. Finally, by subtracting the fuzzy
duration gDUi from the latest ending time eddi, we
obtain the (fuzzy) latest starting time. The values
which best satisfy both starting times (soonest and
latest ones) give the temporal slack for the starting
time of Oi, namely

esli � � erdi; eddi 	gDUi�: �37�
Note that the fuzzy subtraction increases the im-
precision in the sense that eddi 	gDUi is more im-
precise than eddi or gDUi. It makes sense because the
computation of eddi involves only operations after
Oi and the independent fuzzy overall due-date.
Hence eddi and gDUi are non-interactive (see
Fig. 7).

It is easy to verify that

Cons�P� � sup
s1;...;sn

min
i�1;...;n

lesli
�si�

� min
i�1;...;n

height�esli�:

Indeed, if height�esli� � ai < 1, then the choice
of s�i such that

lerdi
�s�i � � leddi	fDUi

�s�i �
is unique and it leads to a best choice of the du-
ration u�i such that

ai � l
�fDUi;�1�

�u�i �:

Let fO1; . . . ;Okg be the set of operations such
that height�esli� � Cons�P�. These operations
correspond to a set of critical paths, and can be

called critical operations. For any two consecutive
operations along a critical path, it is easy to check

that s�i ÿ s�j � u�j so that the term mink2Cil�fDUi ;�1��sk ÿ si� in (34) is redundant. By de®nition some
slack exists for the choice of starting times of non-
critical operations. But due to the preference
pro®les computed from the fuzzy numbers, the
choice of these starting times will a�ect the disc-
rimin-optimality of the selected solution. In par-
ticular, choosing si � s�i induced by height�esli� is
not the best choice for non-critical operations.

Example 1. Let 3 operations O, O� and O� (Fig. 8)
where operation O precedes the two others. Their
¯exible duration is the same gDU: �2; 4;1;1� 4

depicted on Fig. 9. The ready date gRD of each
operation is zero. The due dates are gDD � �ÿ1;
ÿ1; 8; 8�, gDD� � �ÿ1;ÿ1; 4; 8� and gDD� �
�ÿ1;ÿ1; 6; 8� (see Fig. 10). The constraints are:

Fig. 7. The slack and the starting time.

Fig. 8. Problem graph.

4 We use here trapezoidal fuzzy numbers. Thus, we have the

lower bounds respectively of the cut at a � 0 and a � 1

followed by the upper bounds respectively for the cut at a � 1

and a � 0.

Fig. 9. Common duration.
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s 2 �gRD;gDD	gDU�; u 2gDU;

s� 2 �gRD
�
;gDD

� 	gDU
��; u� 2gDU

�
;

s� 2 �gRD�; gDD� 	 gDU��; u� 2 gDU�;

s�P s� u; s�P s� u:

The global satisfaction degree of a solution is
written:

Sat��d� � Sat�s; s�; s�; u; u�; u��
� min min l�0;�1��s�; l�0;�1��s��; l�0;�1��s��

n o
;

�
min lfDU

�u�; lfDU
�u��; lfDU

�u��
n o

;

min
n
l
�ÿ1;fDD�

�s� u�;

l
�ÿ1;fDD��

�s� � u��;l
�ÿ1;gDD��

�s� � u��
o�
:

We follow the propagation steps (35) and (36).
Using the slack time de®ned in Eq. (37), we have:

erd � �0; 0;1;1�; edd 	gDU � �ÿ1;1;ÿ4;�4�;erd
� � �2; 4;1;1�; edd

� 	gDU
� � �ÿ1;ÿ1; 2; 6�;erd

� � �2; 4;1;1�; edd
� 	gDU

� � �ÿ1;ÿ1; 0; 6�;
and

height�esl� � 1

2
; height�esl

�� � 2

3
;

height�esl
�� � 1

2
:

By constraint propagation, the di�erent fuzzy
numbers are reduced. When a stable state is
reached, the problem consistency degree is the
height of the lowest fuzzy number. In our example,
this degree is equal to 1

2
.

The basic solution should be to take all the
durations equal to 3 (as induced by the degree 1

2
).

And the corresponding starting times are easily
computed: s � 0, s� � 3 and s� � 3. The satisfac-
tion degrees vector is

lfDU
�u�; lfDU

�u��; lfDU
�u��; lfDD

�s� u�;
�

lfDD
� �s� � u��; lfDD

��s� � u��
�

� 1

2
;
1

2
;
1

2
; 1;

1

2
; 1

� �
: �38�

The following choice of starting times and dura-
tions (based on the core of the slacks) s � 0, s� � 3
and s� � 3:333; and u � 3, u� � 3 and u� � 3:333
leads to a satisfaction degrees vector:

lfDU
�u�; lfDU

�u��; lfDU
�u��; lfDD

�s� u�;
�

lfDD
� �s� � u��; lfDD

��s� � u��
�

� 1

2
;
1

2
;
2

3
; 1;

1

2
;
2

3

� �
: �39�

This second solution is considered as a better
compromise, as it satis®es three constraints with a
degree greater than 1

2
. The consistency degree of

this solution remains 1
2
.

This small problem su�ers from the Drowning
E�ect. The two solutions found have the same
satisfaction degree and cannot be distinguished by
the min-ordering, even if one of them appears
better.

3.3. Improving the solution

Among the classical algorithms for scheduling
problems, the Critical Path Method is crucial
(Hillier and Lieberman, 1989). The critical path is,
through the problem graph, a path from a ready
date node to a due date one such that, for each
node of this path, the starting time of the related
operation is equal to the ending time of the pre-
vious node operation, Along the critical path, all
the constraints are saturated; there is no slack.

Fig. 10. ``Due dates''.
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In a scheduling problem with ¯exible durations,
it may appear also one or several critical paths, in
the a-cut problem corresponding to a � Cons�P�.

Therefore, in the previous example, considering
the 1

2
-cut, the path O±O� is critical. Along this

critical path, the variables values are enforced by
the corresponding a-cut of the fuzzy numbers.
There is no slack. There is no other choice of better
(and longer) durations.

The algorithm we propose to improve the al-
ready found solutions is recursive. From the
complete problem graph, we compute the problem
consistency degree (by constraint propagation). As
a by-product, we obtain the critical paths. Along
these paths, we can instantiate the variables (ac-
cording to the cut a � Cons�P�. Then, with a re-
duced graph ± since several variables are now
determined and no longer ``variable'' ±, we can
again apply the same principle: look for the critical
path and instantiate.

If we apply this algorithm to our example, we
obtain the following.

Example 1 (continued). The problem consistency
degree equals to 1

2
. Therefore, we will study the cut

a � 1
2

of the problem.

�s � 0� � �u � 3� < 8;

�s � 0� � �u � 3� � �u� � 3� � 6;

�s � 0� � �u � 3� � �u� � 3� < 7:

The path O±O� is critical. We can deduce the value
of s and u, s� and u� (s � 0, u � 3, s� � s� u � 3,
u� � 3).

By the way, s� is automatically obtained
(s� � s� u � 3). The simpli®ed problem where
only u� remains to be determined has the consis-
tency degree 3

4
� lfDD

�
	fDU
�3�. We can therefore use

the value u� � 3:5 (see Fig. 11).

The satisfaction degrees vector is:

lfDU
�u�; lfDU

�u��; lfDU
�u��; lfDD

�s� u�;
�

lfDD
� �s� � u��; lfDD

��s� � u��
�

� 1

2
;
1

2
;
3

4
; 1;

1

2
;
3

4

� �
: �40�

This multi-step constraint propagation gives a
solution really better than the two others. It is the
unique discrimin-optimal solution to the problem,
as proved in the sequel.

4. General algorithms for computing discrimin and

leximin solutions

In this section, we extend the intuitive approach
of the previous section to a more general frame-
work. We outline a multi-step constraint satisfac-
tion procedure which yields all discrimin-optimal
and leximin-optimal solutions. This result is con-
sistent with the original algorithmic de®nition of
Leximin by Rice (1962).

4.1. Critical subsets of constraints

The main observation from the previous section
is the existence of critical paths for a given a-cut of
the fuzzy scheduling problem, namely with
a � Cons�P�. By solving the saturated constraints,
we have been able to de®ne a new subproblem
whose solution is better than the one obtained by a
defuzzi®cation at level Cons�P�.

We ®rst need to recall the de®nition of the
strong a-cut and the a-section of a fuzzy subset ~R:

De®nition 3. The strong a-cut of a fuzzy subset ~R is
the crisp subset

R>
a � �d: l ~R��d� > a

n o
:

De®nition 4. The a-section of a fuzzy subset ~R is
the crisp subset

R�a � �d: l ~R��d� � a
n o

:Fig. 11. Operations graph and critical path Oÿ O� (in bold).
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We give now a wider de®nition of criticity:

De®nition 5. C0 is a subset of saturated constraints
of the FCSP P � �X;D;C;R� if and only if there
exists a solution �d 2 X such that

8Ci 2 C0; lRi
��d� � a�;

8Ci 62 C0; lRi
��d� > a�;

and a� � Cons�P�.

In the sequel, we shall work with minimal sub-
sets of saturated constraints, according to two dif-
ferent notions of minimality. We denote by 2C the
set of subsets of C and CC the set of saturated
subsets of C. Obviously, CC � 2C.

De®nition 6. A subset A 2 CC is critical if and only
if it is inclusion-minimal in CC, that is it does not
exist a subset B 2 CC such that B � A. A con-
straint in a critical subset is said to be critical.

De®nition 7. A subset A 2 CC is cardinality-min-
imal if and only if it does not exist a subset B 2 CC
such that jBj < jAj.

Clearly a minimal cardinality subset of CC
is critical. If a subset A of constraints is critical then
consider the problem P0 � �X;D;C;R0� where
R0 � fRi \ R>

ia
;Ci 62 Ag [ fR�ia ;Ci 2 Ag with a �

Cons�P�. Note that the set
T

Ci2C R>
ia

is empty, i.e.
the corresponding classical CSP has no solutions,
by de®nition of Cons�P�.

For any critical subset of constraints A, C n A is
a maximal consistent subset of constraints of the
form �d 2 R>

ia
in C. So, problem P0 always have

solutions.
An important special case of fuzzy CSP is when

fuzzy constraints are unary, i.e. only variables
have fuzzy domains, while other constraints, in-
volving several variables are all crisp. In that case,
a critical subset of constraints is actually a critical
subset of decision variables. If F1; . . . ; Fn are the
fuzzy domains of X1; . . . ;Xn, and A is a critical
subset of variables then the set of values F �ia of Xi 2
A is generally very small, so that the problem P0

resulting from selecting a critical subset of vari-
ables is generally much simpler than P.

4.2. A discrimin-optimal algorithm

Algorithm DA
Find the discrimin solutions of P � �X;D;C;R�

1. Compute the optimal satisfaction degree, i.e.
the consistency degree

a� � Cons�P� � sup
�d2X

min
Ci2C

lRi
��d�:

2. Determine the critical subsets of constraints C�k
k � 1; . . . (i.e. minimal according to the set-in-
clusion).

3. For every critical set C�k .
Find the discrimin solutions of P0 � �X;D;
C0k;R

0
k� where

· each constraint Ci 2 C�k has been transformed in
the classical constraint C0i 2 C0k associated with
the a�-section

R0i � R�ia ;

· each constraint Ci 62 C�k is kept with the restric-
tion that its satisfaction degree has to be greater
than a�:

R0i � Ri \ R>
ia
:

The algorithm terminates in a ®nite number of
steps because some constraints are defuzzi®ed
(replaced by their a-cut) at each step. We denote
fP�l�g, l � 0; . . ., a sequence of reductions of the
initial problem. As a corollary of the algorithm
de®nition, we have

Cons�P�l�� > Cons�P�lÿ1��:
The strict inequality holds when a complete

``critical subset'' is used. In some cases, it can be
easier to defuzzify only one critical constraint at a
time and not the whole critical subset. Then, we
still have the following property, which is su�cient
for the proof of optimality:

Cons�P�l��P Cons�P�lÿ1��:

Theorem 2. A solution �d is discrimin-optimal if and
only if �d is given by the algorithm DA.

Proof. If �d is discrimin optimal, then 8Cj 2 C the
set of crisp constraints:
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lRi
��d 0�P lRi

��d�;
lRj
��d 0� > lRj

��d�;
is inconsistent. If a1 < a2 < � � � < ap are the set of
distinct satisfaction levels in flRi

��d�;Ci 2 Cg, and
Ck � fCi 2 C: lRi

��d� � akg. It is obvious that for
any k � 1; . . . ; p, there exists P�k� such that �d is a
solution of P�k� and such that Ck is a set of critical
constraints for the same problem. Hence �d is
found by the algorithm.

Conversely, if �d is not discrimin optimal, then
there exists �d

0
such that 8Ci 2 D��d; �d

0�, lRi
��d 0� >

minCj2D��d;�d 0�lRj
��d�. Let Cj be the constraint for

which this minimum holds.

lRj
��d 0� > lRj

��d�:

Assume �d is obtained by the algorithm and consider
Ck such that Cj 2 Ck. To claim that �d is not disc-
rimin optimal is to claim that the set of constraints

lRi
��x� � al 8Ci 2 Cl; l � 1; . . . ; k ÿ 1;

lRj
��x� > ak

is consistent (since �x � �d
0

satis®es it) and this is a
contradiction. �

The main features of the algorithm DA are its
recursivity and its generality. It is recursive because
in order to ®nd the solutions with m fuzzy con-
straints, it ®nds all minimal sets of critical con-
straints and then the remaining ones form a problem
to be solved in the same way at the next step. It re-
quires the computation of the global satisfaction
degree, the determination of the critical sets of
constraints and the determination of their a-cuts.

In practice, computing critical sets of con-
straints can be very expensive. However, as shown
in this report, there are classes of useful problems
where the critical set is unique at each step and is
rather easy to ®nd.

4.3. Leximin-optimal algorithms

Algorithm LA

[breadth ®rst] Find the leximin solutions of P �
�X;D;C;R�

1. Compute the optimal satisfaction degree, i.e.
the consistency degree

a� � Cons�P� � sup
�d2X

min
Ci2C

lRi
��d�:

2. Determine the minimal subsets of critical con-
straints C�k (minimal according to the set-cardi-
nality).

3. For every minimal set C�k .
Find the leximin solutions of P0 � �X;D;C0k;R0k�

where
· each constraint Ci 2 C�k has been transformed in

the classical constraint C0i 2 C0k associated with
the a�-section:

R0i � R�ia ;

· each constraint Ci 62 C�k is kept with the restric-
tion that its satisfaction degree has to be greater
than a�:

R0i � Ri \ R>
ia
:

4. Perform a pairwise leximin-comparison and
delete leximin-dominated solutions.

As it can be seen, only a few things have been
modi®ed from DA to LA.

First, the notion of ``minimal subset'' has to be
considered with respect to the set-cardinality. This
di�erence between the algorithms coincides with
the di�erence between the orderings, since Dis-
crimin is based on set-inclusion and leximin relies
on set-cardinality.

The second modi®cation is more essential: not
every solution built by the algorithm is optimal. As
a matter of fact, every minimal critical subset
found by the algorithm leads to complete solu-
tions. In general, two minimal critical subsets
found at the same step may lead to di�erent sat-
isfaction degree at the next step. Therefore, even if
the minimal critical subsets are equally preferred,
the solutions built on them may be di�erent and
since the leximin ordering is complete, they are
comparable (contrary to the case of discrimin al-
gorithm). That's the reason why at the end of the
procedure, a pairwise leximin-comparison has to
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be done to eliminate the possible leximin-domi-
nated solutions.

In fact, if the implementation of LA is iterative
and involves a list of partial solutions being built,
one can progressively perform the leximin-com-
parison and discard the dominated partial solu-
tions.

It is possible to envisage a depth ®rst version of
the algorithm for ®nding the leximin optimal so-
lutions because the leximin relation is a complete
preordering.

Algorithm LA

[depth ®rst]
· Initialization: Set the current satisfaction vector

CSV � 0. The solution set is empty: S � ;.
And the problem list contains only the problem
CSP � fPg.

· While the CSP-list is not empty,
1. Select P� the ®rst element with respect to a

L.I.F.O. strategy.
2. Compute a� the consistency degree of P�.
3. Find the minimal critical subsets C�k and the

corresponding partial vectors of satisfaction
levels (minimal with respect to the set-cardi-
nality).

4. Compare each partial vector with the current
satisfaction vector. If the result is O.K.,
if there are still ¯exible constraints, update
the CSP-list;
if there is no more ¯exible constraints, up-
date the S-list.

The updating of the CSP-list consists in adding
as many CSPs as there exists di�erent minimal
critical subsets. For every C�k , the CSP to add is
determined as previously: critical constraints are
restricted to their a-section while other constraints
are forced to reach a strictly higher satisfaction
degree.

The updating of the S-list is not a simple ad-
dition of new solutions to the previous set of so-
lutions. Dominance checking can be performed, in
order to delete solutions dominated with respect to
the leximin ordering.

Finally, we have to precisely de®ne how is
computed the result of the comparison between a

new partial solution (characterized by its partial
satisfaction vector NSV) and the current satisfac-
tion vector CSV. Both vectors are sorted in in-
creasing order. Let j be the length of NSV. If CSV
is shorter than NSV, then it is arti®cially com-
pleted with 0's on the right.
1. Compare component to component from i � 1

to i � j. If CSVi < NSVi , then CSV is set to NSV ,
the S-list is emptied and the result is OK.
STOP. If CSVi > NSVi , then the result is NOT
OK. STOP.

2. Otherwise, the two vectors can not yet be distin-
guished. Set the result to OK. STOP.
The above algorithms lead to representing sets

of discrimin or leximin optimal solutions under the
form of non-fuzzy CSP problems. Namely for each
fuzzy constraints Ci a threshold ai has been found
such that any solution to the classical CSP de®ned
by fR�iai

; i � 1; . . . ; ng is discrimin (or leximin)
optimal. So the above procedures are kind of
defuzzi®cation algorithms, that are concise
description of the discrimin and leximin-optimal
solutions.

Because of the DA algorithm and its properties
(Theorem 2), it can easily be proved that a disc-
rimin-optimal 5 solution can always be obtained
by successive enhancements of any min-optimal
solution. In general, several di�erent min-optimal
solutions may lead to the same discrimin-optimal
solution; and, distinct discrimin-optimal solutions
may sometimes be built from a given min-optimal
one.

The behaviour of the leximin procedure is
rather di�erent, since from one min-optimal solu-
tion, it may happen that no leximin-optimal one is
reachable. In other words, not all minimal critical
subsets can be used to build a leximin-optimal
solution.

Therefore, the two proposed algorithms (DA
and LA) di�er not only in the meaning of ``mini-
mal subset'' (inclusion or cardinality based), but, if
only one optimal solution is looked for, the re-
quired work is completely di�erent.

5 Recall that discrimin-maximal should be more adequate

than discrimin-optimal, which is used for the sake of simplicity.
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Assume, for example, an interactive frame-
work, where the DM would like to contribute to
the solution building. If the DM is convinced by
the Discrimin ordering, each time the procedure
proposes a set of ``critical subsets'', he can choose
which one has to be further investigated. And so
on, at each step. This interactive procedure re-
quires much less e�ort than the complete DA,
since only one C�k is checked (the interesting one!)
and nevertheless, it gives ®nally an optimal solu-
tion.

On the other hand, it seems that no e�cient
leximin procedure can be interactive, since from a
DM chosen minimal cardinality subset, it may be
impossible to build a leximin-optimal solution.

5. Illustration on a ¯exible assignment problem

Before going into further details for particular
cases, we treat now a combinatorial problem as a
sample problem for our procedures. This problem
belongs to a more general class of Boolean prob-
lems where the procedures can be used.

Let E � fe1; . . . ; emg be a set of binary deci-
sions. A solution F is a subset of E of a given size n
that satis®es some constraints. Let E be the set of
feasible solutions, supposed to be of the following
form:

F 2 E) F � E and jF j � n:

Combinatorial problems of this type are, for
example, the assignment problem (ej is an assign-
ment of a given operator to a given task), the
travelling salesman (ej can be the directed path
between two cities). Each element ei of E is char-
acterized by a given satisfaction degree li. Our aim
is to ®nd the solutions which maximize

max
F2E

min
ei2F

li

and are discrimin or leximin optimal.
The results of this section are applicable to all

these problems. But, for simplicity, we focus on an
assignment problem.

Each year, the army has to assign o�cers to
tasks, according to their capabilities. Therefore,
the candidates pass through several exams and a

pro®le procedure gives for each candidate its de-
gree of ful®llment of task requirements. Our
problem is to ®nd the best assignment of each
o�cer to a task.

Let's take an example, where the candidates are
not too good (sic.). The satisfaction matrix is as
follows:

2 1 1 1 6

1 3 3 5 0

2 1 4 0 1

1 3 2 4 0

2 0 1 1 5

0BBBBBBB@

1CCCCCCCA: �41�

The satisfaction degrees have been given on a
discrete scale between 1 and . . . 7. A row corre-
sponds to an o�cer, while a column refers to a
task. Even if nobody seems to be particularly able
to cope with task 1, someone has to be assigned.
Each task is as important as the others.

The decision set X consists in the task xi as-
signed to each o�cer i: X � fx1; . . . ; x5g. The do-
main range of each o�cer is the set of tasks:
8i; xi 2 f1; . . . ; 5g. The rows in the assignment ta-
ble are considered as vectors of satisfaction levels:
if the ®rst o�cer is committed to the last task, the
related satisfaction degree is equal to 6.

A solution assigns a di�erent task to each o�-
cer. Therefore, the solutions are characterized by
the following relation:

8j 2 f1; . . . ; 5g; 9!i: xi � j:

Let's now build the discrimin and leximin op-
timal solutions of this problem.

5.1. Discrimin optimal solutions

1. Compute the global satisfaction degree:

Cons�P� � 2:

This can be easily obtained by considering the
problem characterized by cancelling assignments
with satisfaction less than 2 in the following ma-
trix:
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2 ÿ ÿ ÿ 6

ÿ 3 3 5 ÿ
2 ÿ 4 ÿ ÿ
ÿ 3 2 4 ÿ
2 ÿ ÿ ÿ 5

0BBBBBB@

1CCCCCCA; �42�

where ÿ denotes infeasibility. This problem still
has solutions, whilst removing the 2's implies a
con¯ict between o�cers 1 and 5 on task 5.

2. To identify the critical subsets of constraints,
we check the di�erent combinations of o�cers
satis®ed with degree 2.
· Checking the subset f1g as a critical subset

comes down to verify the feasibility of the prob-
lem where the ®rst o�cer is satis®ed with degree
2 and all others are strictly more satis®ed. In
other words, does the following problem lead
to a feasible solution?

2 ÿ ÿ ÿ ÿ
ÿ 3 3 5 ÿ
ÿ ÿ 4 ÿ ÿ
ÿ 3 ÿ 4 ÿ
ÿ ÿ ÿ ÿ 5

0BBBBBB@

1CCCCCCA: �43�

The answer is yes.
· The same test is performed for the singletons

{3} and {4}, without success. As a matter of
fact, in both cases, two o�cers would again be
assigned to the last task. Matrix (44a) (resp.
(44b)) is related to the singleton {3} (resp. {4}):

ÿ ÿ ÿ ÿ 6

ÿ 3 3 5 ÿ
2 ÿ ÿ ÿ ÿ
ÿ 3 ÿ 4 ÿ
ÿ ÿ ÿ ÿ 5

0BBBBBB@

1CCCCCCA; �44a�

ÿ ÿ ÿ ÿ 6

ÿ 3 3 5 ÿ
ÿ ÿ 4 ÿ ÿ
ÿ ÿ 2 ÿ ÿ
ÿ ÿ ÿ ÿ 5

0BBBBBB@

1CCCCCCA; �44b�

· The last singleton to check is {5} which can lead
to a feasible solution, since there exists at least

one feasible solution to the following problem:

ÿ ÿ ÿ ÿ 6

ÿ 3 3 5 ÿ
ÿ ÿ 4 ÿ ÿ
ÿ 3 ÿ 4 ÿ
2 ÿ ÿ ÿ ÿ

0BBBBBBB@

1CCCCCCCA: �45�

· Since neither 3 nor 4 belong to critical subsets of
constraints, one can check the pair {3,4} as a
critical subset. But, the result is negative. No
feasible solution can be obtained, if both o�cers
3 and 4 have to be satis®ed with a degree equal
to 2. It is illustrated by the following matrix:

ÿ ÿ ÿ ÿ 6

ÿ 3 3 5 ÿ
2 ÿ ÿ ÿ ÿ
ÿ ÿ 2 ÿ ÿ
ÿ ÿ ÿ ÿ 5

0BBBBBBB@

1CCCCCCCA: �46�

In other words, the critical subsets of con-
straints of P are f1g and f5g.
3. For each identi®ed critical subset, solve the

reduced problem.
· Consider the problem, where the ®rst o�cer is

satis®ed with a degree equal to 2. We need
now to solve the following sub-problem P0:

1 ÿ ÿ ÿ ÿ
ÿ 3 3 5 ÿ
ÿ ÿ 4 ÿ ÿ
ÿ 3 ÿ 4 ÿ
ÿ ÿ ÿ ÿ 5

0BBBBBBB@

1CCCCCCCA: �47�

The assignment which gives the ®rst o�cer a
satisfaction degree equal to 2 is now frozen.
Therefore, it receives an 1 degree.

(a) The global satisfaction degree of P0 is ob-
viously equal to 3, since it is enforced by the
second task.
(b) We consider now the possible critical sub-
sets of P0. Both subsets f2g (see Matrix (48a)
and f4g (see Matrix (48b) are critical ones,
since they lead to a feasible solutions.
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1 ÿ ÿ ÿ ÿ
ÿ 3 3 ÿ ÿ
ÿ ÿ 4 ÿ ÿ
ÿ ÿ ÿ 4 ÿ
ÿ ÿ ÿ ÿ 5

0BBBBBBB@

1CCCCCCCA; �48a�

1 ÿ ÿ ÿ ÿ
ÿ ÿ ÿ 5 ÿ
ÿ ÿ 4 ÿ ÿ
ÿ 3 ÿ ÿ ÿ
ÿ ÿ ÿ ÿ 5

0BBBBBBB@

1CCCCCCCA: �48b�

(c) The reduced problem corresponding to
each of these two critical singletons has to
be solved, iteratively. Since the sequel of the
algorithm is obvious, we only state these re-
duced problems and give the solutions. The
reduced problems are:

1 ÿ ÿ ÿ ÿ
ÿ 1 1 ÿ ÿ
ÿ ÿ 4 ÿ ÿ
ÿ ÿ ÿ 4 ÿ
ÿ ÿ ÿ ÿ 5

0BBBBBBB@

1CCCCCCCA;

1 ÿ ÿ ÿ ÿ
ÿ ÿ ÿ 5 ÿ
ÿ ÿ 4 ÿ ÿ
ÿ 1 ÿ ÿ ÿ
ÿ ÿ ÿ ÿ 5

0BBBBBBB@

1CCCCCCCA: �49�

They both lead to one solution �x character-
ized by its satisfaction vector �u.

�x � �1; 2; 3; 4; 5�;
�u � �2; 3; 4; 4; 5�;

�x � �1; 4; 3; 2; 5�;
�u � �2; 5; 4; 3; 5�: �50�

· For the second critical subset f5g of P, the same
procedure provides the two following solutions:

�x � �5; 2; 3; 4; 1�; �x � �5; 4; 3; 2; 1�;
�u � �6; 3; 4; 4; 2�; �u � �6; 5; 4; 3; 2�: �51�

5.2. Leximin optimal solutions

The computation of the leximin optimal solu-
tions is approximatively the same as for the disc-
rimin ordering. The di�erence occurs when
checking if {3,4} is a minimal subset of con-
straints. Since its size is 2 and there exists singleton
subsets of constraints (namely {1} and {5}), the
pair can be immediately rejected.

At the end of the algorithm, we perform pair-
wise comparisons between the solutions, to remove
the leximin dominated ones. Finally, we keep the
solution

�x � �5; 4; 3; 2; 1�;
�u � �6; 5; 4; 3; 2�;
�u�� � �2; 3; 4; 5; 6�:

The Depth First version of the leximin-optimal
algorithm allows to avoid some computations. It
builds the ®rst solution, which determines the
current vector of satisfaction CSV � �2; 3; 4; 5; 5�.
This solution is stored in S.

During the two ®rst steps of the second solution
computation, the new satisfaction vector NSV can
not be distinguished from CSV . But at the third
step, NSV can help to reject the solution in S,
since NSV will be strictly better than CSV . The
second generated solution comes into S and CSV
becomes �2; 3; 4; 5; 5�.

As to the third solution, as soon as the third
step, its NSV which is equal to �2; 3; 4; 4;ÿ� is
dominated by CSV . Therefore, the computations
for the third solution are stopped.

Finally, the fourth solution is as good as the
solution recorded in S, during the four ®rst steps.
Then, it appears better than the solution in S,
which can be discarded. The leximin-optimal so-
lution is the fourth solution.

This small example shows how the algorithmic
re®nements proposed in this version of the leximin
algorithm can avoid useless computations and
speed up the procedure.

5.3. Revisiting the algorithms

Other optimization procedures have been de-
veloped by Burkard and Rendl (1991) to solve
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``lexicographic bottleneck'' problems with combi-
natorial structure. Their ®rst algorithm converts
the leximin problem into a sum optimization
problem, by an appropriate scaling of the satis-
faction degrees. As the authors themselves claim,
the numbers constructed in this approach explode
for large number of di�erent satisfaction degrees
�k� or for large problem size �n�. Namely, the
largest number is �n� 1�k.

In their second approach, they iteratively build
an optimal solution to their leximin problem, using
Sum Optimization Problem alternatively for de-
termining the next satisfaction degree or for com-
puting the number of saturated constraints. But
they still need the use of very large numbers, of an
order of magnitude similar to 2n.

Our procedures are able to compute all disc-
rimin or leximin optimal solutions, and do not
make use of such increasing values. But, they use a
list of partial solutions. We present now some
variations of both basic procedures.

5.3.1. Algorithmic issues
For some classical O.R. problems, maxmin (or

bottleneck) algorithms have been developed (see
e.g. Martello and Toth, 1987). It is therefore easy
to obtain the global satisfaction degree a� of a
problem P. On the other hand, the determination
of the critical subsets is not so easy.

However, it is possible to obtain an interval
bracketing the size of the critical subsets. If we
consider the following problem:

y � max
�x

X
i

mi�xi�;

mi�w� �
1; if li�w� > a�;

0; if li�w� � a�;

ÿ1; otherwise;

8><>:
�52�

where a� is the consistency degree of the ¯exible
problem P. y provides the maximum number of
constraints that can be satis®ed at a higher degree
that a� (recall that already identi®ed constraints at
lower levels have been moved to 1). Therefore,
the lower bound for the critical set size is �nÿ y�.

An upper bound is given by the optimization of
the following problem, which gives the maximal
number of elements at degree a�:

y � max
�x

X
i

mi�xi�;

m�w� �
0; if li�w� > a�;

1; if li�w� � a�;

ÿ1; otherwise:

8><>:
�53�

This helps avoiding to check all the possible
critical subsets, since too small or too large ones
can be avoided. To check the remaining possible
critical subsets A, we can solve the following
maxmin problem:

z � max
�x

min
i

mi�xi�;

mi�w� �
1; if li�w� � a� and i 2 A;

li�w�; if li�w� > a�;

ÿ1; otherwise:

8><>:
�54�

The choice of the parameters m ensures that the
solution to this problem will not include elements
with low degree that do not belong to the critical
subsets chosen at the previous steps.

The solution of this problem can have three
kinds of value z:

z �

ÿ1; the critical subset is not feasible;

1; a complete discrimin optimal

solution is reached;

a; the next satisfaction degree is a:

8>>>><>>>>:
�55�

As to the leximin algorithms, it is enough to
compute the lower bound of the critical subset size,
since we are looking for minimal subset with re-
spect to set-cardinality. But, the rest remains valid.

5.3.2. Example
Let's consider again how to obtain the disc-

rimin optimal solutions of the assignment problem
characterized in (41). This example illustrates the
usefulness of the bounds to avoid considering
some subsets, namely the pair {3, 4}.

The lower bound for the critical subset size of P
is obtained by the maxsum optimization of the
assignment problem de®ned by the following ma-
trix:
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0 ÿ ÿ ÿ 1

ÿ 1 1 1 ÿ
0 ÿ 1 ÿ ÿ
ÿ 1 0 1 ÿ
0 ÿ ÿ ÿ 1

0BBBBBB@

1CCCCCCA: �56�

The result is 4. In other words, the lower bound is
equal to 5ÿ 4 � 1.

The upper bound is also given by a maxsum
optimization. Consider the assignment problem
whose cost matrix is de®ned as

1 ÿ ÿ ÿ 0

ÿ 0 0 0 ÿ
1 ÿ 0 ÿ ÿ
ÿ 0 1 0 ÿ
1 ÿ ÿ ÿ 0

0BBBBBB@

1CCCCCCA: �57�

The result is equal to 1. Therefore, there doesn't
exist a feasible solution satisfying both constraints
3 and 4 at level 2.

6. Problems with unique discrimin optimal solutions

The above proposed algorithms are general but
computationally very expensive; the knowledge of
some particular problem structures can speed them
up. Fortunately, this enhancement occurs in well-
known and often applied mathematical models,
which turn out to be CSP with fuzzy domains.
From now on, we consider continuous CSP with
fuzzy variables domain in a numerical framework.

First, we will prove that the discrimin-optimal
solution to a convex problem is essentially unique.
By essentially unique, we mean unique except,
perhaps, for variables with satisfaction degree
equal to one. We think this is a major reason why
previous works have only been concerned by le-
ximin. In most practical cases, including Linear
Programming (LP), the discrimin solution is also
the leximin one, because of its uniqueness.

For the LP problems, the paper of Behringer
(1981) received little attention, probably because
randomly chosen test-problems have a unique
min-optimal solution. But in real-world problems
and especially in combinatorial search, degenera-

cies occur and the discrimin search makes sense.
We will brie¯y present some further results on this
topic. It can be noted that the fuzzy PERT prob-
lem can be cast in this class.

Another framework to be considered is the
``Isotonic Programming'' model, which can also be
viewed as a generalization of fuzzy PERT prob-
lems. The uniqueness of the discrimin optimal
solution has also been obtained for isotonic
problems.

6.1. Convex programming

A classical set D is ``convex'' if and only if each
linear combination of any 2 elements of D belongs
to D.

D convex()
8�x; �y 2 D;

8j 2 �0; 1�;
j�x� �1ÿ j��y 2 D:

8><>:
A ¯exible domain ~X is ``essentially strictly

convex'' (es-convex) if and only if it is de®ned by a
fuzzy interval whose bounds,if any, are strictly
convex on (0,1).

~X es-convex()
8x1; x2 �x1 6� x2� such that l ~X �xi� 2 �0; 1� �i � 1; 2�;
8k 2 �0; 1�;
l ~X �kx1 � �1ÿ k�x2� > min

i�1;2
l ~X �xi�:

8>><>>:
It is natural to consider a Feasibility Problem

with such kind of preferences on the variables: it
allows more-or-less preferred values as well as
typical ones (the core of the fuzzy interval). Flex-
ible constraint domains express the DM's prefer-
ences about the possible values of the variables,
mainly in three di�erent ways: left-bounded, right-
bounded and bounded domains.

For example, when the DM says the ready date
of an operation should be before October 1st, it
makes sense to use a fuzzy number like Fig. 12.
And the related variable s should take a value
maximizing the membership degree to this fuzzy
number. In the sequel, this kind of fuzzy number
will be called left-bounded fuzzy interval. In order
to increase the satisfaction degree of this con-

116 D. Dubois, P. Fortemps / European Journal of Operational Research 118 (1999) 95±126



straint we can only increase the value of the vari-
able. This fuzzy number can also be called in-
creasing ¯exible domain or left-bounded ¯exible
domain.

The fuzzy intervals similar to the one of Fig. 13
will be called right-bounded fuzzy interval. They
will be used to encode the preferences about the
due dates. Finally, you can have also bounded
fuzzy intervals resulting from the intersection of
the two previous classes of domains. Each a-cut of
such a domain is an interval.

Consider now the CSP with fuzzy domains �P�:

Maximize �xmin
i2I

leXi
�xi�

�x 2 D � Rn;
�58�

where D is convex and ~X i�i � 1; . . . ; n� are es-
convex.

Lemma 3. If Eq. (58) is partially consistent, and if
�x and �y are two min-optimal solutions to Eq. (58),
then 9i 2 IF such that xi � yi and l ~X i

�xi� � l ~X i
�yi� is

the degree of consistency of the problem.

Proof. Assume there exists 2 min-optimal solu-
tions, �x and �y such that

1 > l ~X k
�xk� � l ~X l

�yl� � Cons�P�
) k 6� l or xk 6� yl:

In other words, we have 8i
l ~X i
�xi� � l ~X i

�yi� � Cons�P� ) xi 6� yi;

l ~X i
�xi� 6� l ~X i

�yi� ) xi 6� yi:

As a consequence of convexity of D and es-con-
vexity of fuzzy domains, �z � ��x� �y�=2 is min-bet-
ter than any of �x and �y. Indeed,
· either min�l ~X i

�xi�; l ~X i
�yi�� > Cons�P�, and

then,

l ~X i
�zi�P min l ~X i

�xi�; l ~X i
�yi�

ÿ �
> Cons�P�;

· or min�l ~X i
�xi�; l ~X i

�yi�� � Cons�P� and then xi 6�
yi and

l ~X i
�zi� > Cons�P�:

Therefore, for all i, l ~X i
�zi� > Cons�P�, and �x and �y

are not min-optimal solutions. �

An even stronger lemma can be proven, using
the notion of critical subset. It claims that at the
level a � Cons�P �, the critical subset is unique. Let
us note ®rst that one critical subset is obviously
non empty, otherwise a < Cons�P�.

Lemma 4. For any convex problem, like de®ned in
Eq. (58), the critical subset at level Cons�P� � a is
unique.

Proof. Assume we have two disjoint critical subsets
C and C0. It is possible to develop them into two
di�erent min-optimal solutions, �x and �y. The
solution �z � ��x� �y�=2 is min-better than both �x
and �y, since 8i;max�l ~X i

�xi�; l ~X i
�yi�� > a and

l ~X i
�zi� > min�l ~X i

�xi�; l ~X i
�yi��P a:

On the other hand, if we assume two di�erent but
non-disjunct critical subsets C and C0, i.e. C 6� C0

and C \ C0 6� ;. In the worst case, the solution �z,
built as previously as the mean of �x and �y, has
variables at the level a. These variables have to
belong to C \ C0 which is strictly smaller than both
C and C0. Therefore, the critical subset related to �z
is included in C and C0. This is absurd, since C and
C0 have been assumed inclusion-minimal. �

Theorem 5. The discrimin solution is essentially
unique. Namely, all the discrimin solutions have all

Fig. 13. ~R is a right-bounded ¯exible domain.

Fig. 12. ~X is a left-bounded ¯exible domain.
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their components equal except maybe those with
satisfaction degree equal to one.

Proof. Assume it exists �x and �y two discrimin-
optimal solutions, such that

9i: minfl ~X i
�xi�; l ~X i

�yi�g < 1 and xi 6� yi:

Consider �z � ��x� �y�=2 and compute D��x; �y�. It
is worth noticing that xi � yi implies that
~X i 62 D��x; �y�.
· For all ~X l 2 D��x; �y�, we have xl 6� yl and

l ~X l
�zl� > min�l ~X l

�xl�; l ~X l
�yl��:

· For all ~X l 62 D��x; �y�, such that xl 6� yl and
l ~X l
�xl� � l ~X l

�yl� < 1, we have l ~X l
�xl� � l ~X l

�yl�
and, again,

l ~X l
�zl� > min�l ~X l

�xl�; l ~X l
�yl��:

Therefore, �z should be discrimin-better than �x and
�y. In other words, �x and �y should not be discrimin-
optimal. And the theorem is proved. �

The result is also an obvious consequence of
Lemma 4 using the DA algorithm.

The previous theorems can be intuitively stated,
for simple cases, on the basis of a geometrical
approach.

Let us consider a problem in R2, where D is
convex. The preferences on X1 and X2 are linear:
l ~X i
�xi� � xi. The global satisfaction degree a is

equal to the minimum of x1 and x2. Instead of
considering the problem in a 3-dimensions space,
we project the two planes a � xi onto the ground
plane Ox1x2. We obtain the Fig. 14 where the
dotted lines are iso-consistency lines.

Assume now that some solutions are min-op-
timal, with Cons�P� � 1=3. These solutions have
to be on the lines either (ps) or (pr). Should there
be ``min-optimal'' solutions on both lines (e.g. a
and b), there would exist at least a solution c better
than the assumed min-optimal solutions, because
the line between a and b belongs to the convex
domain. Therefore, all the min-optimal solutions
have to be on one line either (ps) or (pr) and they
have in common a element: x2 on (ps) or x1 on (pr).

Similar reasoning holds when the membership
functions are more general (e.g. see Fig. 15) or
when the membership functions specify fuzzy
numbers.

In the convex programming cases, the discrimin
solution is essentially unique and can be obtained

Fig. 14. Geometrical approach with linear membership functions on both variables.
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step by step by our recursive procedure. At each
step, the saturated variables are determined by the
nonzero Lagrangian multipliers of the related
a6 l ~X i

�xi� constraints. And, for each saturated
variable, the value is unique (because the solution
is unique).

6.2. Fuzzy linear programming

Probably the best known model of fuzzy
mathematical programming has been proposed
by Zimmermann (1976, 1978). It has been ®rst
treated with triangular membership functions, but
more general forms have been considered, e.g. in
(Leberling, 1981).

In this linear programming model, aspirations
levels for objective functions are given along with
some tolerance, and (in)equalities in linear con-
straints are made ¯exible. The other parameters
are crisp. The fuzzy objective functions and the
fuzzy constraints receive the same treatment.

The non-fuzzy problem is of the form

find �x;
such that �cT �x P b0;

�A�x�i6 bi 8i;
�x P 0:

�59�

Let us assume membership functions for the goal
~b0 and the right-hand side coe�cients ~bi.

This problem can easily be cast in our model:

max \ min "i�0;...;nl~bi
��yi�

s:t: �cT �x P y0;

�A�x�i6 yi 8i;
�x P 0:

�60�

where the additional variables are y0; y1; . . . ; yn.
It should be noted that the model of

Zimmermann provides the ®rst practical method
to solve fuzzy linear programming, since it can be
solved by crisp linear programming technique. In
fact with linear membership functions, the fuzzy
problem becomes (Zimmermann, 1976)

max a

s:t: l0��x� � 1ÿ b0 ÿ �cT �x
p0

P a;

li��x� � 1ÿ �A�x�i ÿ bi
pi

P a 8i;
l0��x�; li��x�; a 2 �0; 1�:

�61�

As Linear Programming (LP) is one of the most
visited domains of Mathematical Programming,
Flexible Linear Programming (FLP) has received

Fig. 15. Geometrical approach with linear (resp. quadratic) membership function for x1 (resp. x2).
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most attention devoted to Flexible Mathematical
Programming. The simplicity and the power of the
linear model are good reasons for this particular
appeal, as well as the nice mathematical properties
of this problem.

Behringer (1981) proposed a simplex based al-
gorithm to solve a lexicographically extended lin-
ear maximin problem, which is very similar to our
problem.

First, recall that FLP is included in Convex
Programming and the theorem of the last section
are also applicable here.

The ®rst step of the discrimin algorithm con-
sists of the computation of a maximin solution to
the feasibility problem. Assuming preferences are
expressed not on all variables, we obtain the gen-
eral maximin problem:

Maximize k

�C D� �x

�y

 !
6 �b;

li�yi�P k 8i 2 IF ;

�x; �y; kP 0;

�62�

where �x 2 Rk, �y 2 Rl, n � k � l, C 2 Rm�k, D 2
Rm�l and �b 2 Rm.

Let consider linear membership functions for
left-bounded domains:

li�yi� � yi ÿ pi

qi
:

This gives the following vectors �p; �q 2 Rl.

Maximize k

C D 0

0 ÿI �q

� � �x

�y

k

0B@
1CA6 �b

�p

 !

�x; �y; kP 0;

�63�

At the optimal solution of this maximin prob-
lem, the critical constraints will be characterized in
the simplex tableau by a slack variable set to zero
and a strictly positive marginal cost (Teghem,
1996). Let a� be the optimal value of k.

See (Behringer, 1981) for a more complex and
complete procedure of selection. However, it isn't

needed to compute the whole set of critical vari-
ables, if the remaining fuzzy domains are not
modi®ed. The whole set of critical variables will be
determined in several simplex steps.

It is therefore very easy to identify critical
variables. They are characterized by a critical
constraint of the form li�yi� � �yi ÿ pi�=qi � a�.
Since the membership function is linear, the choice
of the right value for the critical variable yi is ob-
vious. yi is set to pi � qia�.

This procedure can be applied iteratively to the
problem and its successive reductions. It stops in a
®nite number of steps, since at each step the value
of some variables is determined and the number of
variables is ®nite.

6.3. Isotonic problems with fuzzy domains

A function is said to be strictly isotonic with
respect to its arguments if and only if every in-
crease in one of its arguments leads to an increase
in the function value:

f �:� is strictly isotonic

m

8u P u0; v P v0; . . . 2 R

() f �u; v; . . .� > f �u0; v0; . . .�

with at least, one strict inequality.
We will call Isotonic Flexible Constraint Sat-

isfaction Problem (I-FCSP) every numerical
problem enjoying the following characteristics.
The set of variables of X is partitioned into two
subsets X1 and X2 (i.e. X1 \X2 � ; and
X1 [X2 � X). On each variable of X1, there
exists a left-bounded ¯exible domain on R, no-
ticing that high values are preferred for these
variables. On the opposite, X2 contains the
variables with right-bounded ¯exible domains,
for which smaller values are preferred. Every
crisp constraint CNi requires that a particular
(strictly isotonic) combination of some variables
of X1 is smaller than a combination of a subset
of X2.
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In other words, the crisp constraints gave the
following form:

f �x; y; z; . . .�6 g�r; s; t; . . .�:
where f :Y � X1 ! R and g:Z � X2 ! R are two
strictly isotonic functions from subsets respectively
of X1 and X2 to R.

The class of isotonic problems di�ers from the
class of convex problems as illustrated by the next
example.

Example 2. The following small problem is non-
convex but isotonic.

max minfx=2; y=2g
xy6 1;

x� y6 2:5:

The domain is not convex, since �a � �2; 1=2�
and �b � �1=2; 2� belong to the domain, while j�a�
�1ÿ j��b doesn't for j 2 �0; 1�. It is easy to check
that the problem is isotonic. The optimal solution
is x � y � 1.

6.3.1. Minimal I-FCSP problem
Consider a problem with a single crisp con-

straint and several fuzzy constraints, which we call
a minimal I-FCSP.

De®nition 8. The crisp constraint CN will be
saturated at level a, if it holds with equality when
all its variables are replaced by one of the extremal
values of the a-cut of their ¯exible domain.

In a ®rst lemma we prove that the global con-
sistency degree of a I-FCSP problem P may al-
ways be viewed as the minimum of the consistency
degrees of minimal I-FCSP problems Pi deter-
mined by every crisp constraint CNi of P. There-
fore, solving a I-FCSP problem boils down to
solving several successive minimal I-FCSP prob-
lems. This last task is considered in a second
lemma.

Lemma 6 (Global consistency of a I-FCSP).
Consider a I-FCSP problem P as well as the set
of minimal I-FCSP problems fPigi�0;...;k it de®nes.
Namely, for each crisp constraint CNi of P, we build

Pi with this unique crisp constraint as well as with
the ¯exible domains over all variables of X. We have
then

Cons�P� � min
i

Cons�Pi�:

Proof. We have ®rst that 6

Cons�P� � sup
�x2X

8i2f1;...;kg;fi��x#Yi�6 gi��x#Zi�

min
l2f1;...;mg

l ~X k
�xk�

6 min
i2f1;...;kg

sup
�x2X

fi��x#Yi�6 gi��x#Zi�

min
l2f1;...;mg

l ~X k
�xk�

� min
i2f1;...;kg

Cons�Pi�:

Let a denote mini2f1;...;kgCons�Pi�.
We consider now the vector �y � �x1a; . . . ; xma�

where e.g. xia is the extremal value of the a-level cut
of ~X i. If we prove that �y is feasible with respect to
all crisp constraints of P, then

Cons�P�P a � min
i2f1;...;kg

Cons�Pi�

which proves the lemma.
As a matter of fact, for every crisp constraint

CNi, we have ai � Cons�Pi�P a and therefore,
�zi � �x1ai ; . . . ; xmai� is feasible:

fi��zi # Yi�6 gi��zi #Zi�:

And because of the es-convexity of the ¯exible
domains, �zi is unique.

We have that

8Xk 2 X1; xkai P xka  fi��y # Yi�6 fi��zi # Yi�;
8Xk 2 X2; xkai 6 xka  gi��y #Zi�P gi��zi #Zi�;

which leads to 8i,
fi��y # Yi�6 gi��y #Zi�:

Hence �y is feasible with respect to the crisp con-
straints of P. �

6 By �x # Y, we denote the sub-vector of �x corresponding to

the subset of variables Y.
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In other words, the consistency degree of a I-
FCSP problem is prescribed by solving each con-
straint independently from other constraints.

Let us now stress on the determination of the
values of variables linked by a unique crisp con-
straint.

Lemma 7 (Choice of values for a saturated
constraint). Let a minimal I-FCSP problem P
include the crisp constraint CN and the fuzzy
domains CFi on R for all the variables of CN. Let
Cons�P� be the degree of consistency of the
problem such that CN is saturated at level
a � Cons�P�. Then the unique best choice of values
is �x; y;w; . . ., r; s; t; . . .� such that

l ~X �x� � l ~Y �y� � � � � � l ~R�r� � l~S�s� � � � �
� Cons�P�

The uniqueness holds if Cons�P� < 1.

Proof.

Cons�P�
� max

x;y;z;...;r;s;t;...
f �x;y;z;:�6 g�r;s;t;:�

min
n
l ~X �x�; l ~Y �y�; . . . ;

l ~R�r�; l~S�s�; . . .
o
� max

u;v
u6 v

min l ~F �u�; l ~G�v�
� 	

� P� ~F 6 ~G�;
where

l ~F �u� � max
f �x;y;z;...��u

min l ~X �x�; l ~Y �y�; . . .� �;

l ~G�u� � max
g�r;t;s;...��u

min l ~R�r�; l ~T �t�; . . .� �:

The calculation of P� ~F 6 ~G� is pictured on Fig. 16.
Clearly, stating the FCSP comes down to using

the extension principle of fuzzy arithmetic, and

compute ~F � f � ~X ; ~Y ; ~Z; . . .� and ~G � g�~R; ~S; ~T ; . . .�
using fuzzy arithmetic. This is easy because f and
g are isotonic (Dubois and Prade, 1987).

The value x such that l ~X �x� � Cons�P� is un-
ique, and also for y; z; . . . and r; s; t; . . ., with
identical satisfaction degree for all domains. And it
is impossible to make a better choice.

As a matter of fact, if we want to increase one
of the degrees, e.g. l ~X �x�, we have to increase the
value of x ( ~X is a left-bounded domain). But, this
implies to reduce the value of y or z, or to increase
the value of r, s or t, in order to respect the crisp
constraint f �:�6 g�:�. Whatever our choice for
this, it will lead to a decrease in at least one of the
membership values. Therefore, the global satis-
faction degree will also decrease. �

When a problem is isotonic and the DA algo-
rithm is applied to it, the above results tell that
· At each step the set of critical variables is un-

ique. All variables involved in a minimal I-
FCSP problem Pi such that Cons�Pi� �
Cons�P� are critical.

· Cons�P� is easily obtained by solving each min-
imal I-FCSP Pi independently, and each such
Pi is easily solved using fuzzy arithmetic.

· The defuzzi®cation of critical variables gives un-
ique values.
In summary, the relevant algorithm for I-FCSP

problem is a particular instance of DA or LA.
Since at each variable instantiation, there exist no
choice for the value of the variables, this proves
that the discrimin-optimal solution is unique and is
also leximin-optimal.

6.3.2. Scheduling problem
The project scheduling problem can be de-

scribed as a I-FCSP problem, although the classi-
cal representation of its constraints (28)±(30) does
not ful®l the requirements of this particular
framework.

As a matter of fact, the scheduling problem
may be characterized by a set of crisp constraints
pertaining to all the directed paths inside the
problem graph. For every path O1; . . . ;Ok, such
that there exists a ready date s1 for O1 and a due
date dk for Ok (O1 and Ok are not necessarily dif-
ferent), we may writeFig. 16. ~F ; ~G and P� ~F 6 ~G�.
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s1 � u1 � u2 � � � � � uk 6 dk; �64�
where the starting time and the durations (ui) be-
long to X1, the set of left-bounded variables, and
the ending time belongs to X2.

In the problem solving, it is worth noticing that
the saturated constraint of the form Eq. (64) pre-
cisely describes the so-called critical path. There-
fore, the critical subset of ¯exible constraints
contains fuzzy constraints on starting and ending
times as well as durations.

For comparison, we study the example given in
(Fargier, 1994). It is a Jobshop problem (5 tasks ±
3 machines) (see Table 1). The ready dates, the
durations and the due dates are ¯exible.

The capacity constraints have been transformed
into precedence ones, by a Branch and Bound

procedure. In this case, the procedure gives a se-
quencing for the operations (Table 2) which is
min-optimal. This sequencing has to be instanti-
ated, with respect to durations and starting times
obeying the ¯exible constraints. We have therefore
a ¯exible project scheduling to solve.

The precedence graph is depicted on Fig. 17.
The global satisfaction degree is 1

3
and the crit-

ical path goes through d1 ± e2 ± c2 ± c3. By the
one-step constraint propagation, based on the core

Table 1

Scheduling example

Task Ready date Due date Operation Duration Machine

A (0, 5, 1, 1) (ÿ1, ÿ1, 20, 24) a1 (4, 5, 1, 1) 1

a2 (3, 4, 1, 1) 2

B (0, 5, 1, 1) (ÿ1, ÿ1, 20, 24) b1 (2, 3, 1, 1) 2

b2 (1, 2, 1, 1) 1

C (0, 5, 1, 1) (ÿ1, ÿ1, 24, 30) c1 (2, 3, 1, 1) 1

c2 (8, 9, 1, 1) 3

c3 (4, 5, 1, 1) 2

D (0, 5, 1, 1) (ÿ1, ÿ1, 24, 30) d1 (7, 8, 1, 1) 3

d2 (8, 9, 1, 1) 1

E (0, 5, 1, 1) (ÿ1, ÿ1, 24, 30) e1 (0, 1, 1, 1) 2

e2 (6, 7, 1, 1) 3

e3 (7, 8, 1, 1) 1

e4 (2, 3, 1, 1) 3

Fig. 17. The precedence graph related to the example from Fargier (1994). The critical path is drawn in bold.

Table 2

Given sequencing for the example

1 a1 ÿ b2 ÿ c1 ÿ d2 ÿ e3

2 b1 ÿ e1 ÿ a2 ÿ c3

3 d1 ÿ e2 ÿ c2 ÿ e4
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of the slacks as proposed by (Fargier, 1994;
Dubois et al., 1995) we obtain the following val-
ues:

And the multi-step constraint propagation, as
we propose, builds the following solution:

The variables with an asterisk (*) have been
enhanced.

7. Conclusion

The optimization problems with ¯exible con-
straints allow the Decision Maker to locally ex-
press his preferences on values of decision-
variables. It should be stressed that we focus here
on preference modelling and not on uncertainties.
These new models are really powerful and they
meet a practical demand. But they involve some
di�cult multicriteria issues. The classically used
``conjunction order'' involves a drowning e�ect
and cannot always discriminate among solutions.

The discrimin order and the leximin order are
more discriminating. But, some additional e�ort
has to be done to obtain the optimal solutions with
respect to these orders. We propose to apply a
multi-step constraint propagation procedure. The
method has been shown to give an optimal solu-
tion of both re®ned orders. Some uniqueness the-
orems have been proven for important subclasses
of problems.

The theoretical framework developed in this
paper is indeed wide enough to include a broad
class of optimisation problems, obtained as a
¯exible generalization of the classical problems,
such as ¯exible linear programming or ¯exible
scheduling, for which the discrimin optimal solu-
tion is unique. However for discrete combinato-

Variable Value Satisfaction degree

Start of A 1.76 0.35
Start of B (*) 3.4 0.68
Start of C 7.47 1
Start of D 1.66 0.33
Start of E 5.75 1
End of A 10.37 1
End of B 7.47 1
End of C 28 0.33
End of D 18.1 1
End of E 27.8 0.35

Variable Value Satisfaction degree

Start of A 1.76 0.35
Start of B (*) 2.35 0.47
Start of C 7.47 1
Start of D 1.66 0.33
Start of E 5.75 1
End of A 10.37 1
End of B 7.47 1
End of C 28 0.33
End of D 18.1 1
End of E 27.8 0.35

Duration of a1 4.35 0.35
Duration of a2 4 1
Duration of b1 (*) 2.47 0.47
Duration of b2 1.36 0.35
Duration of c1 2.35 0.35
Duration of c2 8.3 0.33
Duration of c3 4.4 0.33
Duration of d1 7.34 0.33
Duration of d2 8.28 0.35
Duration of e1 (*) 0.62 0.62
Duration of e2 6.3 0.33
Duration of e3 10.4 0.35
Duration of e4 2.3 0.35

Variable Value Satisfaction degree

Duration of a1 4.35 0.35
Duration of a2 4 1
Duration of b1 (*) 2.68 0.68
Duration of b2 1.36 0.35
Duration of c1 2.35 0.35
Duration of c2 8.3 0.33
Duration of c3 4.4 0.33
Duration of d1 7.34 0.33
Duration of d2 8.28 0.35
Duration of e1 (*) 1 1
Duration of e2 6.3 0.33
Duration of e3 10.4 0.35
Duration of e4 2.3 0.35
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rial problems, this uniqueness is far from war-
ranted.
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