
On the complexity of heterogeneous
multidimensional quantitative games
Véronique Bruyère1, Quentin Hautem∗1, and Jean-François
Raskin†2

1 Département d’informatique, Université de Mons (UMONS),
Mons, Belgium

2 Département d’informatique, Université Libre de Bruxelles (U.L.B.),
Brussels, Belgium

Abstract
We study two-player zero-sum turn-based games played on multidimensional weighted graphs
with heterogeneous quantitative objectives. Our objectives are defined starting from the measures
Inf, Sup, LimInf, and LimSup of the weights seen along the play, as well as on the window mean-
payoff (WMP) measure recently introduced in [6]. Whereas multidimensional games with Boolean
combinations of classical mean-payoff objectives are undecidable [19], we show that CNF/DNF
Boolean combinations for heterogeneous measures taken among {WMP, Inf, Sup, LimInf, LimSup}
lead to EXPTIME-completeness with exponential memory strategies for both players. We also
identify several interesting fragments with better complexities and memory requirements, and
show that some of them are solvable in PTIME.
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1 Introduction

Two-player zero-sum turn-based games played on graphs are an adequate mathematical
model to solve the reactive synthesis problem [18]. To model systems with resource con-
straints, like embedded systems, games with quantitative objectives have been studied, e.g.
mean-payoff [22] and energy games [3]. In [5, 21, 6, 20], multidimensional games with con-
junctions of several quantitative objectives have been investigated, such that all dimensions
use the same measure. In this paper, we initiate the study of games played on multidimen-
sional weighted graphs such the objectives use different measures over the dimensions. As
an example of conjunction of heterogeneous measures, you may want to design a system
with (φ1) a good window mean-response time (MP), that (φ2) avoids too slow reaction after
a finite prefix (LimInf), and that (φ3) does not exceed some peak energy consumption in
the long run (LimSup). Now, assume that you want to ensure such a conjunction only un-
der the hypothesis that (ψ) the frequency of requests from the environment is below some
threshold (expressible as an MP). Such a property ψ → (φ1 ∧ φ2 ∧ φ3) is equivalent to the
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09:2 Heterogeneous multidimensional quantitative games

DNF Boolean combination of heterogeneous measures ¬ψ ∨ (φ1 ∧ φ2 ∧ φ3). We claim that
such heterogeneous quantitative games provide a general, natural, and expressive model for
the reactive synthesis problem and that the complexity of solving these games needs to be
studied. Knowing that Boolean combination of MP objectives is undecidable [19], we have
initiated this study with the omega-regular measures Inf, Sup, LimInf and LimSup, and the
recent interesting window version WMP of MP introduced in [6].

While the MP measure considers the long-run average of the weights along the whole play,
the WMP measure considers weights over a local window of a given size sliding along the play.
A WMP objective asks now to ensure that the average weight satisfies a given constraint
over every bounded window. This is a strengthening of the MP objective: winning for the
WMP objective implies winning for the MP objective. Also, any finite-memory strategy that
forces an MP measure larger than threshold ν + ε (for any ε > 0), also forces the WMP
measure to be larger than ν provided that the window size is taken large enough. Aside
from their naturalness, WMP objectives are algorithmically more tractable than classical MP
objectives, see [6, 14]. First, unidimensional WMP games can be solved in polynomial time
when working with polynomial windows [6] while only pseudo-polynomial time algorithms
are known for MP games [22, 4]. Second, multidimensional games with Boolean combinations
of MP objectives are undecidable [19], whereas we show here that games with Boolean
combinations of WMP objectives and other classical objectives are decidable.

We show in this paper (see also Table 1) that the problem is EXPTIME-complete for
CNF/DNF Boolean combinations of heterogeneous measures taken among {WMP, Inf, Sup,
LimInf, LimSup}. We provide a detailed study of the complexity when the Boolean combina-
tion of the measures is replaced by an intersection, as it is often natural in practice to consider
conjunction of constraints. EXPTIME-completeness of the problem still holds for the inter-
section of measures in {WMP, Inf, Sup, LimInf, LimSup}, and we get PSPACE-completeness
when WMP measure is not considered. To avoid EXPTIME-hardness, we consider fragments
where there is at most one occurrence of a WMP measure. In case of intersections of one
WMP objective with any number of objectives of one kind among {Inf, Sup, LimInf, LimSup}
(this number must be fixed in case of objectives Sup), we get P-completeness when dealing
with polynomial windows, a reasonable hypothesis in practical applications. In case of no
occurrence of WMP measure, we propose several refinements (on the number of occurrences
of the other measures) for which we again get P-completeness. Some of our results are
obtained by reductions to known qualitative games but most of them are obtained by new
algorithms that require new ideas to handle in an optimal way one WMP objective together
with qualitative objectives such as safety, reachability, Büchi and coBüchi objectives. In our
results, we also provide a careful analysis of the memory requirements of winning strategies
for both players.1

Let us mention some related work. Multidimensional mean-payoff games have been
studied in [20]. Conjunction of lim inf mean-payoff (MP) objectives are coNP-complete,
conjunctions of lim sup MP (MP) objectives are in NP∩ coNP. The general case of Boolean
combinations of MP and MP is undecidable [19]. Multidimensional energy games with un-
fixed initial credit are coNP-complete [5, 8], and with fixed initial credit, they are 2EXPTIME-
complete [16]. Generalization of these games with imperfect information have been studied
in [9] and shown undecidable. The WMP measure was first introduced in [6]. Unidimensional
WMP games can be solved in polynomial time for polynomial windows, and multidimen-
sional WMP games are EXPTIME-complete. In [6], the WMP measure is considered on all

1 All details of this paper can be found in the arXiv version arXiv:1511.08334v2.



V.Bruyère, Q.Hautem and J.-F. Raskin 09:3

Objectives Complexity class Player 1 memory Player 2 memory

(CNF/DNF) Boolean combination of MP, MP [19] Undecidable infinite infinite
(CNF/DNF) Boolean combinaison of

EXPTIME-completeWMP, Inf, Sup, LimInf, LimSup (*)
exponentialIntersection of WMP, Inf, Sup, LimInf, LimSup (*)

Intersection of WMP [6]
Intersection of Inf, Sup, LimInf, LimSup (*) PSPACE-complete

and refinements (*) See Table 4
Intersection of MP [20] coNP-complete infinite

memorylessIntersection of MP [20] NP ∩ coNP
Unidimensional MP [22, 4] memoryless
Unidimensional WMP [6] P-complete pseudo-polynomial

WMP ∩ Ω with Ω ∈ {Inf, Sup, LimInf, LimSup} (*) (Polynomial windows)
Unidimensional Inf, Sup, LimInf, LimSup [13] P-complete memoryless

Table 1 Overview - Our results are marked with (*)

the dimensions, with no conjunction with other measures like Inf, Sup, LimInf, and LimSup,
and the case of Boolean combinations of WMP objectives is not investigated. Games with
objectives expressed in fragments of LTL have been studied in [1]. Our result that games
with intersection of objectives in {Inf, Sup, LimInf, LimSup} are in PSPACE can be obtained
by reduction to some of these fragments. But we here propose a simple proof adapted to
our context, that allows to identify several polynomial fragments. Our other results cannot
be obtained in this way and require new techniques and new algorithmic ideas.

2 Preliminaries

We consider turn-based two-player games on a finite multidimensional weighted directed
graph. A multi-weighted game structure is a tuple G = (V1, V2, E, w) where (i) (V,E) is a
finite directed graph, with V the set of vertices and E ⊆ V × V the set of edges such that
for each v ∈ V , there exists (v, v′) ∈ E for some v′ ∈ V (no deadlock), (ii) (V1, V2) forms
a partition of V such that Vp is the set of vertices controlled by player p ∈ {1, 2}, and (iii)
w : E → Zn is the n-dimensional weight function that associates a vector of n weights to
each edge, for some n ≥ 1. We also simply say that G is a (n-weighted) game structure.

The opponent of player p ∈ {1, 2} is denoted by p. A play of G is an infinite sequence
ρ = ρ0ρ1 . . . ∈ V ω such that (ρk, ρk+1) ∈ E for all k ∈ N. Histories of G are finite sequences
ρ = ρ0 . . . ρi ∈ V + defined in the same way. We denote by Plays(G) the set of plays in G and
by Hist(G) the set of histories. Given a play ρ = ρ0ρ1 . . ., the history ρk . . . ρk+i is denoted
by ρ[k,k+i]. We denote by wm the projection of function w on the mth dimension, and by
W the maximum weight in absolute value on all dimensions.

Strategies, objectives and winning sets

A strategy σ for player p ∈ {1, 2} is a function σ : V ∗Vp → V assigning to each history
hv ∈ V ∗Vp a vertex v′ = σ(hv) such that (v, v′) ∈ E. It is memoryless if σ(hv) = σ(h′v) for
all histories hv, h′v ending with the same vertex v, that is, σ is a function σ : Vp → V . It
is finite-memory if σ(hv) only needs finite memory of the history hv (recorded by a Moore
machine). Given a strategy σ of player p ∈ {1, 2}, we say that a play ρ of G is consistent
with σ if ρk+1 = σ(ρ0 . . . ρk) for all k ∈ N such that ρk ∈ Vp. A history consistent with a
strategy is defined similarly. Given an initial vertex v0, and a strategy σp of each player p,
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09:4 Heterogeneous multidimensional quantitative games

we have a unique play that is consistent with both strategies, called the outcome of (σ1, σ2)
from v0, and denoted by Out(v0, σ1, σ2).

An objective for player p is a set of plays Ω ⊆ Plays(G); it is qualitative (it only depends
on the graph (V,E)), or quantitative (it also depends on the weight function w). A play ρ
is winning for player p if ρ ∈ Ω, and losing otherwise (i.e. winning for player p). We thus
consider zero-sum games such that the objective of player p is Ω = Plays(G)\Ω, i.e., opposite
to the objective Ω of player p. In the following, we always take the point of view of player 1
by supposing that Ω is his objective, and we denote by (G,Ω) the corresponding game. A
strategy σp for player p is winning from an initial vertex v0 if Out(v0, σp, σp) ∈ Ω for all
strategies σp of player p. Vertex v0 is also called winning for player p and the winning set
WinΩ

p is the set of all his winning vertices. Similarly the winning vertices of player p are
those from which p can ensure his objective Ω against all strategies of player p, and WinΩ

p

is his winning set. The game is said determined when WinΩ
p ∪WinΩ

p = V . It is known that
every game with Borel objectives is determined [17].

Qualitative objectives

Let G = (V1, V2, E) be an unweighted game structure. Given a set U ⊆ V , classical qualitat-
ive objectives are the following ones. A reachability objective Reach(U) asks to visit a vertex
of U at least once. A safety objective Safe(U) asks to visit no vertex of V \U , that is, to avoid
V \U . A Büchi objective Buchi(U) asks to visit a vertex of U infinitely often. A co-Büchi ob-
jective CoBuchi(U) asks to visit no vertex of V \U infinitely often. Let U1, . . . , Ui be a family
of subsets of V . A generalized reachability objective GenReach(U1, . . . , Ui) = ∩ik=1Reach(Uk)
asks to visit a vertex of Uk at least once, for each k ∈ {1, . . . , i}. A generalized Büchi ob-
jective GenBuchi(U1, . . . , Ui) = ∩ik=1Buchi(Uk) asks to visit a vertex of Uk infinitely often,
for each k ∈ {1, . . . , i}. All these objectives can be mixed by taking their intersection.

A game with an objective Ω is just called Ω game. As all the previous objectives Ω are
ω-regular and thus Borel, the corresponding games (G,Ω) are determined.

Quantitative objectives

For a 1-weighted game structure G = (V1, V2, E, w) (with dimension n = 1), we now intro-
duce quantitative objectives defined by some classical measure functions f : Plays(G)→ Q.
Such a function f associates a rational number to each play ρ = ρ1ρ2 . . . according to the
weights w(ρk, ρk+1), k ≥ 0, and can be one among the next functions. The Inf measure
Inf(ρ) = infk≥0(w(ρk, ρk+1)) (resp. the Sup measure Sup(ρ) = supk≥0(w(ρk, ρk+1))) defines
the minimum (resp. maximum) weight seen along the play. The LimInf measure LimInf(ρ) =
lim inf
k→∞

(w(ρk, ρk+1)) (resp. the LimSup measure LimSup(ρ) = lim sup
k→∞

(w(ρk, ρk+1))) defines

the mininum (resp. maximum) weight seen infinitely often along the play.
Given such a measure function f ∈ {Inf, Sup, LimInf, LimSup}, a bound ν ∈ Q, and a

relation ∼ ∈ {>,≥, <,≤}, we define the objective Ω = f(∼ ν) such that

f(∼ ν) = {ρ ∈ Plays(G) | f(ρ) ∼ ν}. (1)

We are also interested in the next two measure functions defined on histories instead of
plays. Let ρ = ρ0 . . . ρi ∈ Hist(G). The total-payoff (TP) measure TP(ρ) = Σi−1

k=0w(ρk, ρk+1)
defines the sum of the weights seen along ρ. The mean-payoff (MP) measure MP(ρ) =
1
iTP(ρ) defines the mean of the weights seen along ρ. The second measure can be extended
to plays ρ as either MP(ρ) = lim infk≥0 MP(ρ[0,k]) or MP(ρ) = lim supk≥0 MP(ρ[0,k]). The
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MP measure on histories allows to define the window mean-payoff objective, a new ω-regular
objective introduced in [6]: given a bound ν ∈ Q, a relation ∼ ∈ {>,≥, <,≤}, and a window
size λ ∈ N\{0}, the objective WMP(λ,∼ ν)2 is equal to

WMP(λ,∼ ν) = {ρ ∈ Plays(G) | ∀k ≥ 0,∃l ∈ {1, . . . , λ},MP(ρ[k,k+l]) ∼ ν}. (2)

The window mean-payoff objective asks that the average weight becomes ∼ ν inside a local
bounded window for all positions of this window sliding along the play, instead of the classical
mean-payoff objective asking that the long run-average MP(ρ) (resp. MP(ρ)) is ∼ ν. This
objective is a strengthening of the mean-payoff objective.

Given a n-weighted game structure G (with n ≥ 1), we can mix objectives of (1) and
(2) by fixing one such objective Ωm for each dimension m, and taking the intersection
∩nm=1Ωm. More precisely, given a vector (∼1 ν1, . . . ,∼n νn), each objective Ωm uses a
measure function based on the weight function wm; Ωm is either of the form f(∼m νm) with
f ∈ {Inf, Sup, LimInf, LimSup}, or of the form WMP(λ,∼m νm) for some window size λ (this
size can change with m).

As for qualitative objectives, we use the shortcut Ω game for a game with quantitative
objective Ω. For instance an Inf(∼ ν) game is a 1-weighted game with objective Inf(∼ ν), a
LimSup(∼1 ν1)∩WMP(λ,∼2 ν2)∩Inf(∼3 ν3) game is a 3-weighted game with the intersection
of a LimSup(∼1 ν1) objective on the first dimension, a WMP(λ,∼2 ν2) objective on the
second one, and an Inf(∼3 ν3) objective on the third one. We sometimes abusively say that
Ω = ∩nm=1Ωm with Ωm ∈ {WMP, Inf, Sup, LimInf, LimSup} without mentioning the used
relations, bounds and window sizes. It is implicitly supposed that Ωm deals with the mth

component of the weight function.

3 Problem

In this paper, we want to study the following problem.

I Problem 1. Let (G,Ω) be a multi-weighted game with dimension n ≥ 1 and Ω = ∩nm=1Ωm
such that each Ωm ∈ {WMP, Inf, Sup, LimInf, LimSup}. Can we compute the winning sets
WinΩ

1 and WinΩ
2 ? If yes what is the complexity of computing these sets and how (memoryless,

finite-memory, general) are the winning strategies of both players? Given such a game (G,Ω)
and an initial vertex v0, the synthesis problem asks to decide whether player 1 has a winning
strategy for Ω from v0 and to build such a strategy when it exists.

I Remark 1. (i) In this problem, we can assume that the bounds used in the vector (∼1
ν1, . . . ,∼n νn) are such that (ν1, . . . , νn) = (0, . . . , 0). Indeed, suppose that νm = a

b with
a ∈ Z and b ∈ N\{0}, then replace the mth component wm of the weight function w by
b · wm − a. (ii) Moreover notice that if νm = 0 and Ωm = WMP, then MP(ρ[k,k+l]) can be
replaced by TP(ρ[k,k+l]) in (2). (iii) Finally, the vector (∼1 0, . . . ,∼n 0) can be supposed
to be equal to (≥ 0, . . . ,≥ 0). Indeed strict inequality > 0 (resp. < 0) can be replaced by
inequality ≥ 1 (resp. ≤ −1), and inequality ≤ 0 can be replaced by ≥ 0 by replacing the
weight function by its negation and the measure Inf (resp. Sup, LimInf, LimSup, TP) by Sup
(resp. Inf, LimSup, LimInf, TP).
From now on, we only work with vectors (≥ 0, . . . ,≥ 0) and we no longer mention symbol
≥. Hence, as an example, Inf(≥ 0) and WMP(2,≥ 0) are replaced by Inf(0) and WMP(2, 0);
and when the context is clear, we only mention Inf and WMP.

2 This objective is called “direct fixed window mean-payoff” in [6] among several other variants.
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v0 v1v2

(−1,−1,−1)

(2,−1,−1)(1,−1,0)

(−1,−1,0)
(0,−1,0) (−1,0,−1)

Figure 1 A multi-weighted two-player
game

The games (G,Ω) of Problem 1 are determ-
ined since all the objectives Ω are ω-regular.
Let us give an example where we mix quantit-
ative objectives.

I Example 1. Consider the 3-weighted game
structure of Figure 1. In all examples in this
paper, we assume that circle (resp. square) ver-
tices belong to player 1 (resp. player 2). Let Ω = WMP(3, 0) ∩ Sup(0) ∩ LimSup(0) be the
objective of player 1. We recall that by definition of Ω, we look at the WMP (resp. Sup,
LimSup) objective on the first (resp. second, third) dimension. Let us show that v0 is a win-
ning vertex for player 1. Let σ1 be the following strategy of player 1 from v0: go to v1, take
the self loop once, go back to v0 and then always go to v2. Notice that ρ ∈ v0v1v1v0{v2, v0}ω.
As player 1 forces ρ to begin with v0v1v1, he ensures that Sup(ρ) ≥ 0 on the second com-
ponent. Moreover as ρ visits infinitely often edge (v2, v2) or (v2, v0), player 1 also ensures to
have LimSup(ρ) ≥ 0 on the third component. Finally, we have to check that ρ ∈WMP(3, 0)
with respect to the first component, that is (by Remark 1), for all k, there exists l ∈ {1, 2, 3}
such that TP(ρ[k,k+l]) ≥ 0. For k = 0 (resp. k = 1, k = 2, k = 3) and l = 3 (resp. l = 2,
l = 1, l = 1), we have TP(ρ[k,k+l]) ≥ 0. Now, from position k = 4, the sum of weights
is non-negative in at most 2 steps. Indeed, either player 2 takes the self loop (v2, v2) or
he goes to v0 where player 1 goes back to v2. Therefore, for each k ≥ 4, either ρk = v0
and TP(ρ[k,k+l]) ≥ 0 with l = 1, or ρk = v2 and TP(ρ[k,k+l]) ≥ 0 with l = 1 if ρk+1 = v2,
and with l = 2 otherwise. It follows that v0 ∈ WinΩ

1 . The strategy σ1 needs memory:
indeed, player 1 needs to remember if he has already visited the edge (v1, v1) as this is the
only edge visiting a non-negative weight for the Sup objective. Finally, one can show that
WinΩ

1 = {v0, v1} and WinΩ
2 = {v2}.

I Remark 2. In Problem 1, the vector (∼1 ν1, . . . ,∼n νn) can be assumed equal to
(≥ 0, . . . ,≥ 0) by Remark 1. Thus an Inf (resp. Sup, LimInf, LimSup) objective is nothing
else than a safety (resp. reachability, co-Büchi, Büchi) objective, and conversely. More
precisely, every game (G,Ω = ∩nm=1Ωm) with each Ωm ∈ {WMP, Inf, Sup, LimInf, LimSup}
can be polynomially reduced to a game (G′,Ω′ = ∩nm=1Ω′m) such that each Ω′m belongs
to {WMP, Safe,Reach,CoBuchi,Buchi}, and with |V | + |E| vertices and 2 · |E| edges. This
reduction is obtained by splitting each edge into two consecutive edges and decorating ac-
cordingly the new intermediate vertex to transfer the objectives. The WMP objectives in G
are now WMP objectives in G′ with a doubled window size. There also exists a polynomial
reduction in the other direction, but without WMP objectives, and keeping the same game
structure G′ = G. These two game reductions will be used throughout this paper.

Some well-know properties

Table 2 gathers several well-known results about qualitative objectives in an unweighted
game structure and Theorem 2 states the known results about the WMP objective. In this
paper, the complexity of the algorithms is expressed in terms of the size |V | and |E| of
the game structure G, the maximum weight W (in absolute value) and the dimension n of
the weight function when G is weighted, the number i of objectives in an intersection of
objectives3, and the window size λ.

3 Notice that i = n for the objectives considered in Problem 1.
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Objective Complexity class Algorithmic complexity Player 1 memory Player 2 memory
Reach/Safe [2, 13, 15] P-complete O(|V |+ |E|) memoryless memoryless

Buchi/CoBuchi [7, 11, 15] P-complete O(|V |2) memoryless memoryless
GenReach [12] PSPACE-complete O(2i · (|V |+ |E|)) exponential memory exponential memory

GenReach (i fixed) [12] P-complete O(2i · (|V |+ |E|)) polynomial memory polynomial memory
GenBuchi [10] P-complete O(i · |V | · |E|) polynomial memory memoryless

Table 2 Overview of some known results for qualitative objectives (i is the number of objectives
in the intersection of reachability/Büchi objectives)

I Theorem 2. [6]4 Let (G,Ω) be an n-weighted game such that Ω = ∩nm=1Ωm with Ωm =
WMP. The synthesis problem is EXPTIME-complete (with an algorithm in O(λ4n ·|V |2 ·W 2n)
time), exponential memory strategies are sufficient and necessary for both players. This
problem is already EXPTIME-hard when n = 2.

When n = 1, the synthesis problem is decidable in O(λ·|V |2 ·|E|·dlog2(λ·W )e) time, both
players require finite-memory strategies, and memory in O(λ2 ·W ) (resp. in O(λ2 ·W · |V |))
is sufficient for player 1 (resp. player 2). Moreover, if λ is polynomial in the size of the
game, then the synthesis problem is P-complete.

Solution to Problem 1 and extensions

We here give the solution to Problem 1. We show that the synthesis problem is EXPTIME-
complete and that exponential memory strategies are necessary and sufficient for both play-
ers:

I Theorem 3. Let (G,Ω) be an n-weighted game such that Ω = ∩nm=1Ωm with Ωm ∈ {WMP,
Inf, Sup, LimInf, LimSup}. The synthesis problem is EXPTIME-complete (with an algorithm
in O(|V | · |E| · (λ2 · W )2n) time), and exponential memory strategies are necessary and
sufficient for both players.

Proof. First, we show that the synthesis problem is in EXPTIME. To this end, we use an
exponential reduction from [6] dealing with WMP objectives, that we adapt in a way to also
deal with the Inf, Sup, LimInf and LimSup objectives. In this reduction, a game (G′,Ω′)
with Ω′ = ∩nm=1Ω′m, is constructed such that for all m, Ω′m ∈ {Buchi,CoBuchi}, and the
size of the game is exponential with O(|V | · (λ2 ·W )n) vertices and O(|E| · (λ2 ·W )n) edges.
Recall that the intersection of co-Büchi objectives is a co-Büchi objective. It follows that G′
is a generalized Büchi ∩ co-Büchi game. Then, by Table 2 (last item), we can compute the
winning sets of both players in G in time O(n2 ·|V ′|·|E′|) = O(|V |·|E|·(λ2 ·W )2n). Moreover,
since polynomial memory strategies are sufficient in G′, exponential memory strategies are
sufficient in G. Finally, the EXPTIME-hardness and the necessity of exponential memory
follow from Theorem 2. J

The previous theorem and proof can be generalized to Boolean combinations in DNF and
CNF forms (instead of intersections) of objectives in {WMP, Inf, Sup, LimInf, LimSup}. One
can assume w.l.o.g. that the dimension of the game is equal to the number of objectives
that appear in the Boolean combination (by making copies of components of the weight
function). The following theorem sums up the latter result, and then discuss the general
Boolean combinations.

4 The memory requirements have been here correctly stated.
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I Theorem 4. Let (G,Ω) be an nd-weighted game such that Ω = ∪dk=1 ∩nm=1 Ωk,m with
Ωk,m ∈ {WMP, Inf, Sup, LimInf, LimSup}. The synthesis problem is EXPTIME-complete
(with an algorithm in O(nd(d+2) ·|V |d+1 ·|E|·(λ2 ·W )nd(d+2)) time), and exponential memory
strategies are sufficient and necessary for both players. The same result holds when Ω =
∩dk=1 ∪nm=1 Ωk,m.

I Remark 3. (i) Whereas the synthesis problem for Boolean combinations of MP and MP is
undecidable [19], it is here decidable for Boolean combinations of objectives in {WMP, Inf,
Sup, LimInf, LimSup}. Furthermore, one can show that this problem is in EXPSPACE using
a result of [1]. (ii) Note that when the number of dimensions is fixed (n in Theorem 3, nd
in Theorem 4), the synthesis problem is still EXPTIME-hard by Theorem 2.

4 Efficient fragment with one WMP objective

In the previous section, we considered games (G,Ω) with Ω = ∩nm=1Ωm being any intersec-
tion of objectives in {WMP, Inf, Sup, LimInf, LimSup}. We here focus on a particular class of
games in a way to achieve a lower complexity for the synthesis problem. We do not consider
the case where at least two Ωm are WMP objectives since the synthesis problem is already
EXPTIME-hard in this case (by Theorem 2). We thus focus on the intersections of exactly
one5 objective WMP and any number of objectives of one kind in {Inf, Sup, LimInf, LimSup}.
Note that this number must be fixed in the case of objectives Sup to avoid PSPACE-hardness
in this case (see Table 2, third row). For the considered fragment, we show that the syn-
thesis problem is P-complete for polynomial windows. The latter assumption is reasonable
in practical applications where one expects a positive mean-payoff in any “short” window
sliding along the play.

I Theorem 5. Let (G,Ω) be an n-weighted game with objective Ω = Ω1 ∩ Γ for player 1
such that Ω1 = WMP and Γ = ∩nm=2Ωm such that ∀mΩm = Inf (resp. ∀mΩm = LimInf,
∀mΩm = LimSup, {∀mΩm = Sup and n is fixed}). Then the synthesis problem is decidable
(in time polynomial in the size of the game, λ and dlog(W )e). In general, both players
require finite-memory strategies, and pseudo-polynomial memory is sufficient for both play-
ers. Moreover, when λ is polynomial in the size of the game then the synthesis problem is
P-complete.

To prove this theorem, we use the first reduction of Remark 2 to obtain a game (G′,Ω′1∩
Γ′) (with Γ′ = ∩nm=2Ω′m) such that Ω′1 = WMP and ∀mΩ′m ∈ {Reach, Safe, Buchi, CoBuchi}.
Recall that the intersection of safety (resp. co-Büchi) objectives is a safety (resp. co-Büchi)
objective. We thus have to study WMP ∩ Safe (resp. WMP ∩ Reach, WMP ∩ GenReach
(with n fixed), WMP ∩ Buchi, WMP ∩ GenBuchi, WMP ∩ CoBuchi) games. Table 3 gives an
overview of the obtained properties; it indicates time polynomial in the size of the game, λ
and dlog(W )e, and pseudo-polynomial6 memories for both players. We then get Theorem 5
such that the algorithmic complexity and the memory requirements are those of Table 3
with |V | replaced by |V | + |E|. Notice that finite memory is necessary for both players by
Theorem 2. When λ is polynomial in size of the game, the complexity becomes polynomial,
and the synthesis problem is P-hard (see Table 2).

5 The case with no WMP objective will be treated in the next section.
6 Having pseudo-polynomial memories is not really a problem since the proofs show that the strategies
can be efficiently encoded by programs using two counters, as in the case of Theorem 2.
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Objective Algorithmic complexity Player 1 memory Player 2 memory
WMP ∩ Safe O(λ · |V |2 · |E| · dlog(λ ·W )e) O(λ2 ·W ) O(λ2 ·W · |V |)

WMP ∩ Reach O(λ · |V |2 · |E| · dlog(λ ·W )e) O(λ2 ·W · |V |) O(λ2 ·W · |V |)
WMP ∩ GenReach (i fixed) O(λ · 23i · |V |2 · |E| · dlog(λ ·W )e) O(λ2 · 2i ·W · |V |) O(λ2 · 2i ·W · |V |)

WMP ∩ Buchi O(λ · |V |3 · |E| · dlog(λ ·W )e) O(λ2 ·W · |V |) O(λ2 ·W · |V |2)
WMP ∩ GenBuchi O(λ · i4 · |V |3 · |E| · dlog(λ ·W )e) O(λ2 ·W · i · |V |) O(λ2 ·W · i2 · |V |2)
WMP ∩ CoBuchi O(λ · |V |3 · |E| · dlog(λ ·W )e) O(λ2 ·W · |V |2) O(λ2 ·W · |V |)

Table 3 Overview of the fragment (i is the number of objectives in the intersection of Reach/Büchi
objectives)

Apart the objective Ω = WMP(λ, 0) ∩ Safe(U), solving the games of Table 3 is difficult
and requires to develop some new tools generalizing the classical concept of p-attractor while
dealing with good windows (the p-attractor of a set U is the set of vertices from which player
p has a strategy to reach U against any strategy of player p). To this end, let us introduce
some properties of windows.

Properties of windows

. . . ρk . . . ρk+l . . .
≥ 0 ≥ 0

≥ 0

Figure 2 A λ-window at position k that is inductively-
closed in k + l

Let us focus on the WMP(λ, 0) ob-
jective (with TP in (2)) and introduce
some terminology. Let ρ = ρ0ρ1 . . .

be a play. A λ-window at position k

is a window of size λ placed along ρ
from k to k + λ. If there exists l ∈
{1, . . . , λ} such that TP(ρ[k,k+l]) ≥ 0,
such a λ-window at position k is called good or closed in k + l (to specify index l), otherwise
it is called bad. Moreover if l is the smallest index such that TP(ρ[k,k+l]) ≥ 0, we say it is
first-closed in k + l. An interesting property is the next one: a λ-window at position k is
inductively-closed in k + l if it is closed in k + l and for all k′ ∈ {k + 1, . . . , k + l − 1}, the
λ-window at position k′ is also closed in k + l (see Figure 2). A λ-window at position k that
is first-closed in k + l is inductively-closed in k + l. The next lemma will be useful:

I Lemma 6. A play ρ is winning for WMP(λ, 0) iff there exists a sequence (ki)i≥0 with
k0 = 0 such that ∀i, ki+1 − ki ∈ {1, . . . , λ}, and the λ-window at position ki is inductively-
closed in ki+1.

When such a sequence (ki)i≥0 exists for a play ρ, it is called a λ-good decomposition of ρ. We
extend this notion to histories ρ = ρ0ρ1 . . . ρk as follows. A finite sequence (ki)ji=0 is a λ-good
decomposition of ρ if k0 = 0, kj = k, for each i ∈ {0, . . . j−1} we have ki+1−ki ∈ {1, . . . , λ},
and the λ-window at position ki is inductively-closed in ki+1. has a λ-good decomposition
of size j = 0. From now on, a λ-window is simply called a window.

Two new objectives

Let us now introduce our new tools. They are based on the following new objectives.

I Definition 7. Let G = (V1, V2, E, w) be a 1-weighted game structure, U ⊆ V be a set of
vertices, and λ ∈ N \ {0} be a window size. We consider the next two sets of plays:

ICWEndλ(U) = { ρ ∈ Plays(G) | ∃l ∈ {1, . . . , λ}, ρl ∈ U , and the window at position 0 is
inductively-closed in l },
GDEndλ(U) = { ρ ∈ Plays(G) | ∃l ≥ 0, ρl ∈ U and ρ[0,l], has a λ-good decomposition }.
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Notice that the plays of ICWEndλ(U) are the particular plays of GDEndλ(U) such that the
λ-good decomposition of ρ[0,l] has size 1. Hence ICWEndλ(U) ⊆ GDEndλ(U). We propose
two algorithms, Algorithms 1 and 2, one for computing the winning set of player 1 for the
objective ICWEndλ(U), and the other for the objective GDEndλ(U).

Algorithm 1 ICWEnd
Require: 1-weighted game structure G = (V1, V2, E, w), set U ⊆ V , window

size λ ∈ N \ {0}
Ensure: WinICWEndλ(U)

11: for all v ∈ V do
2: if v ∈ U then
3: C0(v)← 0
4: else
5: C0(v)← −∞
6: for all l ∈ {1, . . . , λ} do
7: for all v ∈ V1 do
8: Cl(v)← max(v,v′)∈E{w(v, v′)⊕max{C0(v′), Cl−1(v′)}}
9: for all v ∈ V2 do
10: Cl(v)← min(v,v′)∈E{w(v, v′)⊕max{C0(v′), Cl−1(v′)}}
11: return {v ∈ V | Cλ(v) ≥ 0}

Algorithm 1 uses the
operator ⊕ defined as fol-
lows. Let a, b ∈ Z∪ {−∞},
then a ⊕ b = a + b if
a + b ≥ 0, and −∞ oth-
erwise. With this defini-
tion, either a ⊕ b ≥ 0 or
a ⊕ b = −∞. Algorithm 1
intuitively works as follows.
Given a vertex v and a
number i of steps, the value
Ci(v) is computed iterat-
ively (from Ci−1(v)) and represents the best total payoff that player 1 can ensure in at
most i steps while closing the window from v in a vertex of U . Value −∞ indicates that the
window starting in v cannot be inductively-closed in U . The winning set of player 1 is thus
the set of vertices v for which Cλ(v) ≥ 0. This algorithm is inspired from Algorithm GoodWin
in [6] computing WinICWEndλ(U)

1 with U = V .7

I Lemma 8. Let G be a 1-weighted game structure, U be a subset of V , and λ ∈ N \ {0} be
a window size. Then Algorithm ICWEnd computes the set WinICWEndλ(U)

1 in O(λ · |V | · |E| ·
dlog2(λ ·W )e) time, and finite-memory strategies with memory linear in λ are sufficient for
both players.

We now turn to Algorithm 2 for computing the winning set of player 1 when the objective
is GDEndλ(U). It shares similarities with the classical algorithm computing the p-attractor
of U while requiring to use previous Algorithm ICWEndλ(U).

I Lemma 9. Let G be a 1-weighted game structure, U be a subset of V , and λ ∈ N \ {0} be
a window size. Then Algorithm GDEnd computes the set WinGDEndλ(U)

1 of winning vertices
of player 1 for the objective GDEndλ(U) in O(λ · |V |2 · |E| · dlog2(λ ·W )e) time, and finite-
memory strategies with memory in O(λ2 ·W · |V |) (resp. in O(λ2 ·W )) are sufficient for
player 1 (resp. player 2).

Algorithm 2 GDEnd
Require: 1-weighted game structure G = (V1, V2, E, w),

subset U ⊆ V , window size λ ∈ N \ {0}
Ensure: WinGDEndλ(U)

11: k ← 0
2: X0 ← U
3: repeat
4: Xk+1 ← Xk ∪ ICWEnd(G,Xk, λ)
5: k ← k + 1
6: until Xk = Xk−1
7: return Xk

The proof of Lemma 9 works as follows.
Let X∗ = ∪k≥0Xk be the set computed by
Algorithm GDEnd. We explain why X∗ =
WinGDEndλ(U)

1 . From v0 ∈ X∗, player 1
plays a winning strategy for the objective
ICWEndλ(Xk), and as soon as this object-
ive is realized he repeats such a strategy
for decreasing values of k until reaching U .
This strategy is winning for the objective

7 We have detected a flaw in this algorithm that has been corrected in Algorithm 1. The algorithm in [6]
wrongly computes the set of vertices from which player 1 can force to close the window in exactly l
steps (instead of at most l steps) for some l ∈ {1, . . . , λ}.
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GDEndλ(U) and it is finite-memory. Let us now consider v0 ∈ V \ X∗. As player 2 has a
winning strategy σ∗2 for the objective ICWEndλ(X∗), then for ρ = Out(v0, σ1, σ

∗
2) with σ1

being any strategy of player 1, if the window at position 0 is inductively-closed in ρl for
l ∈ {1, . . . , λ}, then necessarily ρl ∈ V \X∗. Therefore we propose the following strategy of
player 2 from v0: (1) If the current vertex v belongs to V \X∗, play the winning strategy σ∗2 .
(2) As soon as the window starting from v is first-closed in v′ in l steps with l ∈ {1, . . . , λ},
as v′ ∈ V \X∗, go back to step (1). (3) As soon as the window starting from v is bad, play
whatever. This strategy is finite-memory and it is winning for player 2 since it ensures that
the play cannot have a prefix with a λ-good decomposition ending in U .

I Example 10. Consider the game (G,Ω) depicted on Figure 3, where Ω = GDEnd2(U)
with U = {v1, v3, v4}. Let us execute Algorithm 2: X0 = U , X1 = WinICWEnd2(X0)

1 =
{v1, v2, v3, v4} and then, X2 = WinICWEnd2(X1)

1 = V . Thus all vertices in G are winning for
player 1 for the objective Ω. A winning strategy for player 1 consists in looping once in v2
and then going to v3. Indeed for any strategy of player 2, the outcome is either v0v

ω
1 or

v0v2v2v3v
ω
4 , and both outcomes admit a prefix which has a 2-good decomposition and ends

with a vertex of U .

v0

v2

v1

v3 v4

−1

0

−1
1

0
0

1

Figure 3 Objective GDEnd2(U)

v0

v2

v1

v3 v4

−1

0

−1
1

0
0

1

Figure 4 Objective WMP(2, 0) ∩ Reach(U)

Objective WMP ∩ Reach

Now that we have introduced our new tools, let us come back to the games of Table 3, second
row. Notice that the objectives GDEndλ(U) and WMP(λ, 0) ∩ Reach(U) are close to each
other: a play ρ belongs to GDEndλ(U) if it has a prefix which has a λ-good decomposition
and ends with a vertex in U , while ρ belongs to WMP(λ, 0) ∩ Reach(U) if it has a λ-good
decomposition and one of its vertices belongs to U . Therefore solving games for the objective
WMP(λ, 0) ∩ Reach(U) requires to win for a modified objective GDEndλ(U) such that the
λ-good decomposition visits U and ends in a winning vertex for the objective WMP. The
following example illustrates this modified objective.

I Example 11. Consider the game (G,Ω) depicted on Figure 4, where Ω = WMP(2, 0) ∩
Reach(U) with U = {v1, v3}. To compute the winning set WinΩ

1 , we need to modify G

in a new game structure G′ where we add a bit to each vertex indicating whether U has
been visited (bit equals 1) or not (bit equals 0). This game structure is the one of previous
Figure 3, where the set U ′ = {v1, v3, v4} of gray nodes are those with bit 1. We already
know that every vertex of G′ is winning for objective GDEnd2(U ′), and we note that they
are also all winning for objective WMP(2, 0). Therefore, in G′, player 1 can ensure a finite
2-good decomposition ending in a vertex of U ′ from which he can ensure an infinite 2-good
decomposition. Thanks to the added bit and coming back to G, we get that all vertices of
G are winning for Ω.

Now, it is easy to solve games for the objective WMP(λ, 0) ∩ GenReach(U1, . . . , Ui−1)
when i is fixed (see Table 3, third row). From such a game, we construct a new game
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structure where we add i bits to each vertex: the jth bit equals 1 if Uj has been visited,
and 0 otherwise. Note that i has to be fixed to get a polynomial construction, otherwise the
problem is already PSPACE-hard by Table 2 (third row). Finally, we solve the new game
where the objective is WMP(λ, 0)∩GenReach(U ′) where U ′ is the set of vertices with all bits
equal to 1.

Objective WMP ∩ Buchi

Solving games for the objective WMP ∩ Buchi needs an algorithm that repeatedly uses the
algorithm for the objective WMP ∩ Reach.

I Proposition 1. Let G = (V1, V2, E, w) be a 1-weighted game structure, and Ω be the
objective WMP(λ, 0)∩Buchi(U). Then WinΩ

1 can be computed in O(λ·|V |3 ·|E|·dlog2(λ·W )e)
time and finite-memory strategies with memory in O(λ2 ·W · |V |) (resp. in O(λ2 ·W · |V |2))
are sufficient for player 1 (resp. player 2).

The algorithm for the objective WMP ∩ Buchi works as follows: (1) Compute the winning
set X for player 1 for the objective WMP(λ, 0)∩Reach(U) in G; (2) compute the 2-attractor
Y of the set V \X in G; (3) repeat step (1) in the game G[V \Y ] and step (2) in the game
G, until X is empty or X is the set of all vertices in G[V \Y ]. The final set X is the winning
set of player 1 for the objective WMP(λ, 0) ∩ Buchi(U).

We first explain why X ⊆ WinWMP(λ,0)∩Buchi(U)
1 . Notice that this algorithm exactly

computes the setX of vertices such that player 1 wins for the objective WMP(λ, 0)∩Reach(U)
while staying in X (player 2 cannot leave this set). Therefore, from v0 ∈ X, player 1 plays
a winning strategy for the objective WMP(λ, 0) ∩ Reach(U), and as soon as a vertex of U
has been visited and the current history has a λ-good decomposition ending in a vertex
v ∈ X, he repeats such a strategy, ad infinitum. This strategy is winning for the objective
WMP(λ, 0)∩Buchi(U) and it is finite-memory. Now, we show that WinWMP(λ,0)∩Buchi(U)

1 ⊆ X.
If player 1 can win for the objective WMP(λ, 0)∩Buchi(U), then a winning strategy ensures
that he only visits vertices of WinWMP(λ,0)∩Reach(U)

1 . Then, player 1 has a strategy to win
the WMP(λ, 0)∩Reach(U) objective using only vertices from which this property is ensured,
which shows that v0 ∈ X.

Concerning the two last rows of Table 3, one can derive an algorithm for the objective
WMP ∩ GenBuchi from the algorithm for the objective WMP ∩ Buchi; the objective WMP ∩
CoBuchi is the most difficult to solve and requires elaborated arguments to manage correctly
two nested fixpoints together with the good windows.

5 Intersection of objectives in {Inf,Sup,LimInf,LimSup}

The aim of this section is to provide a refinement of Theorem 3 for games (G,Ω = ∩nm=1Ωm)
when no objective Ωm is a WMP objective. In this case, we get the better complexity of
PSPACE-completeness (instead of EXPTIME-completeness) for the synthesis problem; nev-
ertheless the two players still need exponential memory strategies to win (Theorem 12). We
also study with precision (in Table 4) the complexity and the memory requirements in terms
of the objectives of {Inf, Sup, LimInf, LimSup} that appear in the intersection Ω = ∩nm=1Ωm.
When there is at most one Sup, we get a polynomial fragment and in certain cases, players
can play memoryless. Notice that the membership to PSPACE in Theorem 12 could have
been obtained from one result proved in [1] (in this paper, the objective is defined by an LTL
formula, and it is proved that deciding the winner is in PSPACE for Boolean combinations
of formulas of the form “eventually p” and “infinitely often p”). We here propose a simple
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proof adapted to our context, that allows an easy study of the winning strategies as well as
the identification of polynomial fragments.

I Theorem 12. Let (G,Ω) be an n-weighted game such that Ω = ∩nm=1Ωm with Ωm ∈ {Inf,
Sup, LimInf, LimSup}. The synthesis problem is PSPACE-complete (with an algorithm in
O(2n · (|V |+ |E|)) time) and exponential memory strategies are necessary and sufficient for
both players.

Inf Sup LimInf LimSup Complexity class Algorithmic complexity Player 1 memory Player 2 memory
any any any any PSPACE-complete O(2n · (|V |+ |E|)) exponential memory exponential memory
any ≤ 1 any any P-complete O(n2 · (|V |+ |E|) · |E|) polynomial memory memoryless
any 0 any ≤ 1 P-complete O((|V |+ |E|) · |E|) memoryless memoryless
any 1 0 0 P-complete O(|V |+ |E|) memoryless memoryless

Table 4 Overview of properties for the intersection of objectives in {Inf, Sup, LimInf, LimSup}.

v0

v1

v2

v3

v4

v5

(−1,0)

(0,−1)

(−1,−1)

(−1,−
1)

(−1,0)

(0,−1)

(−1,−1)

(−1,−1)

Figure 5 Example where player 2 needs memory

In Table 4, we recall Theorem 12
(first row) and exhibit several polyno-
mial refinements (next rows). As shown
by Example 13, these additional results
are optimal with respect to the required
memory (no/finite memory) for the win-
ning strategies.

I Example 13. First, we come back to
the game structure G depicted on Fig-
ure 1, where we only keep the second and the third dimensions. Assume Ω = Sup(0) ∩
LimSup(0). Then, v0 is winning for player 1 but memory is required to remember if player 1
has visited the edge (v1, v1). The same argument holds for Ω = Sup(0) ∩ LimInf(0) and
Ω = Sup(0) ∩ Sup(0). This example with objective Ω = Sup(0) ∩ LimSup(0) indicates that
player 1 cannot win memoryless in a game as in the second row of Table 4. This example with
objective Ω = Sup(0) ∩ LimSup(0) (resp. Ω = Sup(0) ∩ LimInf(0), Ω = Sup(0) ∩ Sup(0)) also
shows that player 1 needs memory to win if [1, 0, 0] (referring to the second, third and fourth
columns of Table 4) in the last row of Table 4 is replaced by [1, 0, 1] (resp. [1, 1, 0], [2, 0, 0]).
Now, assume that v2 ∈ V1, that is, G is a one-player game and let Ω = LimSup(0)∩LimSup(0).
Again, v0 is winning but player 1 needs memory since he has to alternate between v1 (and
take the self loop) and v2. This shows that in the third row of Table 4, if [≤ 1] is replaced
by [2] then player 1 needs memory to win. Finally, consider the game depicted on Figure 5.
Let Ω = Sup(0) ∩ Sup(0). Vertex v0 is losing for player 1 (i.e. winning for player 2), but
player 2 needs memory since he has to know which edge player 1 took from v0 to counter
him by taking the edge with the same vector of weights from v3. This shows that in the
second row of Table 4, if [≤ 1] is replaced by [2] then player 2 needs memory.

I Remark 4. When n is fixed, the synthesis problem becomes P-complete for games (G,Ω)
such that Ω = ∩nm=1Ωm with Ωm ∈ {Inf, Sup, LimInf, LimSup}. The P-easyness follows from
Theorem 12 and the P-hardness follows from Table 2 and the second reduction of Remark 2.
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