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We report upon a theoretical study of singlet exciton migration and relaxation within a model
conjugated polymer chain. Starting from poly�2-methoxy-5-��2-ethylhexyl�oxy�-1,4-
phenylenevinylene� polymer chains, we assume that the �-conjugation is disrupted by
conformational disorder of the chain itself, giving rise to a localized Frenkel exciton basis.
Electronic coupling between segments as determined by the coupling between the transition
densities of the localized excitons gives rise to delocalized exciton states. Using a kinetic Monte
Carlo approach to compute the exciton transfer kinetics within the manifold of either the dressed
chromophore site basis or dressed eigenstate basis, we find that the decay of the polarization
anisotropy of the exciton is profoundly affected by the delocalization of the exciton over multiple
basis segments. Two time scales emerge from the exciton migration simulations: a short, roughly 10
ps, time scale corresponding to rapid hopping about the initial excitation site followed by a slower,
180 ps, component corresponding to long range hopping. We also find that excitations can become
trapped at long times when the hopping rate to lower-energy states is longer than the radiative
lifetime of the exciton. © 2009 American Institute of Physics. �doi:10.1063/1.3259549�

I. INTRODUCTION

The performance of conjugated polymers in optoelec-
tronic devices such as light-emitting diodes, photodetectors,
and solar cells is largely believed to be linked to the dynamic
behavior of the primary photoexcitations.1–6 The primary
photoexcitations are difficult to address in the conjugated
polymer because they are sensitive to the local structure and
packing morphology of the polymer chains.6–10 In the ideal-
ized sense, the conjugated network of a polymer may be
formally extended over the entire polymer chain. However,
in reality torsions and energetic disorder along the chain as
well as chemical defects limit the persistence length of a
given �-conjugated domain.11,12 We can envision chopping a
large conjugated polymer chain into a series of linked
“chromophoric” units in which the electronic coupling be-
tween domains can be both through-space via Coulombic
coupling and through-bond via coupling between C 2p orbit-
als of nearest neighbor segments.13–15 This implies that the
diffusion and mobility of an excitonic state through a conju-
gated polymer material will be determined by strong and
weak electronic couplings. Therefore, a Förster hopping
model may not adequately describe energy transfer in these
materials.9,16–18 One of the best probes of the ultrafast pro-
cess of excitation energy transfer is to monitor the fluores-
cence depolarization as an exciton is transferred from one
state �or chromophore site� to another.19–21 Furthermore, en-

ergy transfer events are often assumed to be incoherent;
however, recent evidence suggests quite strongly that quan-
tum coherence effects may play an important role in energy
transfer.22,23

In this paper, we address excitation energy transfer in a
model conjugated polymer chain that has been decomposed
into a series of linked chromophore segments. We consider
two limiting regimes starting from a common Hamiltonian
model. In the first case, we assume the electronic coupling
between chromophore sites can be cast in the weak-coupling
limit and transitions occur from one localized chromophore
site to another. Here we can cast our model in the form of a
spin-boson Hamiltonian treating the bare off-diagonal elec-
tronic coupling as the perturbation. In the second case, we
take a more realistic stance and assume that transitions occur
between vibronic eigenstates. This second case is more dif-
ficult from a theoretical point of view since the electronic
perturbation is dressed by the phonons. In both cases we
shall use a Fermi’s golden rule approach to compute the
site-to-site or state-to-state transfer rates. What we shall see
is that there is a clear distinction between these two descrip-
tions as evidenced by their respective predicted anisotropy
decays even after averaging the results from multiple con-
figurations and varying initial excitations.

II. THEORETICAL BACKGROUND
AND METHODOLOGY

The starting point for our discussion is a model
Hamiltonian given bya�Electronic mail: bittner@uh.edu.
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H = H0 + V . �1�

Here, H0 includes all the terms that are diagonal in a basis of
local excitations,

Ho = �
n

�nan
†an + �

ni
�bni

† bni +
1

2
���nian

†an

+ �
ni

�bni
† + bni�� �

8�ni
gnian

†an, �2�

and V includes the off-diagonal elements,

V = �
n�m

�nm�an
†am + am

† an� . �3�

Indices n and m label individual chromophore segments
of a much longer polymer chain with vertical energies �n and
�m, respectively. The operators 	an

† ,an
 create or remove local
excitations on the nth chromophore segment; bni

† and bni are
the boson creation and annihilation operators for the vibra-
tional mode i of the nth chromophore segment with fre-
quency �ni. Finally, �nm is the purely electronic interaction
term between chromophore segment n and m. The off-
diagonal couplings �nm are independent of the phonons and
can be computed using quantum chemical methods. The
terms involving �bni

† +bni� represent displacement of equilib-
rium positions of the vibrational modes upon electronic ex-
citation. Within a given chromophore segment, we assume
that the exciton is coupled linearly to localized phonons with
operators 	bni

† ,bni
. Such vibronic coupling results in a dis-
tortion of the excited state upon relaxation and the linear
coupling parameters 	gni
 can be deduced from the Huang–
Rhys factors in the vibronic �Raman� emission spectra. This
is a general “molecular crystal” model used extensively by
our group24,25 and others.26–31

For the case of poly�phenylenevinylene� �PPV� chains,
Dykstra et al.16 generated a large number of model polymer
chains based upon a random growth algorithm,13,32 decom-
posed each of the chains into a series of independent chro-
mophores, and computed the excitonic couplings using rig-
orous quantum chemical methods. Ensemble properties were
obtained by averaging over all the generated configurations.
To provide a relevant description of the system dynamics, we
carefully examined only three representative PPV polymer
chains. Here we adopt the conformations and parameters
used in Ref. 16. The conformations of these three represen-
tative PPV chains are shown in Fig. 1. Polymer chains A, B,

and C consist of 135, 145, and 150 effective chromophore
segments, respectively. An effective chromophore segment,
in general, known as a conformational subunit or light ab-
sorbing units, is composed of sizes ranging from 2 to 25
phenylenevinylene �PV� repeat units. For example, Fig. 2
shows the different shapes of conformational subunits de-
noted with unique color in the polymer chain A, B, and C. As
illustrated, larger segment can have a central or side conju-
gation breaks. We assume each conformational subunit has
three independent phonon branches with frequencies: �n1

=700 cm−1, �n2=1200 cm−1, and �n3=1600 cm−1, respec-
tively. These frequencies roughly correspond to the dominant
ring torsions, C–C bond stretches, and C=C bond stretches,
respectively, in a PPV polymer.33,34 The linear electron-
phonon couplings, gni, associated to each vibrational mode of
chromophore segment n, are deduced from the Huang–Rhys
factors in the vibronic emission spectra with gn1=0.2 for all
n �similarly for gn2=0.9, gn3=0.2�. In our study, we should
stress that the vibrational frequencies �assumed� with corre-
sponding Huang–Rhys factors for each segment length are
sufficient enough to reproduce the main features of the ab-
sorption and fluorescence spectrum. From the theoretical
point of view, a complete set of vibrational frequencies for
all segment lengths has a limited influence because, at room
temperature, the gross features of the absorption and fluores-
cence spectra appear identical with respect to change in the
number of PV repeat units, except some additional shift ex-
tending to the red.9

In the current model, the excitation is assumed to be
delocalized over several conformational subunits. Before ad-
dressing energy transfer mechanisms, let us first examine the
eigenstates given by our model system. In Fig. 3 we show
the localization of the lowest six eigenstates of our system
superimposed on polymer chain A. The color coding in each
gives an indication of the individual chromophore subunits
�i.e., basis sites� participating in each particular state colored
according to the net amplitude contributed to that state. For
example, as shown in Fig. 3, state #1 �inverse participation
ratio, IPR=0.99� is delocalized through-bond over a contigu-
ous “Z” shaped structure, which consists of 2–25 PV repeat

FIG. 1. Conformations of three representative PPV chains. The radii of
gyration of chains are chain A: 300 Å, chain B: 210 Å, and chain C: 154 Å.
Chain A, B, and C consists of 135, 145, and 150 respective number of
effective PV chromophore units.

FIG. 2. Each bracket denotes conformational subunit �segment� with unique
color, which represents the shape of segments in the part of the polymer
chains A, B, and C. In our study, one large segment can have central con-
jugation breaks, it is mainly because these polymer chains can be “broken
up” into segments with an acceptable cutoff �dihedral� angle. A cutoff of
around 55° was typically used �Ref. 16�. Reference 16 states that all of the
segments are coupled and there is no discernible difference between one
large segment with conjugation break or two smaller segments that are
strongly coupled.
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units. The color coding indicates that 96% of amplitude of
the state #1 is delocalized over one larger segment that has
conjugation breaks and 4% of the amplitude is delocalized
over the rest of the segments in the chain, which is not
shown. It does not imply that the probability is constant.
Likewise state #2 �IPR=0.99� is delocalized through-bond
over an “L” shaped structure in which the color coding indi-
cates that 81% of the amplitude is delocalized over one seg-
ment and 18% of the amplitude is localized on another seg-
ment. On the other hand, states #4, #5, and #6 are
delocalized both through bond and space over segments,
where each conformational subunit consists of 2–25 PV
repeat units. For state #4 �IPR=0.98�, the color coding
indicates that 67% of the amplitude is localized over one
segment, and the rest of the amplitudes �19% and 12%� are
localized over two different segments. For state #6 �IPR
=0.99�, the color coding indicates that 86% of the amplitude
is delocalized over a segment that has a conjugation break
and 14% of the amplitude delocalized on another segment.

In Fig. 4 we show the computed absorption spectra for
each chain along with the IPRs for the vertical eigenstates of
our model. The IPR is a measure of the extent of quantum
delocalization over a set of basis states:35,36

IPR��� = �
n

���n�4. �4�

Here, 	��n
 are the projections of the exciton eigenstates
���� on to the local chromophore basis �n�,

���� = �
n

��n�n� . �5�

For each chain, we obtain all eigenvalues �� and eigenstates
���� by complete diagonalization of the Hamiltonian, Eq. �1�.
In general, the IPR ranges from 0.99 where the exciton is
completely localized to at least one conformational subunit
to 0.006 where the exciton is delocalized over the entire
polymer chain.35,36 In our study, the IPR data for all the
states of the polymer chains are randomly distributed be-
tween 0.99 �localized over one segment� and 0.17 �delocal-
ized over at least six segments�, and it shows no significant
correlation with absorption spectrum. As we can see from
Fig. 4, the IPR plot for each chain represents beta distribu-
tion function with particular mean and standard deviation.
For example, energy states of the polymer chain C are delo-
calized on average over 1.2 �IPR=0.82� segments with a
standard deviation of five �IPR=0.20� segments. This indi-
cates that by and large the exciton eigenstates are localized to

FIG. 3. Delocalization of electronic eigenstate in the dressed eigenstate
representation as the primary excitation moves along the polymer chain A.
Here, �6→5�, �5→4�, etc, represent exciton relaxation among eigenstates
such as 6 to 5, 5 to 4. The coloration indicates the net amplitude of an
exciton eigenstate. Only the significant portion of the amplitude of a state is
colored. Less than 10% of the amplitude is not shown. The color coding is
shown with its particular amplitude, which indicates the participation of
individual chromophore subunits �i.e., basis sites�. For state #4, the color
coding indicates that 67%, 19%, and 12% of the amplitudes are delocalized
over three different segments in which the first two of them has conjugation
breaks. For state #6, the color coding indicates that 86% of the amplitude is
delocalized over a segment that has a conjugation break and 14% of the
amplitude delocalized on another segment. For state #1, the color coding
indicates that 96% of amplitude is delocalized over one larger segment with
conjugation breaks and 4% of the amplitude is delocalized over the rest of
the segments in the chain which is not shown. Lower energy states are
generally associated with larger segments, whereas shorter segments give
rise to higher energy states.

FIG. 4. Simulated absorption spectrum and inverse participation ratio for
PPV polymer chains: chain A-dotted line �red�, chain B-solid line �black�,
and chain C-dashed line �blue�. There is no significant correlation between
�a� absorption spectrum and �b� IPR. IPR represents continuous beta distri-
bution function with a p-value equal to 0.05 �i.e., probability of observing a
difference between sample and population is less than 0.5%�. Mean and
standard deviation of the beta distribution for each chain is chain A:
�	=0.84, 
=0.18�, chain B: �	=0.84, 
=0.21�, and chain C: �	=0.82,

=0.20�.
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one or two chromophore “segments”. Typically, the segments
are over a contiguous section of the chain; however, in a
large number of cases, the eigenstates are delocalized
“through space” between neighboring segments that are not
contiguously linked.

A. Kinetic Monte Carlo approach

In general, energy transfer dynamics within this system
is most accurately described within the context of the quan-
tum Liouville equation in which we propagate the reduced
density matrix for the electronic states as coupled to a bath of
oscillators held at fixed temperature, T. For small systems
with only a few states, this is feasible; however, for a large,
extended system such as the case at hand one needs to make
a number of judicious approximations. First, we shall assume
that energy transfer occurs either between the dressed elec-
tronic eigenstates or between the dressed individual chro-
mophore sites. In both cases we shall assume that one can
use a convolutionless Pauli master equation approach for
propagating populations,37

Ṗn�t� = �
m

Wnm�t�Pm�t� − Wmn�t�Pn�t� . �6�

Here, Pn�t� is the probability of finding the exciton on chro-
mophore segment �or eigenstate� n at time t and Wnm�t� are
the time-dependent rates for transitions between chro-
mophore segments �or eigenstates�. Furthermore, we assume
that we can take a golden-rule limit,

lim
t→�

Wnm�t� = W̄nm, �7�

in computing the state-to-state and chromophore segment-to-
segment rates. The convolutionless master equation then re-
duces to the Pauli master equation,

Ṗn�t� = �
m

W̄nmPm�t� − W̄mnPn�t� , �8�

which we can solve upon specifying the rates and the initial
conditions 	Pn�0�
. Otherwise, one would have to apply mas-
ter equation solutions with formally time dependent transi-
tion rates.38,39 The central assumption here is that the time
scale for energy transfer between the dressed eigenstates is
larger than the decay time of the correlation function used in

computing the rate constant W̄nm. In our model, the calcula-
tion of transfer rate W�� �Eq. �29�� between state � and �
takes 21 h �on GNU/Linux 86–64�. It is mainly due to
large number of summations involved at each time step d� in
the correlation function �Eq. �30�� that is propagated for long

time. In order to propagate actual population Ṗn of an exci-
tation in a given eigenstate n, we shall calculate 2�nn�
transfer rates. For example, in a given PPV representative
chain C that has 150 number of states, we shall compute
45 000 transfer rates, and it will take 100 processor years.
Given the number of states involved, we adopt a kinetic
Monte Carlo �KMC� method40,41 in which the exciton migra-
tion occurs in a stochastic manner and Pn�t� is reproduced by
averaging over multiple realizations. The KMC method
works in the following way. Starting from a given initial

chromophore segment site n, one picks a “target” site �m
�n� among all other sites on the chain. We then calculate the

golden-rule rate constant W̄nm, associated with the n→m
transition and calculate mean waiting time for the excitation
to remain on site n before hopping to the new site. This is
justified by assuming a first order process with exponential
decay statistics that gives the probability distribution of the
mean time it takes to transfer the excitation from state n and
m,

t̄nm =
1

W̄nm

. �9�

In a sense, this is much the way we envision an indi-
vidual experiment to proceed. In order to efficiently sample
the hopping steps so that our random walk is biased toward
making hops to new sites that are more strongly coupled to
the old site, we apply Monte Carlo selection criteria based
upon the electronic coupling between the segment �site� n
and m. Again, we wish to avoid explicitly calculating all the

W̄nm’s. Thus, instead of choosing our target state from a uni-
form distribution, we will bias our selection based upon
states most strongly coupled to the current state using

pnm �
�nm

2

�
m

�nm
2

, �10�

where pnm is the probability of making a hop from the nth to
the mth state, �nm is the bare electronic coupling between
segment �site� n and m. In principle the pnm are related to the

rates W̄nm, subject to the normalization for an N site system.
However, this does neglect the spectral overlap between do-
nor and acceptor states and is biased in the sampling toward
states with the longer subunits. To overcome this, the spectral
overlap factors are properly accounted in determining the
transition rates between states n and m. Consequently, if the
state selection step is biased toward states with lower
Franck–Condon factors, then the transition time to such a
state would be longer. Therefore, the underlying biased sam-
pling scheme generates more probable strongly coupled
states. This is important because sampling at random with
equal probability will result in energetically unfavorable
hopping states.

The KMC algorithm40 can be described as

�1� choose an initial state n in a localized or delocalized
basis,

�2� calculate the discrete cumulative function CF�n�
=�ipni for i=1, . . . ,N where N is the total number of
states,

�3� generate a uniform random number r� �0,1�,
�4� evaluate CF�m�=r and then hop to state m,

�5� calculate exciton transfer rate W̄nm�t�,
�6� evaluate 	t̄nm
=W̄nm

−1 , where 	t̄nm
 is the mean time re-
quired to hop from state n to m. In other words, the
average amount of time spent in state n before hopping
to m; and
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�7� we arrive at new state m, and then go to step �2�. In a
given simulation, one generates a list of hops between

states 	�n ,m�
, exciton transfer rates 	�W̄nm�
, and mean
time between hops 	t̄nm
.

Figure 3 displays a representative sequence of the hop-
ping of a single excitation within one of the chains �chain A�
in the eigenstate representation. Here the exciton is arbi-
trarily initiated in state #6, which itself is delocalized over
two parallel chromophore segments �highlighted on the
chain�. The exciton hops to state #5, which is located on a
nearby segment of the polymer and continues to migrate
through the polymer before eventually stopping in state #1.
Over the course of a sequence of hops we compute the de-
polarization of the exciton’s transition moment as it hops
through the polymer chain. The depolarization for a given
chain is realized by averaging 100 replication sets of calcu-
lations each starting from randomly selected state or site,
where each replication includes 25–30 state-to-state or
segment-to-segment hopping elements.

We next discuss the calculation of the golden-rule rates
for transitions between the dressed chromophore sites and for
transitions between the dressed eigenstates. For the case of
transitions between dressed chromophore sites, we can use a
standard molecular crystal approach for computing the site-
to-site rates. However, for the case of hopping between the
eigenstates, the electronic coupling also depends upon the
phonon coordinates so that the standard prescription for
computing rates no longer holds. In both cases, we start with
the same Hamiltonian model �Eq. �1�� and use a polaron
transformation to calculate the nuclear contributions.

B. Energy transfer rates within a dressed chromophore
site representation

Within the molecular crystal model, we take the off-
diagonal electronic coupling in Eq. �1� to be the perturbation
while keeping the electron-phonon coupling terms on the
diagonal. We review here briefly the derivation of the
golden-rule rate for this case in order to compare to our
derivation in the next section. We first perform the canonical
polaron transformation in order to effect the change of equi-
librium displacement,27,42,43

H̃ = eis · H · e−is, �11�

with the shift operator,

s = �− i��
n,i

�ni�bni
† − bni�an

†an, �12�

where

�ni =
gni

��ni
� �

8�ni
. �13�

The effect of this transformation on the phonon coordinates
is to shift the equilibrium positions from which vibrational
displacements are measured.28 The transformed Hamiltonian
is given as27

H̃ = �
n,i

an
†an��bni

† bni +
1

2
���ni + �̃n�

− �nm�an
†Ĝn

†Ĝmam + am
† Ĝm

† Ĝnan� , �14�

where the shifted chromophore site energies are given by

�̃n = �n − �
i

gni
2

8�ni
2 , �15�

and the vibrational shift operators are given by

Ĝn = e−�i�ni�bni
† −bni�. �16�

The operator Ĝn
† creates an excitation along with a cloud of

phonons in chromophore n. This represents a vibrationally
“dressed” electronic excitation. Using Eq. �8� along with fur-
ther analysis discussed in Ref. 27, we can write the excita-
tion transfer rate as a correlation function of vibrational shift
operators in the Heisenberg representation,

Wnm�t� =
�nm

2

�2 Re�
−�

�

dtei��̃n−�̃m�/�t�Ĝn
†�t�Ĝm�t�Ĝm

† Ĝn�th.

�17�

The first factor ��nm
2 /�2� in the rate Eq. �17� is an electronic

tunneling term that describes the mixing of initial and final

states. The operator Ĝn�t� can be written as eiHt/�Ĝne−iHt/�.

The correlation function �Ĝn
†�t�Ĝm�t�Ĝm

† Ĝn�th is thermally av-
eraged over the phonon bath. Vibrational mode i of the nth
chromophore segment with frequency �ni in the correlation
function only couples to the vibrational mode i of the mth
chromophore segment with the same frequency �mi=�ni.
Therefore, the final expression obtained takes the well
known form,27,44

�Ĝn
†�t�Ĝm�t�Ĝm

† Ĝn�th

= exp�− �
i

�i�2n̄i + 1��
exp��

i

�n̄i�ie
i�it + �n̄i + 1��ie

−i�it�� , �18�

where �i is a dimensionless Huang–Rhys parameter that
measures the distance between the minima of displaced pa-
rabolas of the vibrational potentials for the nth and mth
surfaces,27,44

��i = �gni − gmi

�8��i
3 � , �19�

and n̄i is the Bose–Einstein thermal occupation of vibrational
quanta,27,44

n̄i =
1

exp���i/kBT� − 1
. �20�

C. Energy transfer rates within a dressed eigenstate
representation

For the case at hand the electronic couplings occur over
a wide range of energies and one cannot comfortably make a
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weak coupling approximation. Electronic transitions and,
hence, energy transfer events occur within the manifold of
electronic eigenstates and one should begin by diagonalizing
the electronic parts of Eq. �1�,

Ĥel = T† · Hel · T , �21�

where T is the unitary transformation matrix that brings Hel

into diagonal form. We next transform the Hel/ph and Hph

parts of the Hamiltonian into the electronic eigenbasis,

Ĥel/ph = T† · Hel/ph · T ,

Ĥph = T† · Hph · T , �22�

A� = �T† · a · T��.

Note, here index � denotes electronic state as opposed to the
chromophore site. Finally, we get the transformed Hamil-
tonian of the system that can be written as a diagonal part,

Ĥ = �
�

E�A�
†A� + �

�i

���iA�
†A��bi

† + bi� + �
i

��ibi
†bi,

�23�

and an off-diagonal part V̂,

V̂ = �
���,i

���iA�
†A��bi

† + bi� + h . c . , �24�

where ��� represents the electronic eigenstates with vertical
energies 	E�
, 	���i
 are the diagonal electron-phonon cou-
pling terms, and 	���i
 are the off-diagonal electron phonon

coupling terms. 	A�
† ,A�
 create and destroy excitons with

	A� ,A�
†
=���. We now take the off-diagonal electron-phonon

coupling terms as the weak perturbation in order to describe
transitions between the electronic eigenstates. Rewriting the
Hamiltonian as

H̄ = Ĥ + V̂ , �25�

we can perform a polaron transformation to the electron-

phonon Hamiltonian H̄. This is achieved with the unitary
operator,37

U = ��
A�

†A�e−�i����i/�i��bi
†−bi�, �26�

as

H̃ = U−1 · H̄ · U , �27�

where the renormalized electronic energies are37

�̃� = �� − �
i

���i
2

�
. �28�

In Ref. 37 Pereverzev and Bittner used this approach to ob-
tain the following time dependent rate of excitation transfer
W���t� between eigenstates,

W���t� = 2 Re�
0

t

d��M̃���0�M̃������the
−i��̃�−�̃��t, �29�

where �M̃���0�M̃������th is the autocorrelation of the shifted
electron-phonon operators in the Heisenberg representation.
The derivation is given in Ref. 37 and we repeat their main
result here,

�M̃���0�M̃������th = �
i,j

	���i���j�����i�n̄i + 1�ei�i�e−�i� − ���in̄ie
i�i�e−�i� + ���i�

����j�n̄j + 1�ei�i�e−�i� − ���jn̄je
i�i�e−�i����j� + �ij�n̄i + 1�ei�i�e−�i� + �ijn̄ie

i�i�e−�i��q�����f�����
 , �30�

where

���i =
����i − ���i�

�i
, �31�

���i =
����i + ���i�

�i
, �32�

n̄i =
1

exp���i/kBT� − 1
, �33�

q����� = ei�j���je
−� j� sin��j��, �34�

and

f����� = e−2�j�nj+1/2����j
2 �1−e−� j� cos��j���. �35�

The golden-rule rate is then given by

lim
t→�

W���t� = W̄��, �36�

assuming that the correlation function in Eq. �29� converges
to 0 at long enough time. However, since we have only a few
phonon modes per chromophore segment, there is the possi-
bility that recurrences can prevent the long-time decay of

�M̃���0�M̃������. As such, we have assumed a phonon life-
time � j

−1 of 551 fs associated with three chromophore pho-
non modes, which corresponds to a phonon lifetime width of
60 wave number �cm−1�. In order to ensure our results are
not sensitive to our choice of phonon lifetime, we compare
results for different values of � j over a range of lifetimes
from 50% � to 200% �. Figure 5 shows a plot of the auto-

correlation function C�t�= �M̃���0�M̃������th between two
coupled electronic states of our system at T=300 K. The
decay of the electron-phonon autocorrelation function gives
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the electronic decoherence time.45–47 For the case shown in
Fig. 5, the initial decay occurs well within 5 fs with a small
recurrence between 20 and 30 fs. This suggests that the bath
correlation times are significantly shorter than the transfer
times between the states.48 Therefore, we can safely model
the exciton transfer dynamics as an incoherent process.

III. RESULTS AND DISCUSSION

Anisotropy decay is induced by exciton migration along
the chain. For a disordered system, the initial
anisotropy19,49,50 is equal to 0.4. In the results shown here,
we normalize the anisotropy to an initial value of 1.20 The
anisotropy decay for each chain is realized by averaging over
100 replication sets. Figure 6 displays the simulated aniso-
tropy decay upon averaging in the first 400 ps after the pri-
mary photoexcitation for three representative PPV conju-
gated polymer chains as computed using the two different
approximations for the hopping rates. The calculated aniso-
tropy for chain A in the dressed eigenstate representation
�Fig. 6�a�� reaches half of its initial value after less than

10 20 30 40 50
Time�fs�

2.� 10�8

4.� 10�8

6.� 10�8

8.� 10�8

C�t�

2 Χ: Dashed Line

0.5 Χ: Dotted Line

Χ: Solid Line

FIG. 5. Plot of electron-phonon autocorrelation function in the dressed

eigenstate representation �Eq. �30��: C�t�= �M̃���0�M̃������ with respect to
phonon lifetime � for states #1 and #2 of polymer chain C at 300 K.

FIG. 6. Normalized anisotropy decay upon averaging for three representative PPV polymer chains A, B, and C at 300 K. The dressed eigenstate representation:
�a� the black dashed line is the anisotropy decay averaged over three chains and �b� the biexponential fit to the average anisotropy decay �RSquared
=0.9973�. It shows two time constant, a faster component ��1=9.54 ps�, and a slower component ��2=183 ps�. The chromophore site �localized� represen-
tation: �c� the black dashed line is averaged over three chains and �d� an exponential fit to the average anisotropy decay �RSquared=0.9925�. Average decay
line shows a single time constant ��=217 ps�.
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100 ps, whereas in the localized picture �Fig. 6�c��, a much
slower decay 255 ps is observed. The calculated anisotropy
for chain B in the dressed eigenstate representation �Fig.
6�a�� shows a decay which reaches half of its initial value
after less than 60 ps, whereas in the localized representa-
tion �Fig. 6�c��, a slower decay 180 ps is observed. Chain
C shows a much faster anisotropy decay in the dressed
eigenstate representation, which reaches half of its value af-
ter less than 25 ps compared to 130 ps in the localized rep-
resentation. Thus we conclude that accounting properly for
delocalization over multiple chromophore units generally
leads to more efficient energy transfer through the system.

It has been reported in Refs. 16 and 49 that conforma-
tional disorder is the important factor in the long time aniso-
tropy decay and there is a dependence on the radius of gy-
ration of the chain. As shown in Fig. 6, chains with the larger
radii of gyration �A and B� show slower average anisotropy
decay than chain C in both representations. The most ex-
tended chain gives the slowest calculated anisotropy decay
on average because the extended polymer chain contains a
broad distribution of chromophore lengths, electronic cou-
pling parameters �nm, and energy mismatches among the
chromophores.16 The chain with the smallest radius contains
a higher percentage of shorter chromophores that are more
likely to lie adjacent to one other on the chain.16 This leads to
a larger number of more strongly coupled chromophores,
which favors excitation relaxation to the lower states, and an
efficient energy transfer in the system.

Figures 6�a� and 6�c� also show the average depolariza-
tion for the dressed eigenstate and chromophore site repre-
sentation as obtained by averaging over conformations of the
three representative polymer chains. The average decay for
the dressed eigenstate case �Fig. 6�b�� displays depolarization
with two time constants: a faster component ��1=9.54 ps�
due to short-range strong electronic interactions and a slower
component ��2=183 ps� due to long-range weak electronic
interactions.51 The shorter time scale component can be at-
tributed to rapid hopping between states that are localized
within a small neighborhood around the original excitation.
This leads to a rapid depolarization of the initial excitation.
On the other hand, the average anisotropy decay in the chro-
mophore site representation �Fig. 6�d�� shows a single decay
constant ��=217 ps� for a similar loss of anisotropy.

Ruseckas and co-workers50,52 reported that the long-time
decay is characteristic of intrachain exciton interaction and
can be attributed to the incoherent excitation transfer along
the disordered polymer chain. In contrast, our results indicate
that the long-time decay component can be attributed to less-
frequent longer-range �through-space� hopping from the
original excitation region to more remote regions of the poly-
mer chain. This is illustrated in Fig. 7 where we have high-
lighted the initial exciton �in this case state #60 of chain C�
as well as four other states �#35, #37, #38, and #1� in the
dressed eigenstate representation. The initial exciton eventu-
ally migrates to lower energy states over the course of a
single run. This migration is largely through-space rather
than through-bonds connecting neighboring segments.

Figure 8�a� shows a plot of the exciton energy versus
time in the dressed eigenstate representation for an exciton

initiated in state #60 of chain C. The plot gives insight into a
range of states visited by the exciton as it migrates. The
majority of the trajectories initiated from state #60 become
trapped into the range of states from #32 to #38 after 500 ps.
However, a few trajectories do escape to the lower energy
states �#12 or #13�. In comparison, in Fig. 8�b�, we initiated
the exciton in state #126 of chain C. Again, within 500 ps,
the exciton localizes into the range of states from #85 to #98.

From a thermodynamic point of view, the initial excita-
tion should eventually find the lowest energy state �#1�. Re-
ferring back to the density of states �Fig. 4�, one can see that
the density of states for the lowest energy states is quite high.
However, these states also have the largest IPR, meaning that
almost all of them are composed of a single-chromophore
segment. These segments, in turn, correspond to the longer
contiguous �-conjugated domains along the chain itself.
These long, low energy segments are generally isolated from
each other and consequently, their coupling to other lower
energy states is extremely weak. Once the exciton locates
one of these states, it becomes unlikely that it will be able to
make a long-distance hop to another low energy state within
its radiative lifetime. Hence, the exciton can become kineti-
cally trapped. It has been shown to exist previously that the
trapping of excitation occurs when the hopping rate to lower-
energy sites is longer than the radiative lifetime of the exci-
ton, and to explain quantitatively the anomalous temperature
dependence of the Stokes shift measured in molecular
J-aggregates of the THIATS �3,3�-bis�sulfopropyl�-5 ,5�-
dichloro-9-ethylthiacarbocyanine�.53,54

FIG. 7. Graphical picture for the migration of an initial photoexcitation from
state #60 to the kinetically trapped states. VE denotes the vertical excitation
energy in eV. The coloring along the chain is based on the amplitude of
eigenstate coefficients projected on to the chromophore basis sets.
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IV. CONCLUSIONS

In this paper, we have compared two models of energy
transfer within a conjugated polymer network starting from a
common Hamiltonian and computed transfer rates within
first-order perturbation theory. In the first case, we took the
more traditional route and treated the bare electronic cou-
pling as the perturbation as in a molecular crystal model.
However, within a polymer network, one cannot safely as-
sume the weak-coupling limit between all pairs of chro-
mophores. As an improvement over the molecular crystal
model, we first diagonalized the electronic part of the Hamil-
tonian and then treated the much-weaker nonadiabatic
electron-phonon coupling as the perturbation.

In the previous work by Dykstra et al.,16 we modeled the
short time dynamics of the exciton by assuming that the
initial excitation was localized on a single chromophore seg-
ment and that rapid fluorescence depolarization was the re-
sult of the delocalization and relaxation of the chromophore
into an eigenstate. Our current model allows us to consider
the longer time migration at that state through the polymer
itself. Following localization in an eigenstate, the exciton can
make a series of rapid hops within the neighborhood of the
initial excitation. This results in a rapid depolarization on the
time scale of �10 ps. Following this initial series of hops,
the exciton can make a series of longer ranged hops to lower
energy states on the time scale of �200 ps. However, even
though the density of states is highest for the lowest energy
states, such states are generally composed of a single con-
tiguous � conjugated segment and are essentially decoupled
from each other. Consequently, the exciton can become ki-
netically trapped in such states since the time scale for hop-
ping to the lowest energy state can be comparable to its
radiative lifetime ��500 ps to 1 ns�.

In the functional form of PPV and poly�2-methoxy-5-
��2-ethylhexyl�oxy�-1,4-phenylenevinylene� �MEH-PPV�
materials, the situation is very different due to a local disor-
der and redshift effect. These redshift effects are an intrinsic
properties of the PPV and MEH-PPV polymers.55 Therefore,

the flexible disorder and a redshift emission in these kind of
materials have a dramatic effect on the energy transfer, as it
has been reported in Ref. 15 that the conformations of MEH-
PPV chains show an increased energy transfer efficiency in
the films as compared to the solutions due to redshifted fluo-
rescence and a large Stokes’ shifts. Certainly, our results are
highly sensitive to the secondary structure of the polymer
chain and we have chosen a relatively small sample of pos-
sible polymer structures. Furthermore, we have only consid-
ered energy transfer as occurring within a single contiguous
polymer chain. In a thin film, multiple chains would be in-
termingled and intertwined. However, since we have as-
sumed that the polymer chains themselves remain more or
less static over a 1 ns time scale, we can consider even a
polymer thin film as consisting of a disordered array of
coupled chromophore segments. Thus, even within the limi-
tations of our basic model, our results here and in Ref. 16
underscore the fact that the quantum dynamics of energy
diffusion occurs on a wide range of time scales, each corre-
sponding to specific steps of the energy transfer and relax-
ation processes within a conjugated polymer.
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FIG. 8. Exciton energy vs time over the course of multiple hopping trajectories for chain C starting from two different initial states in the dressed eigenstate
representation �a� state #60 and �b� state #126.
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