Janus-yarn based dual-mode textile for radiative heat regulation Previous work, challenge, and approach
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Abbreviated abstract: Radiative heat management for personal comfort using photonic Convection

Moving air removes

engineered textiles can provide a substantial advantage for an energy-efficient and radiated heat
sustainable society. We propose a Janus-yarn design approach for a dual-mode, double-sided )
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thermoregulating fabric: a passive radiative management textile using asymmetric yarn
composition, leading to dual emissivity characteristics. The fabric provides both passive
cooling and heating functions by wearing the textile inside-out. A tailored combination of f~_ Direct transfer Body IR radiation
reflective and absorptive structures leads to a substantial emissivity asymmetry between the
two surfaces of the fabric.
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= By controlling emissivity of outer fabric surface, a
=  Simulations are conducted for incident ||ght. different net radiative heat transfer can be achieved. We acknowledge support from the INTERREG PHOTONITEX project.
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axis at normal incidence. =  Thermal circuit model is used to calculate the ambient .
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