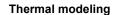
Janus-yarn based dual-mode textile for radiative heat regulation

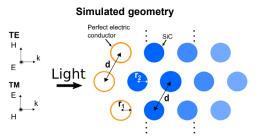
Alice De corte¹, Muluneh G. Abebe¹, Gilles Rosolen¹, and Bjorn Maes¹ ¹ Micro- and Nanophotonic Materials Group, Research Institute for Materials Science and Engineering, University of Mons, 20 Place du Parc, B-7000 Mons, Belgium

Abbreviated abstract: Radiative heat management for personal comfort using photonic engineered textiles can provide a substantial advantage for an energy-efficient and sustainable society. We propose a Janus-yarn design approach for a dual-mode, double-sided thermoregulating fabric: a passive radiative management textile using asymmetric yarn composition, leading to dual emissivity characteristics. The fabric provides both passive cooling and heating functions by wearing the textile inside-out. A tailored combination of reflective and absorptive structures leads to a substantial emissivity asymmetry between the two surfaces of the fabric.

Related publications:

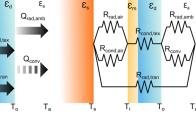
[1], M. G. Abebe et al. Dynamic thermal regulating textiles with metallic fibers based on a switchable transmittance, Physical Review Applied (14), 044030 (2020)


[2]. M. G. Abebe et al, Janus-yarn fabric for dual-mode radiative heat management, Physical Review Applied, accepted (2021)


Techniques and Methods

.

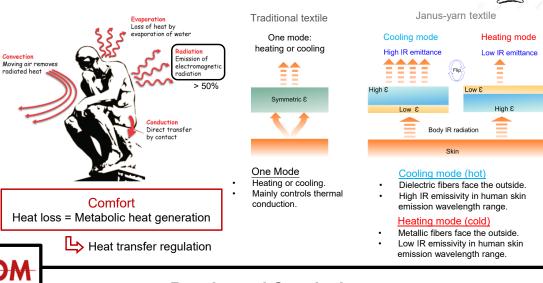
•


Electromagnetic modeling

- Finite Element modeling is used for numerical simulation to investigate the radiative properties of the design.
- Simulations are conducted for incident light polarized parallel and perpendicular to the fiber axis at normal incidence.

Heat transfer contributions Skin Air gan Textile Ambient ε. Q_{rad,amb} 111 Q_{cond,air}

Skin


Thermal circuit model

Textile

Air gar

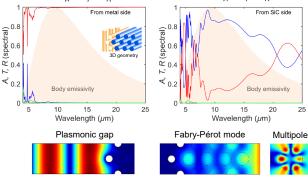
- The equality between heat generation and total heat loss defines thermal comfort.
- By controlling emissivity of outer fabric surface, a different net radiative heat transfer can be achieved.
- Thermal circuit model is used to calculate the ambient setpoint temperature.

Design working principle

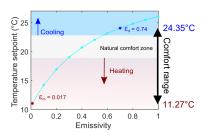
Results and Conclusions

Large emissivity contrast of ~0.7 between metal and dielectric surfaces R T ----- R - T ---

Heat loss in stationary situation


Convection

be


Ambient

T.

ΘM

Wide setpoint range

The textile user is comfortable between the lowest setpoint temperature of 11.27 °C and the highest setpoint temperature of 24.35 °C.

We acknowledge support from the INTERREG PHOTONITEX project.

alice.decorte@umons.ac.be