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Three-Dimensional Spine Model Reconstruction
Using One-Class SVM Regularization

Fabian Lecron, Jonathan Boisvert, Saı̈d Mahmoudi, Hubert Labelle, Mohammed Benjelloun

Abstract—Statistical shape models have become essential for
medical image registration or segmentation and are used in
many biomedical applications. These models are often based on
Gaussian distributions learned from a training set. We propose in
this paper a shape model which does not rely on the estimation
of a Gaussian distribution, but on similarities computed with
a kernel function. Our model takes advantage of the One-
Class Support Vector Machine to do so. In this context, we
propose in this paper a method for reconstructing the spine of
scoliotic patients using OCSVM regularization. Current state-of-
art methods use conventional statistical shape models and the
reconstruction is commonly processed by minimizing a Maha-
lanobis distance. Nevertheless, when a shape differs significantly
from the statistical model, the associated Mahalanobis distance
often overstates the need for statistical regularization. We show
that OCSVM regularization is more robust and is less sensitive
to weak landmarks definition and is hardly influenced by the
presence of outliers in the training data. The proposed OCSVM
model applied to 3D spine reconstruction was evaluated on real
patient data and results showed that our approach allows precise
reconstruction.

Index Terms—3D Reconstruction, One-Class SVM, Spine,
Scoliosis.

I. INTRODUCTION

STATISTICAL shape models have become essential for
medical image registration or segmentation. They derive

their effectiveness from a training set by providing specific
information about the context of the application. More pre-
cisely, the shape is constrained so that, based on observations,
the model can only synthesize plausible instances of an object.

These models were presented by Cootes et al. in [1], in the
context of the Active Shape Model segmentation approach.
Since then, they have been applied in numerous biomedical
applications and we refer the reader to [2] for a detailed
review on the subject. In these applications, the main idea
is to define a parametric point distribution model using Prin-
cipal Component Analysis (PCA). Other strategies exist to
address the construction of a shape model. In [3], Tsai et al.
represented a shape with a signed distance function instead
of a collection of landmarks. Each shape in the sample is
therefore seen as a level set function. PCA applied on a
sample of level set functions leads to a statistical shape model.
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This particular shape representation does not require point
correspondences between the shapes of the sample and it
better handles topological changes. In [4], El-Baz et al. built
shape prior by performing PCA on distance vectors described
by the square distances from control points on the boundary
to the model centroid. Recently, Khalifa et al. proposed a
segmentation framework using a level set-based deformable
model constrained with a probabilistic shape prior [5]. In
order to build it, a collection of images are coaligned by
rigid transformations maximizing their mutual information.
The shape prior is then defined by an independent random field
for the training images and specified by object and background
probabilities on each pixel.

Applications making use of statistical shape models are
usually based on Gaussian distributions learned from a training
set. However, it is often difficult to get sufficient number of
training cases to well represent the distribution and actual data
distributions are often heavy-tailed. This is especially true for
biomedical applications since pathological cases are relatively
common in the clinics, but can deviate from statistical model
in extreme ways (see [6] for example).

In some cases, this discrepency between the assumed dis-
tribution and reality could prevent the registration or the
segmentation method based on statistical shape models from
converging to a solution. An interesting solution to this issue
is to consider the training set as a sub-set of the shape space
without assuming hypothesis on the statistical distribution of
the global shape space. We thus propose in this paper a shape
model which does not rely on Gaussian distributions, but on
similarities computed with a kernel function.

The originality of our model is to take advantage of One-
Class Support Vector Machine (OCSVM) to define a statistical
shape model and use it for 3D model reconstruction. Related
works have used OCSVM for medical image analysis in the
past with different goals. For instance, tumor segmentation
from MRI based on OCSVM was proposed in [7]. In this
application, OCSVM was used to separate tumor data from
non-tumor data. Wang et al. described in [8] a framework for
3D reconstruction of head MRI. The tissues are first segmented
and extracted from medical images. Then, this information
is used as feature data input for OCSVM. An hypershpere
enclosing these data is obtained by minimizing its radius. The
3D reconstruction is deducted from the support vectors related
to this hypersphere. A deformable model using OCSVM was
also proposed by Chang in [9]. A succession of three steps
defines the model. First, information about edge orientation is
extracted. Then, an algorithm based on the cross-correlation
theorem is developed for shape detection. Finally, OCSVM is

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TBME.2013.2272657

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



2

only used to detect outliers among the detected shapes.
OCSVM was also used for face detection in [10]. Jin et

al. described an approach divided into three steps. First, face
candidates are located with a skin-color detector. These face
candidates are then refined so that good candidates match
some shape features based on grayscale rules and gradient
rules. Finally, OCSVM is used as a classifier only keeping
faces among the remaining candidates. The interest of their
statistical model based on OCSVM is to discriminate faces
from outliers. Our approach is very different since the OCSVM
model proposed in the present work is part of the process of
shape extraction and is not a post-processing step as in [10]. In
this way, OCSVM model is not a binary process that accepts
or rejects a shape but it brings more nuance and guides the
deformation of the shape. In other words, the support vectors
of the OCSVM are directly used to define a statistical shape
model. The idea is to define an hyperplane holding in its
positive side a set of shapes. This hyperplane, computed with
the help of a kernel function and defined using its support
vectors, is actually used to build the model. Therefore, we
call it kernel-based shape model. The extraction of a shape
from a given image is conducted by optimizing the distance
between the deformed shape and the hyperplane. This way,
there is no need to rely on predefined distribution.

The three-dimensional representation of the spine proved of
great interest in biomedical science. Thereby, the 3D analysis
of the vertebral column provides relevant information for the
diagnosis and the treatment of three-dimensional deformities
such as scoliosis. Part of the literature has focused on the
reconstruction of the spine from bi-planar radiographs. The
advantage of X-ray imaging is to avoid exposure of the patient
to high radiations. Moreover, this imaging technique reduces
the acquisition time and allows the patient to be in a standing
position. We propose in this paper a 3D spine reconstruction
method from bi-planar radiographs using OCSVM regulariza-
tion.

One simple way to reconstruct the spine from radiographs
is to manually identify anatomical landmarks on the images
and match their 3D positions [11]. These methods require to
manually locate multiple points per vertebra and are thus very
time-consuming. Mitulescu et al. proposed to also consider
landmarks that are only visible in one radiograph [12]. In
order to reduce the number of landmarks involved, parametric
vertebra models were proposed by Pomero et al. in [13].
They formulated the reconstruction as statistical inferences
based on the relationship between geometric descriptors of
a single vertebra. This way, four points per vertebra are
needed for the reconstruction. Later, Humbert et al. used
the parametric model of Pomero et al. and combined it
with a parametric model of the whole spine to reduce the
identification of landmarks in a first level of reconstruction
[14]. Nevertheless, considerable user-interaction is required
for further fine reconstructions of the spine. Other approaches
were designed to use the information contained in the images.
In [15], Kadoury et al. used a 3D statistical model regulated
with 2D image level set functionals to improve the accuracy
of an initial reconstruction only based on a statistical model.

Articulated statistical models of the spine were used in [16]

by Moura et al.. They have represented the position and the
orientation of a given vertebra as rigid geometric transforma-
tions from the vertebra to the others along the spine. This
model is then inferred with a spline representing the spinal
centerline. Recently, Boisvert et al. proposed to constrain a sta-
tistical shape model of the spine [17]. A multilevel statistical
shape model of the spine was then proposed in [18], [19]. In
those methods involving a statistical model, the reconstruction
is processed by minimizing the Mahalanobis distance between
a shape and the model distribution. When a shape differs
strongly from the statistical model, the associated Mahalanobis
distance is large. As a consequence, the optimization hardly
converges to an acceptable solution. A typical example is when
a patient adopts a particular position which differs from the
model, i.e. bending position [6].

The main contribution of this paper is to propose a formula-
tion of a kernel-based shape model. This novel framework for
modeling shapes has been considered for representing a spine
model in the context of the 3D spine reconstruction from bi-
planar radiographs. More precisely, we present a model of the
spine based on OCSVM. The reconstruction algorithm is then
formulated as a program optimizing the correspondence score
of a given shape with respect to the hyperplane defined by the
OCSVM approach. This score is expressed so that it can deal
with uncommon shapes robustly. These theoretical aspects are
described in section II. Section III provides results about 3D
reconstruction of the spine and shows that our kernel-based
shape model provides better results than actual state-of-art
approaches. Finally, section IV concludes the paper and gives
future prospects.

II. METHODS

A. One-Class Support Vector Machine
Support Vector Machine (SVM) approach [20] is mainly

applied in classification or regression problems. The principle
of SVM is to separate a set of data into two distinctive classes.
A variant, called One-Class SVM (OCSVM), was proposed in
[21] to deal with the detection of outliers. The general idea is
define a region of the space using support vectors that includes
most of the training points, but not all, and maximizes the
classifier’s margin. Thus, separating “normal” instances from
outliers.

Let us consider a set of data points xk ∈ Rn and a function
Φ : Rn → F transposing them into a higher-dimensional
space, often called feature space. Let w ∈ F and b ∈ R be
the couple of variables defining an hyperplane. The purpose
of OCSVM is to determine the hyperplane that holds most
of the data points in its positive part in such a way that
〈w,Φ(xi)〉 − b > 0.

The couple (w, b) can be determined by solving the
quadratic programming problem:

min
w,b

1
2 ‖w‖

2
+ 1

νm

∑m
i=1 ξi − b

s.t. 〈w,Φ(xi)〉 ≥ b− ξi,∀i = 1, . . .m

ξi ≥ 0,∀i = 1, . . .m.

. (1)

Two variables are introduced in the equation (1). First,
ξ = (ξ1, ξ2, . . . , ξm) is called slack-variable whose positive
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value penalizes the objective function. Second, ν stands for
the fraction of data allowed to be in the negative side of the
hyperplane.

The problem (1) is formulated at equation (2) in a dual
form, where Lagrangian coefficients α are introduced.


max
α

L̃(α) = − 1
2

∑m
i,j=1 αiαj 〈Φ(xi),Φ(xj)〉

s.t. 0 ≤ αi ≤ 1
νm ,∀i = 1, . . . ,m∑m

i=1 αi = 1.

(2)

The formulation of the problem (2) shows that the func-
tion Φ(x) is not needed explicitly. Only the inner products
〈Φ(xi),Φ(xj)〉 are used for the optimization. Let K be a sym-
metric matrix consisting of the inner products 〈Φ(xi),Φ(xj)〉.
It can be shown that any positive semidefinite matrix could be
used as a kernel matrix K, since the positive semidefiniteness
ensures the existence of the function Φ(x).

Finally, once the parameters of the hyperplane are com-
puted, any new point x ∈ Rn can be classified by determining
which side of the hyperplane x belongs to.

B. One-Class SVM Shape Model

The idea is to define an hyperplane holding in its positive
side a set of 3D shapes. Fig. 1 illustrates our purpose when the
shape represents a spine. On the left, a set of 3D spine models
are represented in a given space. A kernel function allows to
transpose these 3D models into a higher-dimensional space
(on the right). They are separated with the rest of the feature
space by an hyperplane.

(a) A set of spines represented
in a shape space

(b) Hyperplane defined in the
feature space holding the set in
its positive side

Fig. 1: Conceptual view of a spine shape model based on
OCSVM.

In order to develop a shape reconstruction algorithm, we
need to define a score that quantifies the level of correspon-
dence between a shape and the training data. Thus, let us
consider a shape characterized by the vector xi. The distance
from xi to the hyperplane is given by:

d =
(〈w,Φ(xi)〉 − b)

‖w‖
. (3)

Unfortunately, w potentially belongs to an infinite-
dimensional space, which makes the distance hard to use
in practice. However, since w =

∑m
i=1 αiΦ(xi), we can

formulate an unnormalized correspondence score s :

s =

m∑
j=1

αj 〈Φ(xj),Φ(xi)〉 . (4)

The relation (4) now relies only the variables αi, which
are obtained by the resolution of the problem (2), and on the
kernel K which is used to determine the m inner products
〈Φ(xj),Φ(xi)〉. This makes it a good candidate to use in
practice.

C. Spine Shape Representation

In the previous section, we showed that the vector x can
stand for a 3D model of the spine. But how to represent the
spine in three dimensions? The current section provides two
answers to this question.

1) Landmark Representation: A common way to represent
a 3D shape is to use landmarks. These points of reference can
be selected based on geometrical features or in accordance
with the application. In our case, an expert selected 6 anatom-
ical landmarks to represent one vertebra. These points are the
center of inferior and superior endplates (2 points), and the
inferior and superior extremities of pedicles (4 points). If we
consider the vertebræ T1 to L5, the shape of a spine is defined
by 102 landmarks. Since the shape is in a three-dimensional
space, x is a vector of size 306. More formally, the vector x
can be written:

x =
(
pabs1 , pabs2 , . . . , pabsk , . . . , pabsn

)
, (5)

where n is the number of landmarks and pabsi are the three-
dimensional absolute coordinates of the ith landmark.

2) Articulated Representation: Using landmarks to define
the shape of the spine has the advantage of being simple
and it allows the use of conventional statistics. However, the
spine has a natural articulated structure. A convenient way to
take into account the articulations between the vertebræ was
proposed by Boisvert et al. in [22]. In their work, the spine is
represented by a vector of intervertebral rigid transformations
and local anatomical landmarks. These articulated models have
shown great interest in several studies (e.g. [16], [23]).

The relative rigid transformation Ti related to a given
vertebra i is determined by the rigid transformation related to
the previous vertebra i− 1. In order to also take into account
the shape of vertebra, anatomical landmarks, represented in
the local system of reference of the corresponding vertebra,
are used to define the articulated model. As a result, the vector
x is written:

x = (T1, T2, . . . , Tn, p1,1, p1,2, . . . , pi,j , . . . , pn,m) , (6)

where n is the number of vertebræ, m is the number of
landmarks per vertebra, and pi,j are the three-dimensional
coordinates of the jth landmark of the vertebra i expressed
in the local vertebra system of reference.
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D. Reconstruction Algorithm

The reconstruction algorithm that we propose in this work
aims at matching a 3D shape of the spine with multiple views.
In our case, two views are available: a posteroanterior radio-
graph (PA) and a lateral radiograph (LAT). Two parameters
are required to be optimized during the reconstruction process.
First, the Euclidean distance between the projection of a 3D
point xi belonging to the spine and its theoretical location on
the radiograph has to be minimized. Let us consider that the
spine is comprised of N vertebræ, that M is the number of
anatomical landmarks per vertebra and that K is the number
of considered views. Let us note p2Di,j,k, a point located by the
user on the radiograph, with 0 < i ≤ N , 0 < j ≤ M and
0 < k ≤ K. If the projection of a 3D point is represented
by p̂2Di,j,k, the sum of squared errors (SSE) of reprojection is
computed according to:

SSE =
∑
i

∑
j

∑
k

∥∥p2Di,j,k − p̂2Di,j,k∥∥2 , (7)

where p2Di,j,k only concerns points that have been located by
the user.

The solution resulting from the minimization of the relation
(7) needs to conform with the shape model defined in section
II-B. We have seen that the equation (4) represents a corre-
spondance score. The greater the score, the better. As a result,
s has to be maximized and the complete optimization problem
for the 3D reconstruction is formulated as:

min
∑
i

∑
j

∑
k

∥∥p2Di,j,k − p̂2Di,j,k∥∥2 + β

(
1

s

)2

, (8)

where β is a weight controlling the importance of the
model during the optimization process. The problem (8) is
a non-linear least-squares problem which can be solved by
Levenberg-Marquardt algorithm.

In order to reduce the number of variables involved in the
problem (8), a principal component analysis is operated on the
training set. Any spine shape can be approximated according to
x = x̄+φb, where φ is the matrix of principal components and
b is a vector of principal scores. The goal of the optimization
process is then to find the value of b which minimizes the
relation (8).

E. Kernel Choice for Reconstruction

The score s defined at equation (4), which represents how a
shape is convenient with the model, relies on a kernel function.
The choice of a good kernel is therefore important and depends
on the application. In this section, we define two kernels in the
context of the 3D reconstruction of the spine. These kernels
will be assessed in the experimental section of the paper.

One of the most common kernels used in practice is the
Radial Basis Function (RBF) kernel defined by:

K(x, y) = exp

(
−‖x− y‖

2σ2

)
. (9)

In addition to this baseline kernel, we propose a specific
kernel based on a Mahalanobis distance between two shapes.
We define this Mahalanobis kernel according to:

K(x, y) = exp

(
− (x− y)

T
Σ−1 (x− y)

σ

)
, (10)

where Σ is the variance-covariance matrix related to our
sample of 3D spine shapes.

III. RESULTS AND DISCUSSION

In this section, we aim at showing the interest of the
formulation of our kernel-based shape model. As previously
stated, this model is evaluated in the context of a biomedical
application: the 3D reconstruction of the spine from bi-planar
radiographs.

To validate the reconstruction method, we used a sample of
100 scoliotic patients randomly chosen without any constraint
to build the training set and a sample of 25 randomly chosen
post-operative patients and 20 randomly chosen patients with
severe scoliosis. These data were provided by the Sainte-
Justine Hospital of Montréal, Canada. We have considered
17 vertebræ, i.e. T1 to L5. Each vertebra is represented by
6 points of reference, i.e. the center of inferior and superior
endplates, and the inferior and superior extremities of pedicles.
All these landmarks have been previously digitized in a three-
dimensional space following a reference method [11]. The
post-operative cases were used to assess the accuracy of the
reconstruction approach. The reason for having chosen post-
operative patients is related to the specific deformation of the
spine when surgical instrumentation is present to redress the
spine. Indeed, the result is often neither a normal spinal curve
nor a scoliotic one. Therefore, it is difficult to capture these
specific deformations with a classical statistical model.

(a) PA View (b) LAT View (c) 3D Re-
construction

Fig. 2: Anatomical landmarks manually identified on bi-planar
radiographs (plates are in blue and pedicles in green).

A. Kernel Validity

The main parameter influencing the reconstruction is the
choice of the kernel. Indeed, we have shown that the measure
of s is only possible with a kernel K(x, y). Such a function
can be considered as a similarity measure between two objects
x and y in the feature space. In our case, the objective is to
distinguish 3D spine shapes. As a reminder, two representa-
tions of the spine are considered in this study: a landmark
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representation and an articulated one. The influence of two
kernels is evaluated in this section: an RBF and a Mahalanobis
kernel.

In order to demonstrate the validity of these kernels, we
have computed the similarities between the 100 items of the
sample. To be valid, we expect a kernel to provide high
similarities between these 100 spines. Furthermore, we have
artificially generated an unrealistic spine by greatly shifting
several vertebræ so that the result is not anatomically possible.
In this case, we expect that the kernel will clearly distinguish
this unrealistic spine from other. In the following, the sample
used to compute the covariance matrix Σ (for the Mahalanobis
kernel) is different from the sample used to evaluate the
similarities.

We first propose to discuss the validity of the RBF and the
Mahalanobis kernels in the case of a landmark representation
of the spine. The similarity between the 100 spines represented
by landmarks and the unrealistic spine was computed both
for the RBF and the Mahalanobis kernels. The corresponding
similarity matrices are presented at Fig. 3. RBF and Maha-
lanobis kernels depend on a parameter, namely σ. The greater
σ is, the higher the similarity between shapes is. Here, the
objective is not to find the best value of σ but to show that
the RBF and the Mahalanobis kernels are valid to represent the
similarity between scoliotic spines. In the similarity matrices
of Fig. 3, we note that the elements of the diagonal are
all equal to 1 since the similarity between identical spines
is maximum. Then, the similarities related to the unrealistic
spine are represented at the 50th row and the 50th column.
The similarity matrix associated to the RBF kernel shows
that the unrealistic spine is clearly seen as an outlier. The
same conclusion can be drawn if we observe the similarity
matrix associated to the Mahalanobis kernel. However, there
is a difference between RBF and Mahalanobis kernels. For
the RBF kernel, the range of similarity is larger than for
the Mahalanobis kernel. The fact that the Mahalanobis kernel
takes into account the correlation between variables seems to
provide less disparity in the similarities. Globally, the RBF
and Mahalanobis kernels appear to be relevant to represent
similarities of 3D spine shapes in the case of a landmark
representation of the spine.

To discuss the validity of these kernels in the case of
an articulated representation of the spine, we computed the
similarity between the 100 articulated spines of our sample and
the unrealistic articulated model. These results are presented at
Fig. 4. In this illustration, the unrealistic spine is represented
at the 50th row and the 50th column. As above, the results
show that the 100 articulated models of the sample are seen
as similar while the unrealistic spine is seen as an outlier. This
fact is valid for both the RBF and the Mahalanobis kernels.
Once again, the difference between the kernels relies on the
range of similarity. This range is larger for the RBF kernel.
Finally, Fig. 4 shows that the RBF and Mahalanobis kernels
appear to be relevant to represent similarities of 3D spine
shapes in the case of an articulated representation of the spine.

Since these kernels can well represent the similarities be-
tween the shapes, the parameter ν of the OCSVM model
has a weak influence in our application. As remainder, this
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(a) RBF kernel - σ = 600
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(b) Mahalanobis kernel - σ = 50

Fig. 3: Similarity matrices - Landmark representation.
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(a) RBF kernel - σ = 60

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Mahalanobis kernel - σ = 35

Fig. 4: Similarity matrices - Articulated representation.

parameter represents the fraction of data which are allowed to
be in the negative side of the hyperplane. Here, outliers were
not present in the sample of 100 spines. In that case, a value
of ν equal to 1 is equivalent to use all the spines to build the
hyperplane. In case of presence of outliers, the value of ν can
be adapted.

B. Reconstruction Experiments

In order to process a reconstruction, two radiographs are
presented to the user. Some points of reference are then
pointed out by the operator so that the optimization leads to
the final solution, i.e. the 3D spine shape of the patient. Mean
RMS error has been evaluated as a function of the number of
points per radiograph for the 25 post-operative patients. We
distinguish the reconstruction of the plates and the pedicles.
In the following, the parameter ν has been fixed to 0.8. Since
this parameter has an important role, we discuss its influence
and its interest at the end of section III-E.

1) Landmark Representation: We propose at Fig. 5a the
mean RMS reconstruction error related to a representation of
the spine with landmarks. The RBF and Mahalanobis kernels
have been distinguished. The results related to a state-of-art
method [17] using a classical statistical shape model is also
present at Fig. 5a. For all the methods, we observe that the
reconstruction of the plates is better than for the pedicles.
Logically, we notice that the error decreases as the number
of points per radiograph increases.

An important difference between the RBF and Mahalanobis
kernels appears at Fig. 5a. If we consider 17 control points,
the mean error of reconstruction related to the RBF kernel
is equal to 10.59mm and to 2.28mm for, respectively, the
pedicles and the plates. In comparison, the mean error of
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Fig. 5: Evolution of the mean RMS 3D reconstruction error as a function of number of control points per radiograph.

reconstruction related to the Mahalanobis kernel is equal to
3.51mm and to 1.55mm for, respectively, the pedicles and
the plates. These results show that the RBF kernel is not
working in the context of a representation of the spine with
three-dimensional landmarks. It seems that the vertebræ are
reconstructed independently when the RBF kernel is used.
The link between the vertebræ is not taken into account
in the model. Conversely, the Mahalanobis kernel allows to
compute the similarities between spine shapes by using the
correlation between the variables (which are the coordinates
of the anatomical landmarks).

Finally, we observe that both for the plates and the pedicles,
the Mahalanobis kernel offers globally better results than the
classical statistical shape model when a reasonable number of
control points are provided, showing the interest of using a
kernel-based shape model.

2) Articulated Representation: The mean RMS reconstruc-
tion error related to an articulated representation of the spine is
illustrated at Fig. 5b. The RBF and Mahalanobis kernels have
been distinguished, as well as a state-of-art method using a
classical statistical shape model. The same preliminary trends
than for the landmark representation can be drawn here. For
both of the kernels, we observe that the reconstruction of
the plates is better than for the pedicles. We also notice that
the error decreases as the number of points per radiograph
increases.

Nevertheless, the difference between the RBF and Maha-
lanobis kernels is less contrasted. If we observe Fig. 5b, curves
related to RBF kernel are nearly identical to curves related
to Mahalanobis kernel. Let us consider 17 control points per
radiograph. The mean RMS error of reconstruction related
to the RBF kernel is equal to 4.12mm and to 1.80mm for,
respectively, the pedicles and the plates. The same values
for the Mahalanobis kernel are, respectively, 4.11mm and
2.01mm. Previously, the RBF kernel provided poor results
because the link between the vertebræ were not processed
adequately. In an articulated representation of the spine, this
link is always integrated in the model, whatever the kernel.
This fact explains the differences between Fig. 5a and Fig.

5b.
If we compare RBF and Mahalanobis kernels with a clas-

sical statistical shape model, we observe that for the recon-
struction of pedicles, the results are quite similar. However,
the RBF kernel outperforms the Mahalanobis kernel and the
statistical shape model in the case of plates reconstruction.

3) Comparison Between the Reference Method and the
OCSVM Method: If we consider 17 control points at Fig.
5a, the OCSVM method with Mahalanobis kernel improves
the precision over the reference method by 0.55mm for the
plates and 0.51mm for the pedicles. To illustrate the effect of
this improvement, we propose at Fig. 6 a visual comparison
between the OCSVM method (landmark representation with
Mahalanobis kernel) and the reference method on lumbar
vertebræ L1 to L5 in the PA view. The points in cyan are
the anatomical landmarks identified by an expert while the
points in green are the projections of the 3D reconstructed
anatomical landmarks. The main difference between the two
figures is concerned by the pedicles of the vertebræ L4 and
L5. For these vertebræ, the precision is obviously better for
the OCSVM method. The corresponding 3D anatomical land-
marks reconstructed with the OCSVM method are obtained
with a precision greater than 1mm. A paired t-test was also
performed to see if the improvements for the plates and the
pedicles are statistically significant. Both for the plates and the
pedicles, the t-test allows to reject at 0.01 significance level
the fact that the distributions of the RMS errors are identical
(p-values are lower than 0.01).

C. Execution Time
Our reconstruction approach is assessed here with respect to

the execution time. We report at Table I average computation
times for the two different representations of the spine. The
RBF and the Mahalanobis kernels are also distinguished. The
tests were performed on an Intel Core 2 Duo 2.53 GHz.

The order of magnitude of our reconstruction procedure
is between 2.91s (articulated representation and RBF kernel)
and 7.95s (landmark representation and Mahalanobis kernel).
The Mahalanobis kernel is always characterized by greater
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(a) Reference Method (b) OCSVM Method

Fig. 6: Qualitative comparison between the reference method
and the OCSVM method. 3D reconstructed models are pro-
jected on the PA view. Manually identified landmarks are
in cyan and the landmarks obtained from the reconstruction
method are in green.

computation times. This result is logical due to the presence
of the covariance matrix in the mathematical formulation of
the kernel. Nevertheless, the execution times associated to
our approach are in the same order of magnitude, i.e. a few
seconds.

Method Spine Repres. Kernel Execution Time (s)

OCSVM

Landmarks RBF 5.01

Mahalanobis 7.95

Articulated RBF 2.91

Mahalanobis 7.66

Ref. Meth. Landmarks / 0.15

TABLE I: Execution time for the proposed approach.

D. Sensitivity

The reconstruction process has to be initiated by pointing
out some landmarks on the radiographs. This operation is
operator-dependent and prone to errors. As a consequence,
it is interesting to analyze how does the OCSVM model react
when the control points are not well located. To do so, a
noise was randomly generated following a uniform distribution
and added to the coordinates of 17 control points marked
by an operator. The evolution of the mean RMS error of
reconstruction with the standard deviation of the applied noise
is provided at Fig. 8. A distinction is made between the plates
and the pedicles and we have also evaluated the evolution of
the error for a classical statistical shape model with the method
described in [17]. One can observe at Fig. 8 that the two errors
related to the statistical model (one curve for the plates, one for
the pedicles) increase dramatically. It means that the precision
is highly penalized by errors on the location of control points.
On the contrary, the OCSVM models are very robust and the
error evolves slowly with the standard deviation of the noise.

In order to visualize the possible variations of landmarks
location, we propose at Fig. 7 the representation of two
landmarks related to the plates (in green). The red points are
obtained by adding an error of 10 pixels to the x- and y-
coordinates of the landmarks.

Fig. 7: Limits of variation (red points) of the location of two
landmarks (green points).

The effect of location errors is depicted at Fig. 10a (ref-
erence method) and Fig. 10b (OCSVM method with land-
mark representation and Mahalanobis kernel). The PA view
was chosen for better visualization of the landmarks. The
robustness of OCSVM model is obvious on these illustrations.
According to [24], the maximum error of landmarks location
by an expert is 3mm, representing 7.5 pixels on our images.
A noise following a uniform distribution from -7.5 to +7.5
pixels was chosen for this illustration.
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Fig. 8: Effect of the simulated noise on the reconstruction
of the plates and the pedicles. Comparison with a classical
statistical shape model.

E. Discussion

In section III-B, we showed that our reconstruction method
provides better or similar results than the actual state-of-art
method (using a statistical shape model) in the case of post-
operative patients. The execution times presented in section
III-C were also obtained from these postoperative patients.
In order to discuss the results and to compare our approach
with more methods of the literature, we have performed a 3D
reconstruction for 20 patients with a severe scoliosis and no
surgical instrumentation. The severity of the scoliosis is mea-
sured by the Cobb angle. In our case, the Cobb angle of the 20
patients ranges from 44◦ to 70◦. In the literature, three recent
methods proposed results computed on about 20 patients with
moderate or severe scoliosis and no instrumentation. Since
experiments have been performed on different data sets, direct
comparison is not possible. However, it seems interesting to
compare orders of magnitude between the methods. In this
context, approaches proposed by Moura et al. [16], Kadoury
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et al. [15] and Humbert et al. [14] are characterized by RMS
errors between 2 and 4mm. Our OCSVM model provides
RMS errors between 1.57 and 4.13mm and appears to be
competitive with these approaches. The order of magnitude
for the computing time of the fastest approaches [14], [16]
is a few seconds, just as our approach based on a OCSVM
model.

In the present work, two representations of the spine
are proposed: a landmark representation and an articulated
representation. This could be seen as a limitation in some
biomedical applications where it is difficult to mark the shape
of an organ with reference points. Nevertheless, our OCSVM
model only requires to represent a shape with a vector. This
vector could be a vector of distance maps such as described
in [4].

The last aspect of this section is to discuss the interest of the
parameter ν influencing the OCSVM model. As a reminder,
ν is an image of the fraction of data allowed to be in the
negative side of the hyperplane. Therefore, the OCSVM model
accepts that outliers can be present in the training data. This
characteristic is very relevant in our case since in biomedical
engineering, the presence of outliers in the data is not rare.

Human experts notice and correct most mistakes that arise
during data collection and processing, but some mistakes
invariably go undetected and can lead to outliers in the data
used to produced statistical models. In our application, outliers
can, for instance, be the result of mislabeling of points or
vertebrae leading to 3D models that pass visual inspections
but which would falsely increase the observed variability
in a conventional statistical model. They can also be the
result of completely or partially occluded features in one
of the radiographs. Furthermore, the shear quantity of data
and repetitiveness of the manipulations may cause human
observers to commit mistakes they would not make on a single
isolated case.

Nevertheless, classical statistical shape models are not able
to detect the presence of outliers. Indeed, we propose at Fig. 9
the evolution of the mean RMS error of reconstruction when
5% of outliers are present in the training data.

2 4 6 8 10 12 14 16 18
0

10

20

30

40

50

60

70

80

Number of points per radiograph

M
e

a
n

 R
M

S
 e

rr
o

r 
o

f 
re

co
n

st
ru

ct
io

n
 (

m
m

)

Pedicles - OCSVM Landmarks
Plates - OCSVM Landmarks
Pedicles - OCSVM Articulated
Plates - OCSVM Articulated
Pedicles - Statistical Model
Plates - Statistical Model

Fig. 9: Evolution of the mean RMS 3D reconstruction error
as a function of number of control points per radiograph in
presence of outliers in the training data.

These outliers have been generated artificially and replace
good items in the data. In reality, extreme outliers can be
detected by a decent human observer. However, this detection
can be very time-consuming given the size of a sample. The
idea is here to propose an automatic method detecting these
outliers. The resulting errors are averaged for the 45 patients
(severe cases and post-operative patients). The OCSVM model
is evaluated with regard to the two representations of the data:
the landmark representation (with Mahalanobis kernel) and the
articulated representation (with RBF kernel). The parameter
ν of the OCSVM model has been fixed to 0.8 so that it
can accept no more than 20% of outliers. The results are
quite instructive. We observe that classical statistical shape
models are not able to deal with the presence of outliers.
The model badly explains the variables and the precision is
greatly reduced. On the contrary, the OCSVM model accepts
that no more than 20% of items in the sample belong to the
negative side of the hyperplane so that the outliers do not
influence the results. At the very least, the influence on the
precision is minimal (a few hundredth of millimeters). Let us
mention that for the Mahalanobis kernel, the matrix Σ is firstly
computed with the original training data, then computed again
without the detected outliers. The RBF kernel do not require
any modification.

The effect of the presence of outliers in the sample is illus-
trated at Fig. 10c and Fig. 10d for, respectively the reference
method and the OCSVM method (landmark representation
with Mahalanobis kernel). The advantage of OCSVM model
is visually obvious.

(a) Ref. Meth. (b) OCSVM (c) Ref. Meth. (d) OCSVM

Fig. 10: Qualitative comparison between the reference method
and the OCSVM method: (a) and (b) are characterized by
simulated noise applied on control points (±7.5 pixels) - (c)
and (d) are characterized by the presence of outliers in the
sample. 3D reconstructed models are projected on the PA view.
Manually identified landmarks are in cyan and the landmarks
obtained from the reconstruction method are in green.
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IV. CONCLUSION

In this paper, we have described a novel way of modeling
shapes, based on OCSVM. In our approach, the model is
defined by the hyperplane holding in its positive side a sample
of shapes. Then, this model was used in the context of the
3D reconstruction of the spine from bi-planar radiographs.
Two representations of the spine were considered: a classical
representation with anatomical landmarks and an articulated
representation of the spine. In order to define the model, two
kernel functions were also evaluated: an RBF kernel and a
Mahalanobis kernel. Results showed that our approach was
efficient for cases of patients with severe scoliosis and for
post-operative patients with surgical instrumentation. The RBF
kernel is to be preferred for the articulated representation
while the Mahalanobis kernel provided better results for the
landmark representation of the spine. Moreover, we have
demonstrated that our model is hardly influenced by the
presence of outliers in the training data, in contrast to classical
statistical shape models. This aspect makes the OCSVM model
a great alternative to classical statistical shape models in
applications where the presence of outliers in the training data
is possible.

Our new kernel-based shape model has proven to be effec-
tive with two three-dimensional representations of the spine.
However, we could use it for other biomedical shapes in two
or three dimensions. The choice of the kernel is application-
specific and depends on the shape of interest.

Finally, we think that modeling shapes with kernels opens
new possibilities in numerous biomedical applications.
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