
JoCG 11(1), 371–396, 2020 371

Journal of Computational Geometry jocg.org

NP-COMPLETENESS OF SLOPE-CONSTRAINED DRAWING
OF COMPLETE GRAPHS

Cédric Pilatte∗†

Abstract. We prove the NP-completeness of the following problem. Given a set S of n
slopes and an integer k ≥ 1, is it possible to draw a complete graph on k vertices in the
plane using only slopes from S? Equivalently, does there exist a set K of k points in general
position such that the slope of every segment between two points of K is in S? We then
present a polynomial-time algorithm for this question when n ≤ 2k − c, conditional on a
conjecture of R.E. Jamison. For n = k, an algorithm in O(n4) was proposed by Wade and
Chu. For this case, our algorithm is linear and does not rely on Jamison’s conjecture.

Keywords – Computational Complexity, Discrete Geometry.

1 Introduction

A straight-line drawing of an undirected graph G is a representation of G in the plane using
distinct points for the vertices of G and line segments for the edges. The segments are
allowed to intersect, but not to overlap, meaning that no segment may pass through a non-
incident vertex. The slope of a line l is denoted by slp(l) ∈ R∪ {∞}. If A is a set of points,
we write slp(A) for the set of all slopes determined by A, i.e.

slp(A) = {slp(A1A2) | A1, A2 ∈ A, A1 6= A2}.

The number of slopes used in a straight-line drawing is the number of distinct slopes
of the segments in the drawing. In 1994, Wade and Chu [26] introduced the slope number
of a graph G, which is the smallest number n for which there exists a straight-line draw-
ing of G using n slopes. This notion has been the subject of extensive research. It was
proven independently by Pach, Pálvölgyi [22] and Barát, Matoušek, Wood [1] that graphs
of maximum degree five may have arbitrarily large slope number. In the opposite direction,
Mukkamala and Pálvölgyi [20] showed that graphs of maximum degree three have slope
number at most four, generalizing results in [6,17,21]. Whether graphs of maximum degree
four have bounded slope number is still an open problem. Computing the slope number of
a graph is difficult in general: it is NP-complete to determine whether a graph has slope
number two [8]. See also [3, 9, 11, 16] for the study of the planar slope number and related
algorithmic questions.

Let us consider the case of the complete graph Kk on k vertices. Let K ⊂ R2 be
the set of points corresponding to the vertices in a straight-line drawing of Kk. From the

∗Department of Mathematics, University of Mons (UMONS), Place du Parc 20, 7000 Mons, Belgium.
†Dep. Math. and Applications, École Normale Supérieure (ENS), Rue d’Ulm 45, 75005 Paris, France.

http://jocg.org/

JoCG 11(1), 371–396, 2020 372

Journal of Computational Geometry jocg.org

definitions, we know that K is in general position and the set of slopes used in the drawing is
exactly slp(K). As in [14], we will use the adjective simple instead of in general position, for
brevity. It is easily seen that a simple set of k points determines at least k slopes [14,26]. On
the other hand, a straight-line drawing of Kk with k slopes may be obtained by considering
the vertices of a regular k-gon. The slope number of Kk is thus exactly k.

The slope number of a graph G provides only partial information about the possible
sets of slopes of straight-line drawings of G. Two questions arise naturally:

1. What can be said about the straight-line drawings of a graph G that use only a certain
number of slopes?

2. Given a set S of slopes, does there exist a straight-line drawing of G using only slopes
from S?

We focus on the case where G is a complete graph. For this case, both questions
can be rephrased by replacing straight-line drawings by simple sets of points. The case of
complete graphs is already difficult and sheds some light on the general situation. As we
explain below, the first question is still unanswered, in almost all cases, while the second is
already NP-complete when restricted to complete graphs (Theorem 3.10).

Regarding the first question, we have already seen that regular k-gons are examples of
simple sets of k points that use only k slopes. As affine transformations preserve parallelism,
the image of a regular k-gon under an invertible affine transformation is also a simple set
of k points with k slopes (a set obtained this way is called an affinely-regular k-gon).1

Jamison [14] proved that these are the only possibilities, thereby classifying all straight-line
drawings of Kk with exactly k slopes. In the same paper, he conjectured a much more
general statement.

Conjecture (Jamison). For some constant c1, the following holds. If n ≤ 2k − c1, every
simple set of k points forming (exactly) n slopes is contained in an affinely-regular n-gon.
The case n = k corresponds to Jamison’s result, and the case n = k + 1 has been proven
recently [23]. The conjecture is still open for n = k + 2 and beyond.

The aim of this paper is to investigate the second question: the algorithmic problem
of deciding whether a complete graph admits a straight-line drawing that uses only slopes
from a given set.

Definition 1.1. The slope-constrained complete graph drawing problem (SCGD for short),
is the following decision problem.

Input. • A set S of n slopes;
• A natural number k.

Output. • YES if there exists a simple set K of k points in R2 such that slp(K) ⊆ S;
• NO otherwise.

As a simple set of k points determines at least k slopes, the problem is only interesting
when n ≥ k. Wade and Chu [26] gave an algorithm with time complexity O(n4) for the

1By regular n-gon or affinely-regular n-gon, we actually mean the set of vertices of the corresponding
polygon.

http://jocg.org/

JoCG 11(1), 371–396, 2020 373

Journal of Computational Geometry jocg.org

restricted version of the SCGD problem, where the number of points is equal to the number
of slopes, i.e. k = n. They asked how to solve the problem when the set of slopes contains
more than k slopes.

In this article, we also consider variants of the SCGD problem where the input is
required to satisfy an inequality of the type “n ≤ f(k)”, for several functions f . As we will
see, the complexity of the restricted SCGD problem is highly dependent on the choice of f ,
if P 6= NP. Our results are the following (also summarized in Figure 1):

• Section 3: The SCGD problem is NP-complete (Theorem 3.10) in the case where there
is no restriction on n. A careful examination of the proof shows that the SCGD problem
remains NP-complete when restricted to n ≤ ck2 (for some c > 0, which may be chosen
to be 2). The key ingredient is a notion of slope-generic sets (Definition 3.5).

• Section 4: The SCGD problem becomes polynomial when the number of slopes is
not too large compared to the number of points. More precisely, assuming Jamison’s
conjecture, there is an O(n(n−k+1)4) time algorithm for the SCGD problem restricted
to n ≤ 2k − c1, where c1 is the constant appearing in the conjecture. We also give a
randomized variant of the algorithm which runs in O(n) time and gives the correct
output with high probability (one-sided Monte-Carlo algorithm).

As mentioned earlier, Jamison’s conjecture has been proven for n = k and n = k + 1.
Consequently, our algorithm is correct unconditionally when restricted to n ≤ k+ 1. More-
over, in this case, it is linear, which is easily seen to be optimal. In particular, it improves
the O(n4) algorithm of Wade and Chu [26] (which applies to the case n = k only).

k k + 1 k + 2 2k − c1 ck2

O(n) O(n) O(n(n− k + 1)4)∗ ? NP-complete
. f(k)

*assuming Jamison’s conjecture.

Figure 1: Complexity of the SCGD problem restricted to n ≤ f(k) for different functions f ,
where n is the number of slopes and k the number of points.

The question of the complexity of the SCGD problem in the intermediate case, de-
noted by a question mark in figure Figure 1, is still unanswered.

2 Notations and terminology

Recall that a set of points A is simple if no three points of A are collinear. We will say that
A has distinct slopes if it is simple and slp(A1A2) 6= slp(A3A4) for every four distinct points
Ai of A.

We use the term list for an ordered sequence. By abuse of notation, if A = (Ai)i∈I
is a list, we continue to write A for the underlying set {Ai | i ∈ I}. The notions defined for
sets of points thus apply to lists of points by ignoring the order structure.

http://jocg.org/

JoCG 11(1), 371–396, 2020 374

Journal of Computational Geometry jocg.org

A set of slopes is naturally endowed with a cyclic order, induced from the one on
R ∪ {∞} (see [10, §7.2]). If S is a set of slopes and T = (s1, . . . , sn) is a list of slopes, we
say the slopes of T are consecutive slopes of S if T is an interval of the cyclically ordered
set S. This means that s1, sn are the two endpoints of the interval and that s1, . . . , sn are
all the intermediate slopes, in the correct cyclic order.

Let Aff(2,R) be the group of invertible affine transformations of the plane. A slope
can be identified with a point at infinity. There is a natural action of Aff(2,R) on the line
at infinity. Therefore, if φ ∈ Aff(2,R), it makes sense to write φ(s) when s is a slope. Let H
denote the subgroup of Aff(2,R) of translations and homotheties. These are precisely the
affine transformations that map every line l to a line parallel to l. In other words, H is the
pointwise stabilizer of the line at infinity (see for instance [19, Chapter 5]).

Definition 2.1. If A,B are two point sets in the plane, we write A ↪→ B if there is a φ ∈ H
with φ(A) ⊆ B. If φ(A) = B, we write A ∼ B and say that A and B are homothetic.

Remark 2.2. Note that A ∼ B implies slp(A) = slp(B). The converse is false (see e.g. Re-
mark 3.4).

Remark 2.3. If two simple lists E = (E1, . . . , En) and F = (F1, . . . , Fn) of n ≥ 2 distinct
points satisfy slp(EiEj) = slp(FiFj) for all i 6= j, there is a unique φ ∈ H such that
φ(Ei) = Fi for all i. In particular, E ∼ F . Note that this assumption is stronger than just
slp(E) = slp(F).

3 NP-completeness of the SCGD problem

In Section 3.1, we informally present some ideas leading to the introduction of the notion
of slope-generic sets. The actual definitions are given in Section 3.2, where we show the
first properties of slope-generic sets. In Section 3.3, we prove that the SCGD problem is
NP-complete, assuming that slope-generic sets can be constructed in polynomial time. This
last assertion is proved in Section 3.4.

3.1 Motivation

A sufficiently general set of n points in the plane determines
(
n
2

)
distinct slopes. Suppose now

that we wish to go the other way, and define a point set by specifying its set of slopes. First of
all, we can only hope to define a point set modulo H, since slp(A) = slp(B) whenever A and
B are homothetic. There is a more fundamental problem: the slopes are not independent.2

As soon as we consider four distinct points, the six slopes they determine are related by a
certain polynomial equation (cf. Lemma 3.12). When we consider a point set A of size n,
we get a polynomial equation for every subset of four points of A. Hence, most choices of(
n
2

)
slopes do not determine a set of n points modulo H.

2Three real parameters are needed to specify an element of H. Therefore, 2n − 3 real parameters are
needed to identify a set of n points modulo H. For n ≥ 4, this is less than the number of slopes,

(
n
2

)
(it is

equal for n ∈ {2, 3}).

http://jocg.org/

JoCG 11(1), 371–396, 2020 375

Journal of Computational Geometry jocg.org

We would like to capture the notion of a point setA having a “generic” (i.e. “ordinary”)
set of slopes slp(A). For many purposes, a set of points can be considered “generic” when it is
simple (i.e. in general position). In the context of slopes, this is not a sufficiently restrictive
condition. For example, a regular n-gon cannot be considered “generic”, since it has the very
special property of forming only n different slopes. Having distinct slope is the first (but
not the only) condition that we will impose on a point set to have a “generic” set of slopes.

Our notion should be designed in such a way that any “sufficiently random” point set
A should have a “generic” set of slopes slp(A). However “random” A may be, the elements
of slp(A) will always satisfy a system of polynomial equations given by Lemma 3.12. The
intuitive idea is that the slopes of a “generic” point set A should not satisfy more equations
of the same form.

There is another way to decide whether the slopes of a point set A should be con-
sidered “generic”. The basic idea is as follows: if A is “generic”, the knowledge of slp(A)
should be enough to recover the original set A, modulo H. In other words, for any point set
K with slope set slp(K) = slp(A), we should have K ∼ A. As such, this statement is not
entirely correct (we give a refined heuristic below). Moreover, to ensure that slp(A) is really
“generic”, we will need to impose a similar condition for many subsets T of slp(A), instead
of for T = slp(A) only. A more elaborate version of the previous idea could be as follows.

Definition 3.1. A point set A with distinct slopes is k-ordinary if every subset T ⊆ slp(A)
of
(
k
2

)
slopes has the following property: whenever K is a set of k points with slp(K) = T ,

we have K ↪→ A.

We cannot hope to say anything interesting about A by considering the subsets of
three slopes of slp(A).3 Hence, from now on, we will only be interested in the case k ≥ 4.
The intuition one should keep in mind is that any “sufficiently random” set A is k-ordinary
for all k > 4. For k = 4, where the situation is more subtle, Definition 3.1 has to be modified
to correspond to the behaviour of “sufficiently random” point sets.

Let us explain the difference between the cases k > 4 and k = 4. Let k ≥ 4, let A be
a “sufficiently random” point set and let T ⊆ slp(A) be a set of

(
k
2

)
slopes. There are two

possibilities to consider.

1. The first possibility is that one cannot find a set K of k points with slp(K) = T . For
this T , the property in Definition 3.1 is vacuously true. This situation is represented
in Figure 2. The slopes s ∈ T must originate from at least k+1 points of A (otherwise,
they would form the slope set of a subset of k points of A, as in Figure 3). For this
reason, these slopes are “independent”, or “unrelated”, in some appropriate sense.

3Given any set T of three distinct slopes, there exists a triangle K with slp(K) = T , and the triangle
is unique modulo H. This is true whether T ⊆ slp(A) or not. Thus, each of the

(|slp(A)|
3

)
choices of three

slopes of A gives a different set K, but only
(|A|

3

)
of those K will have K ↪→ A. Therefore, no set of more

than three points is 3-ordinary.

http://jocg.org/

JoCG 11(1), 371–396, 2020 376

Journal of Computational Geometry jocg.org

A

Figure 2: No set of k points in the plane has slope set T (T is in dashed).

2. The other alternative is when we can write T as T = slp(K) for some set K of k
points. Therefore, the slopes in T are “related”. If A is “generic”, we expect to have
T = slp(B) for some subset B of k points of A (as in the left part of Figure 3, in order
to avoid the situation of Figure 2).

• Assume that k > 4. As B is “sufficiently random”, we expect B to be the only
point set modulo H with slope set T . Thus, generically, we have K ∼ B, so
K ↪→ A.

• Suppose that k = 4. Perhaps surprisingly, it turns out that we do not necessarily
have K ∼ B. Nevertheless, we can always construct from K a point set K∗

(see Definition 3.2), for which slp(K∗) = slp(K) and yet K∗ 6∼ K in general. In
Figure 3, we have K 6∼ B, but K∗ ∼ B. This will be true more generally: if T
is the set of slopes of a “generic” point set K, we predict every set of four points
with slope set T to be homothetic to either K or K∗. Therefore, we should have
either K ↪→ A (if K ∼ B) or K∗ ↪→ A (if K∗ ∼ B).

A B

K

K∗

Figure 3: T (in dashed) is determined by a subset B of four points of A.

The intuitive reasoning in the case k = 4 leads to the definition of slope-generic
sets (Definition 3.5). We will see in Lemma 3.7 that slope-generic sets are automatically
k-ordinary for all k ≥ 5. Slope-generic sets will demonstrate their usefulness in the proof
of our main theorem (Theorem 3.10). Over the course of Section 3.4, we will relate this
purely geometric point of view with the previous algebraic considerations (cf. the proof of
Lemma 3.15 and Remark 3.17).

http://jocg.org/

JoCG 11(1), 371–396, 2020 377

Journal of Computational Geometry jocg.org

3.2 Slope-generic sets

We start by defining the dual of a list of four points, which is another list of four points
that determines the exact same slopes, while not being related to the first list by an affine
transformation. We denote by Sn the nth symmetric group and by l(X;PQ) the parallel
to PQ through X.

Definition 3.2. Let E = (E1, E2, E3, E4) be a simple list of four points. We define a new
list F of four points by setting F1 := E2E4∩l(E1;E2E3), F2 := E1E3∩l(E2;E1E4), F3 := E2

and F4 := E1 (see Figure 4). The intersections exist as E is simple. We call F the dual of
E and write F = E∗.

E1, F4

E2, F3

E3

E4

F1

F2

Figure 4: Construction of the dual.

Lemma 3.3. Let E be a simple list of four points and let F = E∗. Then slp(F) = slp(E).
More precisely, Fσ(1)Fσ(2) ‖ Eσ(3)Eσ(4) for every permutation σ ∈ S4.

Proof. Of the parallelism conditions that need to be verified, all but one follow directly from
the definition. For example, F1F4 and E2E3 are parallel since, by definition, F1 lies on the
parallel to E2E3 through F4.

The only non-trivial fact is that F1F2 ‖ E3E4. If E1E4 ‖ E2E3, we have F1 = E4,
F2 = E3 and there is nothing to prove. Otherwise, this is an application of Pappus’s hexagon
theorem with the collinear triples (F1, E4, E2 = F3) and (E3, F2, E1 = F4).

Remark 3.4. • If E is a simple list of four points, slp(E∗) = slp(E), but E∗ 6∼ E in
general (see Figures 4 and 5).

• It is nonetheless true that (E∗)∗ ∼ E, as can be observed in Figure 5. To prove it,
note that, for every permutation σ ∈ S4, we have E∗∗σ(1)E

∗∗
σ(2) ‖ E

∗
σ(3)E

∗
σ(4) ‖ Eσ(1)Eσ(2)

by Lemma 3.3. By Remark 2.3, we conclude that (E∗)∗ ∼ E.

• Changing the order of the points of E in Definition 3.2 does not change the point set
E∗ modulo H. In other words, (Eσ(1), . . . , Eσ(4))

∗ ∼ (E1, . . . , E4)
∗ for any permutation

σ ∈ S4. This again follows from Lemma 3.3 and Remark 2.3.

We now define slope-generic sets.

http://jocg.org/

JoCG 11(1), 371–396, 2020 378

Journal of Computational Geometry jocg.org

Definition 3.5. A set A ⊂ R2 is called slope-generic if it has distinct slopes and satisfies the
following property: for every simple list E of four points, slp(E) ⊆ slp(A) implies E ↪→ A
or E∗ ↪→ A.

Example 3.6. • The set A = {(−2, 2), (−1, 0), (0, 0), (0, 1)} is not slope-generic. In-
deed, for E =

(
(1,−1), (−1, 0), (0, 0), (0, 1)

)
, we have slp(E) = slp(A). However,

E 6↪→ A and E∗ 6↪→ A, since A is in convex position, unlike E and E∗ (see Figure 5).

• We will give examples of slope-generic sets in Lemma 3.15. A careful inspection of the
proof of Lemma 3.15 reveals that any set of “sufficiently random” points is slope-generic
(see Remark 3.17).

A E E∗
(E∗)∗

Figure 5: Examples of point sets with the same set of slopes.

Lemma 3.7. Let A be slope-generic. Then A has the following property: for every simple
set K ⊂ R2 of at least five points, slp(K) ⊆ slp(A) implies K ↪→ A.

Proof. Let K be simple with |K| ≥ 5 and slp(K) ⊆ slp(A).

We start by proving that, for every subset E ⊂ K of four points, we have E ↪→ A.
By contradiction, there is a quadruple E = (E1, E2, E3, E4) in K such that E 6↪→ A. As A
is slope-generic, E∗ ↪→ A. Thus, there exist four points Ai ∈ A and a map φ ∈ H such that
φ(E∗i) = Ai for i ∈ {1, . . . , 4}, where (E∗1 , E

∗
2 , E

∗
3 , E

∗
4) = E∗.

Let P ∈ K \ E and E′ = (P,E2, E3, E4). We also have E′ ↪→ A or E′∗ ↪→ A, so
there is a subset B ⊆ A of size 4 which is homothetic to E′ or E′∗. Let ψ ∈ H be the map
corresponding to (E′ or E′∗) ↪→ B. Notice that

slp(A1A2)
φ
= slp(E∗1E

∗
2) = slp(E3E4) ∈ slp(E′) = slp(E′∗)

ψ
= slp(B).

As we assumed that A has distinct slopes, this implies that A1, A2 ∈ B. The same argument
with slp(A1A3) and slp(A1A4) shows that all the Ai’s are in B, so B = {A1, A2, A3, A4}.

To summarize, we have (E′ or E′∗) ψ∼ B = {A1, . . . , A4}
φ∼ E∗. In particular, we

deduce that slp(E′) = slp(B) = slp(E). Therefore,

{slp(PE2), slp(PE3), slp(PE4)} = {slp(E1E2), slp(E1E3), slp(E1E4)},

because all the slopes of B are distinct. We can repeat the preceding argument with

http://jocg.org/

JoCG 11(1), 371–396, 2020 379

Journal of Computational Geometry jocg.org

(P,E1, E3, E4), (P,E1, E2, E4) and (P,E1, E2, E3) in place of E′ and deduce the equalities
{slp(PE1), slp(PE3), slp(PE4)} = {slp(E2E1), slp(E2E3), slp(E2E4)}
{slp(PE1), slp(PE2), slp(PE4)} = {slp(E3E1), slp(E3E2), slp(E3E4)}
{slp(PE1), slp(PE2), slp(PE3)} = {slp(E4E1), slp(E4E2), slp(E4E3)}.

Taking the union of the left-hand sides and right-hand sides yields

{slp(PE1), slp(PE2), slp(PE3), slp(PE4)} = slp(E),

which is a contradiction since |slp(E)| = |slp(B)| = 6.

For every E ⊂ K with |E| = 4, we have proven that there exists a transformation
φE ∈ H such that φE(E) ⊆ A. We will now prove that all φE are equal, which concludes the
proof of the lemma. It is sufficient to prove that φE = φE′ whenever E,E′ are two subsets
of four elements of K with |E ∩ E′| = 3. Let E ∩ E′ = {E1, E2, E3}. For 1 ≤ i < j ≤ 3, we
have

slp(φE(Ei)φE(Ej)) = slp(EiEj) = slp(φE′(Ei)φE′(Ej)).

Since A has distinct slopes, it must be the case that {φE(Ei), φE(Ej)} = {φE′(Ei), φE′(Ej)}.
It follows that the restrictions φE |E∩E′ and φE′ |E∩E′ are equal. An affine transformation is
uniquely determined by its action on three non-collinear points, so φE = φE′ as claimed.

Lemma 3.8. There exists an algorithm to compute a slope-generic set of size n in time
polynomial in n. Moreover, the coordinates of the constructed points are integers with poly-
nomially many digits, and every slope determined by the set is an integer.

We postpone the proof of this lemma to Section 3.4 and concentrate on the main
theorem.

3.3 Proof of NP-completeness

Let us recall the problem that will be shown to be NP-complete, as well as some variants
which we mentioned in the introduction.

Definition 3.9. The slope-constrained complete graph drawing problem (SCGD for short)
[restricted to “n ≤ f(k)”], is the following decision problem.

Input. • A set S of n slopes;
• A natural number k ≤ n [≤ f(k)].

Output. • YES if there exists a simple set K of k points in R2 such that slp(K) ⊆ S;
• NO otherwise.

The condition k ≤ n is not restrictive as every simple set of k points determines at
least k slopes.

For the model of computation, we will work with the common logarithmic-cost integer
RAM model [2]. The size of the input (S, k) is measured by the number of bits used to
represent k and the slopes of S (k may be ignored since k ≤ |S|).

http://jocg.org/

JoCG 11(1), 371–396, 2020 380

Journal of Computational Geometry jocg.org

This model of computation does not allow the manipulation of arbitrary real num-
bers. This is not an issue: to compare the computational complexity of two problems, it
is necessary to use similar models of computation for both. If we were to use, say, the real
RAM model, we would not be able to talk about NP-complete problems in the usual sense.

In order to study the complexity class of the SCGD problem, we need to specify
what inputs are allowed. Since the input slopes s ∈ S must be representable in our model
of computation, the two most natural choices might be to only consider rational slopes, or
integer slopes. We will assume that the slopes are integers. This is not a problem: the
more we restrict the possible inputs (keeping the same model of computation), the easier
the problem becomes. Since the SCGD problem is already NP-complete when restricted to
integer slopes, it will still be NP-hard (and thus NP-complete, by the same proof) for rational
slopes.4

Theorem 3.10. The SCGD problem is NP-complete.

Proof. We begin by showing that the SCGD problem is in NP. Suppose that there exists a
simple set K = {K1, . . . ,Kk} of k points with slp(K) ⊆ S.5 Let si,j := slp(KiKj) ∈ S, for
1 ≤ i < j ≤ k. Consider the system of linear equations Yj−Yi = si,j(Xj−Xi). A non-trivial
solution corresponds to an instance of a simple set of k points with slopes contained in S.
Let the witness be the list of triples (i, j, si,j), for 1 ≤ i < j ≤ k. It is polynomial in the size
of the input (S, k). If the witness is given, verifying that the corresponding system of linear
equations has a non-trivial solution is also polynomial in the size of the input. Finally, it is
a polynomial time check to verify that si,j ∈ S and that si,j 6= sj,k for all distinct i, j, k (the
latter condition ensuring that any non-trivial solution of the system yields a simple point
set).

We now prove that SCGD is NP-hard, by showing that CLIQUE6 can be polynomially
reduced to the SCGD problem.

Let G = (V,E) be a finite graph and let k be a positive integer. If k ≤ 4, solving the
clique problem with input (G, k) takes polynomial time. Therefore, we only consider the
case k ≥ 5. The idea is to consider an embedding of V into a slope-generic set. We construct
a slope-generic set A of size |V | in polynomial time using the algorithm of Lemma 3.8. Fix
a bijection f : V → A. Let

S = {slp(f(v)f(w)) | vw is an edge in G} ⊂ Z.

We execute the hypothetical SCGD algorithm with input (S, k). We claim that the output
of the algorithm (YES or NO) is exactly the answer to the CLIQUE problem with input (G, k).

4Or for any other reasonable choice containing the integers, representable within the logarithmic-cost
integer RAM model.

5We may not directly use K as a witness, as the coordinates of the points of K could be arbitrary real
numbers. Since the slopes are integers, it is true that there always exists another choice of K whose points
have integer coordinates. However, we would also need to explain that K can be chosen to be representable
with polynomially many bits. Instead, we choose a more indirect witness already containing all the necessary
information.

6The CLIQUE decision problem is the following: given a graph G and a positive integer k, decide whether
G contains a clique of size k. It is one of the first problems that was shown to be NP- complete [15].

http://jocg.org/

JoCG 11(1), 371–396, 2020 381

Journal of Computational Geometry jocg.org

• If the output is NO, there could not have been a k-clique in G. Indeed, by contrapo-
sition: let H be a k-clique in G. Then f(H) is a simple set of k points in the plane
having slopes in S.

• If the output is YES, there is a simple set K in the plane of size k with slp(K) ⊆
S ⊆ slp(A). As A is slope-generic, K ↪→ A by Lemma 3.7. Thus, there is no loss of
generality in assuming that K ⊆ A. The proof of the claim is completed by showing
that f−1(K) is a k-clique of G. Let A1, A2 ∈ K. We know that slp(A1A2) ∈ S, which
means slp(A1A2) = slp(f(v)f(w)) for some edge vw in G. As A has distinct slopes,
we deduce that {A1, A2} = {f(v), f(w)}, which implies that f−1(A1)f

−1(A2) is an
edge of G.

To conclude, we check that the reduction is polynomial-time (in the size of G).

• By Lemma 3.8, the set A can be computed in polynomial time (with respect to |V |).
The coordinates of the points of A have polynomially many digits, so the computation
time of each slp(f(v)f(w)) is polynomial in |V |.7 Thus, the computation of S is
polynomial-time in the size of G.

• The size of the input (S, k) is polynomial in the size of G, which concludes the proof.

Remark 3.11. It is well-known that the HALFCLIQUE8 problem is NP-complete [25, Chap-
ter 7]. We can apply the same proof wih k = d|V |/2e to get a reduction from HALFCLIQUE
to the SCGD problem. With the notation from the proof, we have |S| ≤

(|V |
2

)
≤ 2k2. There-

fore, the SCGD problem restricted to n ≤ 2k2 is also NP-complete. No attempt has been
made here to reduce the constant in the inequality.

3.4 Construction of slope-generic sets

This section is devoted to the proof of Lemma 3.8. The following lemma gives a condition
for six real numbers to constitute the slope set of a set of four points.

Lemma 3.12. Let (mi,j)1≤i<j≤4 be six real numbers. Assume that there exist four distinct
points E1, . . . , E4 in the plane such that slp(EiEj) = mi,j for all 1 ≤ i < j ≤ 4. Then

Q(m1,2,m1,3,m1,4,m2,3,m2,4,m3,4) = 0,

where Q is the polynomial

Q(z1, . . . , z6) := (z3 − z5)(z6 − z2)(z4 − z1)− (z2 − z4)(z5 − z1)(z6 − z3).

Proof. We can suppose that E1 = (0, 0), translating the four points if necessary. Consider
the linear system given by the six equations

yj − yi −mi,j(xj − xi) = 0, 1 ≤ i < j ≤ 4,

7By construction (see the proof of Lemma 3.8 in Section 3.4), the slope of the line f(v)f(w) is an integer,
which is just the sum of the x-coordinates of f(v) and f(w).

8The HALFCLIQUE problem is the task of deciding, given a graph G as input, whether G contains a
clique of size dn/2e, where n is the number of vertices of G.

http://jocg.org/

JoCG 11(1), 371–396, 2020 382

Journal of Computational Geometry jocg.org

where the six unknowns are x2, x3, x4, y2, y3, y4 and we fixed x1 = y1 = 0. It admits the
trivial solution where all variables are zero. By assumption, there is another solution, given
by (xi, yi) = Ei for 2 ≤ i ≤ 4. Hence, the determinant of the system vanishes. This
determinant computes to

Q(m1,2,m1,3,m1,4,m2,3,m2,4,m3,4),

concluding the proof of the lemma.

We will also use the existence of integer sequences with polynomial growth avoiding
certain additive configurations.

Definition 3.13 (Generalized Sidon Sequences). A strictly increasing sequence C of positive
integers is a Bh-sequence if there is no integer n ≥ 1 which can be expressed as the sum of
exactly h (non-necessarily distinct) elements of C in two different ways.

Lemma 3.14. Let h ≥ 2 be fixed. There is a strictly increasing Bh-sequence (ci)i∈N and an
algorithm (the “classic greedy algorithm”) such that

1. the sequence has polynomial growth, more precisely: cn = O(n2h−1);
2. the algorithm computes c1, . . . , cn in polynomial time (with respect to n).9

For a treatment of a more general case, we refer the reader to [4] (the proof of
Lemma 3.14 can be found in the introduction). Lemma 3.15 is the last step before the proof
of Lemma 3.8.

Lemma 3.15. The set A := {(50ci , 502ci) | i ≥ 1} is a slope-generic set for any B3-sequence
C = (ci)i≥1.

Let us make some comments before starting the proof. In the proof of Theorem 3.10,
we needed to be able to exhibit slope-generic sets of arbitrary size. The intuition given in
Section 3.1 was that most sets are slope-generic. However, to give an explicit example, one
must verify the condition in Definition 3.5 for a concrete set A. This is not an easy task:
we have to check the condition (E ↪→ A or E∗ ↪→ A) for every possible simple list E of four
points with slp(E) ⊆ slp(A). For a finite set A, this is a finite computation (considering E
modulo H). Here, we give a family of infinite slope-generic sets. The points of A are chosen
on the parabola y = x2 in order for both the slopes and the points to be integers with very
simple expressions (the same idea was used in [13, Theorem 8.3]).

Proof of Lemma 3.15. Let Ai = (50ci , 502ci) for i ∈ N. As slp(AiAj) = 50ci + 50cj for i 6= j,
it is clear that A has distinct slopes.

Suppose that E := {E1, . . . , E4} is a simple set of four points with slp(E) ⊆ slp(A).
We have to show that E ↪→ A or E∗ ↪→ A. We let mi,j := slp(EiEj) for i < j. As
m1,2 ∈ slp(A), there are two integers x1 6= x2 in the sequence C such thatm1,2 = 50x1 +50x2 .
Similarly, m1,3 = 50x3 + 50x4 , and so on, until m3,4 = 50x11 + 50x12 , for some elements of C
with x2i−1 6= x2i (see Figure 6).

9The degree of the polynomial depends on h.

http://jocg.org/

JoCG 11(1), 371–396, 2020 383

Journal of Computational Geometry jocg.org

E1 E2

E3E4

m1,2 = 50x1 + 50x2

m1,3

m1,4 = 50x5 + 50x6 m2,3 = 50x7 + 50x8

m2,4

m3,4 = 50x11 + 50x12

Figure 6: Schematic representation of the set E with its six slopes mi,j .

Since E is simple, two lines EiEj1 and EiEj2 passing through the same point Ei
cannot have the same slope if j1 6= j2. For example, this tells us that m1,2 6= m2,3, i.e. 50x1 +
50x2 6= 50x7 + 50x8 , which is equivalent to {x1, x2} 6= {x7, x8}.

Putting all the constraints together, we have10{
For 1 ≤ i ≤ 6, x2i−1 6= x2i;

For 1 ≤ i, j ≤ 6 and j 6∈ {i, 7− i}, {x2i−1, x2i} 6= {x2j−1, x2j}.
(1)

By Lemma 3.12 with the slopes mi,j , we know that

Q(50x1 + 50x2 , . . . , 50x11 + 50x12) = 0. (2)

Unless many xi’s are actually equal, an equality as (2) is unlikely to hold. The reason is that
the polynomial Q (of relatively small degree and coefficients) cannot vanish when evaluated
at integers of completely different orders of magnitude.

The goal is to use the constraints (1) and (2) to prove that the xi’s can take only
four distinct values and to know for which indices i, j we have xi = xj .11 We will see that
there are exactly two possibilities, depicted in Figure 7 (here, y1, . . . , y4 are distinct integers
and each xi is equal to one of the yj ’s).

Let r = |{x1, . . . , x12}| be the number of distinct xi’s. We will show that (2) does
not only hold as an equality between integers, but also holds “formally” (or “symbolically”).
To state this precisely, we use the language of polynomial rings. Let Z[T1, . . . , Tr] be the
polynomial ring in r indeterminates. We choose a bijection J : {x1, . . . , x12} → {T1, . . . , Tr}.

Claim. Q
(
J (x1) + J (x2), . . . ,J (x11) + J (x12)

)
is the zero polynomial in Z[T1, . . . , Tr].

Essentially, the claim means that, if we replace each xi by a formal indeterminate,
consistently (meaning that, if xi = xj , we replace xi and xj by the same indeterminate), (2)
still holds. To be precise, it is 50xi that we replace with some indeterminate in {T1, . . . , Tr}.

10The case j = 7 − i corresponds to two lines EiEj and EkEl with {i, j} ∩ {k, l} = ∅, which could be
parallel a priori. For instance, we do not know (yet) that m1,2 6= m3,4.

11We can compare this with Figure 2 from Section 3.1. If the integers xi were to take more than four
different values, it would mean that slp(E) (which corresponds to T on Figure 2) is not the slope set of a
subset B of four points of A.

http://jocg.org/

JoCG 11(1), 371–396, 2020 384

Journal of Computational Geometry jocg.org

E1 E2

E3E4

50y1 + 50y2

50
y 1

+
50
y 3

50y1 + 50y4 50y2 + 50y3
50 y

2
+

50 y
4

50y3 + 50y4

E1 E2

E3E4

50y3 + 50y4

50
y 2

+
50
y 4

50y2 + 50y3 50y1 + 50y4
50 y

1
+

50 y
3

50y1 + 50y2

Figure 7: The two possibilities for the slopes of E, given the constraints (1) and (2).

Proof of claim. If we expand the left-hand side of (2), simplify, and move half of the terms
to the right-hand side, we get an equation of the form

48∑
i=1

50xL1(i)
+xL2(i)

+xL3(i) =

48∑
i=1

50xR1(i)
+xR2(i)

+xR3(i) (3)

for some known maps Lk, Rk : {1, 2, . . . , 48} → {1, 2, . . . , 12}, k = 1, 2, 3 (these maps are just
obtained by replacing the polynomial Q by its exact expression, given in Lemma 3.12). Since
the exponents are natural numbers and each sum contains less that fifty terms, equation (3)
is equivalent to

∃σ ∈ S48, ∀i ∈ [[1, 48]], xL1(i) + xL2(i) + xL3(i) = xR1(σ(i)) + xR2(σ(i)) + xR3(σ(i)). (4)

Using the fact that {x1, . . . , x12} is part of the B3-sequence C, we can rewrite (4) as

∃σ ∈ S48, ∀i ∈ [[1, 48]], ∃τ ∈ S3, ∀k ∈ [[1, 3]], xLk(i) = xRτ(k)(σ(i)). (5)

To shorten notation, we write Xi instead of J (xi).12 Thus, each Xi is an indetermi-
nate and, since J is a bijection, Xi = Xj if and only if xi = xj . In particular, (1) becomes{

For 1 ≤ i ≤ 6, X2i−1 6= X2i;

For all i, j with j 6∈ {i, 7− i}, {X2i−1, X2i} 6= {X2j−1, X2j}.
(1’)

Applying the bijection, (5) translates to

∃σ ∈ S48, ∀i ∈ [[1, 48]], ∃τ ∈ S3, ∀k ∈ [[1, 3]], XLk(i) = XRτ(k)(σ(i)). (5’)

Just like above, this equation can be rewritten as

∃σ ∈ S48, ∀i ∈ [[1, 48]], XL1(i)XL2(i)XL3(i) = XR1(σ(i))XR2(σ(i))XR3(σ(i)),

then as
48∑
i=1

XL1(i)XL2(i)XL3(i) =

48∑
i=1

XR1(i)XR2(i)XR3(i),

12Note that Xi is not a new indeterminate, it is just a notation for the indeterminate Tj which is associated
to xi.

http://jocg.org/

JoCG 11(1), 371–396, 2020 385

Journal of Computational Geometry jocg.org

and finally (by definition of the functions Lk, Rk) as

Q(X1 +X2, . . . , X11 +X12) = 0, (2’)

which proves the claim.

We will now see what the constraints (1’) and (2’) imply about the Xi’s. We will
use the fact that (1’) and (2’) are (in)equalities in the more convenient ring Z[T1, . . . , Tr].
By definition of Q (cf. Lemma 3.12), the equality (2’) is equivalent to

(Z3 − Z5)(Z6 − Z2)(Z4 − Z1) = (Z2 − Z4)(Z5 − Z1)(Z6 − Z3), (6)

where we used the notations (Z1, Z2, . . . , Z6) := (X1 +X2, X3 +X4, . . . , X11 +X12) for the
equation to fit on a single line.

Let us look more closely at the factors of (6). They are all of the form Zi − Zj
for some pairs (i, j) with j 6∈ {i, 7 − i}. As Zi is just an abbreviation for X2i−1 + X2i,
we have Zi − Zj = X2i−1 + X2i − X2j−1 − X2j . By (1’), we know that X2i−1 6= X2i,
X2j−1 6= X2j and {X2i−1, X2i} 6= {X2j−1, X2j}, since j 6∈ {i, 7− i}. Remembering that each
of X2i−1, X2i, X2j−1, X2j is an element of {T1, . . . , Tr}, we observe that Zi − Zj must be a
(non-zero) homogeneous polynomial with content 1 and (total) degree 1.13 Thus, for these
pairs (i, j), the polynomial Zi − Zj is irreducible, hence prime, in the unique factorization
domain Z[T1, . . . , Tr]. We have just proved that each side of (6) is a product of prime
elements. By unique factorisation in Z[T1, . . . , Tr], we can thus identify each factor on one
side with one of the factors on the other side (up to a sign).

From the single equation (6), we thus deduce three equations (for every choice of
signs and every permutation of the factors of the right-hand side). For example, if we choose
all the signs to be + and we don’t permute the factors, the three equations are

Z3 − Z5 = Z2 − Z4

Z6 − Z2 = Z5 − Z1

Z4 − Z1 = Z6 − Z3.

(7)

Let us continue this example, and come back to the general case afterwards. After replacing
the Zi’s by their definition and noticing that the last equation in (7) is redundant, we get

X1 +X2 +X11 +X12 = X3 +X4 +X9 +X10 = X5 +X6 +X7 +X8. (8)

Since every Xi is an indeterminate Tj in Z[T1, . . . , Tr], the only way (8) can hold is if
X3, X4, X9, X10 and X5, X6, X7, X8 are permutations of X1, X2, X11, X12. Not every pair of
permutations is allowed: the constraints (1’) must still be satisfied. Two ways that (1’) and
(8) can simultaneously be verified are as follows.

(i)



X1 = X3 = X5

X2 = X9 = X7

X11 = X4 = X8

X12 = X10 = X6

X1, X2, X11, X12 pairwise distinct

(ii)



X11 = X9 = X7

X12 = X3 = X5

X1 = X10 = X6

X2 = X4 = X8

X11, X12, X1, X2 pairwise distinct

(9)

13The content of a polynomial over Z is the greatest common divisor of its coefficients.

http://jocg.org/

JoCG 11(1), 371–396, 2020 386

Journal of Computational Geometry jocg.org

We now return to the general case. We use a computer program to check all the
possibilities (the source code can be found in Appendix A). With the help of the program,
we conclude the following.

1. There is only one way to choose three signs and a permutation of the factors that does
not lead to a contradiction (it is the choice made in (7)).

2. There are 27 possibilities in total. Up to the symmetries X2i−1 ↔ X2i (there are 26

combinations of such transpositions), there are actually only two possibilities, given
by (i) and (ii) from (9).

We can now prove that A is slope-generic. Recall that Xi = Xj if and only if
xi = xj . Without loss of generality (performing exchanges X2i−1 ↔ X2i and x2i−1 ↔ x2i if
necessary), we may thus assume to be in one of the following two cases.

(i)



y1 := x1 = x3 = x5

y2 := x2 = x9 = x7

y3 := x11 = x4 = x8

y4 := x12 = x10 = x6

y1, y2, y3, y4 pairwise distinct

(ii)



y1 := x11 = x9 = x7

y2 := x12 = x3 = x5

y3 := x1 = x10 = x6

y4 := x2 = x4 = x8

y1, y2, y3, y4 pairwise distinct

In each case, we define the distinct points Bi := (50yi , 502yi), for 1 ≤ i ≤ 4. The
subset B = {B1, B2, B3, B4} of A is our candidate to verify the slope-genericity of A with
respect to E.

• In the case (i), we have E ∼ B. To see this, note that the quadruples (E1, E2, E3, E4)
and (B1, B2, B3, B4) are exactly in the configuration of Remark 2.3. This is an im-
mediate verification: for example, one has slp(E2E4) = 50x9 + 50x10 = 50y2 + 50y4 =
slp(B2B4). Hence, E ↪→ A.

• In the case (ii), writeE∗ = (F1, . . . , F4). This time, (F1, F2, F3, F4) and (B1, B2, B3, B4)
are in the configuration of Remark 2.3, so E∗ ∼ B and E∗ ↪→ A.

Remark 3.16. By exploiting symmetry, it is possible to work out all the cases by hand,
instead of using a computer program.

Remark 3.17. In the previous subsections, we said that one could think of a slope-generic
set as any “sufficiently random” set of points. We now give a more concrete explanation of
this intuition, in the light of the proof of Lemma 3.15 (supposing that we do not require
the slopes to be integers anymore). Let A be a set of points, and let E be a simple set
of four points such that slp(E) = slp(A). Thus, every slope mi,j of E can be written as
mi,j =

yi,j,2−yi,j,1
xi,j,2−xi,j,1 for some points (xi,j,k, yi,j,k) of A. By Lemma 3.12, we have

Q

(
y1,1,2 − y1,1,1
x1,1,2 − x1,1,1

,
y1,2,2 − y1,2,1
x1,2,2 − x1,2,1

, . . . ,
y3,4,2 − y3,4,1
x3,4,2 − x3,4,1

)
= 0. (10)

If A is “random enough”, equation (10) cannot hold by an “arithmetic coincidence”. Following
the proof of Lemma 3.15, this means that (10) still holds true when we replace the xi,j,k’s
and yi,j,k’s by formal variables, in a “consistent” way. Once we have the formal equality, it is

http://jocg.org/

JoCG 11(1), 371–396, 2020 387

Journal of Computational Geometry jocg.org

conceivable that the same type of arguments as in the second half of the proof can yield the
desired result, i.e. that E ↪→ A or E∗ ↪→ A. Since this is not needed for our main theorem,
we will not give more details.

We can now prove Lemma 3.8.

Lemma 3.8. There exists an algorithm to compute a slope-generic set of size n in time
polynomial in n. Moreover, the coordinates of the constructed points are integers with poly-
nomially many digits, and every slope determined by the set is an integer.

Proof. First, a B3-sequence c1 < . . . < cn is calculated in polynomial time using the greedy
algorithm of Lemma 3.14. Then, one computes Ai = (50ci , 502ci) for 1 ≤ i ≤ n, and returns
{A1, . . . , An}. Because ci = O(n2·3−1), the computation of the powers 50ci and 502ci is
indeed polynomial in n.

Remark 3.18. The property that the sequence (ci) grows polynomially is crucial in the
logarithmic-cost model of computation. In the uniform-cost model, we could just have
chosen the B3-sequence ci = 4i. The number 504

n can be computed in linear time by
repeated squaring, even though this number has exponentially many digits. This is the
reason why the uniform-cost RAM model (with multiplication) is not considered to be a
reasonable model of computation (see [12, pp. 177-178] and [2, §2.2.2]).

4 Algorithms for the restricted SCGD problem

In this section, we present two polynomial algorithms for the SCGD problem when the
number of slopes n = |S| is not much larger than k. The first one (Proposition 4.6) is
deterministic, the other one (Proposition 4.8) is probabilistic.

4.1 Affinely-regular polygons

We give two equivalent definitions and some elementary properties of affinely-regular poly-
gons that can be found in [5]. For a survey of affinely-regular polygons over an arbitrary
field, we refer the reader to [7].

Definition 4.1. Let n ≥ 3. An affinely-regular n-gon is a finite set of points P satisfying
one of the following equivalent properties:

• P is the image of a regular n-gon under some ψ ∈ Aff(2,R);

• P = {φi(P0) | i ∈ Z} for some φ ∈ Aff(2,R) of order n and some P0 ∈ R2.

Fact 4.2. Let P be an affinely-regular polygon with vertices P0, . . . , Pn−1, in cyclic order
(say counterclockwise). Let φ be the unique affine transformation such that φ(Pi) = Pi+1

for i = 0, 1, 2. Then, considering the indices modulo n, we have

1. φ has order n and φi(P0) = Pi for all i;

2. slp(Pi−kPj+k) = slp(PiPj) for all i, j, k with i 6= j;

http://jocg.org/

JoCG 11(1), 371–396, 2020 388

Journal of Computational Geometry jocg.org

3. If s0 := slp(Pn−1P1) and si := slp(P0Pi) for 1 ≤ i ≤ n − 1, then the slopes of P are
precisely s0, s1, . . . , sn−1, in this (cyclic) order;

4. The sequence of boundary slopes (slp(P0P1), slp(P1P2), . . . , slp(Pn−1P0)) is{
(s1, s3, s5, . . . , sn−2, s0, s2, . . . , sn−1) if n is odd;
(s1, s3, s5, . . . , sn−1, s1, s3, . . . , sn−1) if n is even.

We also recall Jamison’s conjecture on affinely-regular polygons.

Conjecture (Jamison). For some constant c1, the following holds. If n ≤ 2k − c1, every
simple set of k points forming (exactly) n slopes is contained in an affinely-regular n-gon.

4.2 Model of computation

We want to give an algorithm for the SCGD problem when Jamison’s conjecture applies,
i.e. when n ≤ 2k − c1. Assuming the conjecture, the sets K that satisfy the SCGD problem
are subsets of affinely-regular polygons. However, affinely-regular n-gons have irrational
slopes as soon as n 6= 3, 4, 6 (because cos(2π/n) has degree φ(n)/2 over Q, as was proven by
D. H. Lehmer [18]). The problem is thus trivial if the slopes given as inputs are integers, as
in Section 3.

We will therefore allow the slopes to be arbitrary real numbers,14 and adopt the real
RAM model described in [24]: the primitive arithmetic operations +,−, ·, / and comparisons
on real numbers are available at unit time cost.

4.3 Deterministic algorithm

We start by solving a problem similar to the restricted SCGD problem when four points of
the set K are already given as inputs.

Lemma 4.3. There is a deterministic algorithm with time complexity O(n) for the following
problem.

Input. • A sorted list S of n slopes;
• A natural number k ≤ n;
• A simple list (P0, . . . , P3) of four points.

Problem. Does there exist a point set K satisfying the following conditions?

(i) K forms an affinely-regular polygon;
(ii) P0, . . . , P3 are consecutive points of K (in that order);
(iii) k ≤ |K| ≤ n;
(iv) slp(K) ⊆ S.

Proof. Let φ be the unique affine transformation that maps Pj to Pj+1, for j = 0, 1, 2. By
Fact 4.2, if there exists a set K satisfying (i), (ii) and (iii), φ must have order |K| ∈ [k, n]
(and K is the orbit of P0 under φ). This explains the first steps of the algorithm.

14An alternative would be to restrict to algebraic numbers, as explained in Yap [27].

http://jocg.org/

JoCG 11(1), 371–396, 2020 389

Journal of Computational Geometry jocg.org

1: Compute φ (as a 3× 3 matrix). Compute φj , 1 ≤ j ≤ n.
2: If the order of φ is in the interval [k, n], call it d. Otherwise, return NO.

Suppose now that φ has order d ∈ [k, n]. Let K := {φj(P0) | 0 ≤ j < d}. By
Definition 4.1 and Fact 4.2, K is the unique affinely-regular polygon satisfying (i), (ii) and
(iii). This means that we only need to check whether K satisfies slp(K) ⊆ S.

3: We compute the slopes of K. Let s0 = slp(P1φ
d−1(P0)) and sj = slp(P0φ

j(P0)), for
1 ≤ j ≤ d− 1. By Fact 4.2, the slopes of K are exactly s0, . . . , sd−1, in this order.

4: Return YES if slp(K) ⊆ S, and NO otherwise. It is possible to check the inclusion in
linear time since both sides are sorted.

Now, we suppose that we already know four consecutive slopes determined by K.

Lemma 4.4. There is a deterministic O(n) algorithm for the following problem.

Input. • A sorted list S of n slopes;
• A natural number k ≤ n;
• A list (s0, . . . , s3) of four distinct slopes.

Problem. Does there exist a point set K satisfying the following conditions?

(I) K forms an affinely-regular polygon;
(II) s0, . . . , s3 are four consecutive slopes of K (in that order);
(III) k ≤ |K| ≤ n;
(IV) slp(K) ⊆ S.

Proof. We reduce the task to Lemma 4.3. We first give the two steps of the reduction and
then provide the explanations.

1: Compute four distinct points P0, . . . , P3 (resp. P̃0, . . . , P̃3) satisfying the equalities (11)
(resp. (12)) below. Such points exist as s0, . . . , s3 are distinct.

slp(P0P1) = s0, slp(P0P2) = s1, slp(P1P2) = s2 = slp(P0P3), and slp(P1P3) = s3 (11)

slp(P̃0P̃2) = s0, slp(P̃1P̃2) = s1 = slp(P̃0P̃3), slp(P̃1P̃3) = s2, and slp(P̃2P̃3) = s3 (12)

2: For P ∈ {(P0, . . . , P3), (P̃0, . . . , P̃3)}, run the algorithm of Lemma 4.3 with S, k and
P as inputs. Return YES if one of the two outputs is YES, and NO if both are NO.

Let us explain why this algorithm is correct.

• Suppose that there exists an affinely-regular d-gon K, of which s0, . . . , s3 are consec-
utive slopes. Then, by Fact 4.2, at least one of s0 and s1 is a boundary slope of K.
We have the following alternative (see Figure 8):

(a) If s0 is a boundary slope of K, there are four consecutive vertices P ′0, . . . , P ′3 of
K such that

slp(P ′0P
′
1) = s0, slp(P ′0P

′
2) = s1, slp(P ′1P

′
2) = s2 = slp(P ′0P

′
3), and slp(P ′1P

′
3) = s3. (11’)

http://jocg.org/

JoCG 11(1), 371–396, 2020 390

Journal of Computational Geometry jocg.org

P ′0
P ′1

P ′2

P ′3

s0

s1
s2

s2 s3

(a) If s0 is a boundary slope.

P̃ ′0
P̃ ′1

P̃ ′2

P̃ ′3

s0 s1

s1
s2

s3

(b) If s1 is a boundary slope.

Figure 8: Construction of four consecutive points of K in the proof of Lemma 4.4.

(b) If s1 is a boundary slope of K, there are four consecutive vertices P̃ ′0, . . . , P̃ ′3 of
K such that

slp(P̃ ′0P̃
′
2) = s0, slp(P̃ ′1P̃

′
2) = s1 = slp(P̃ ′0P̃

′
3), slp(P̃ ′1P̃

′
3) = s2, and slp(P̃ ′2P̃

′
3) = s3. (12’)

The conditions (11’) uniquely determine the distinct points P̃0, . . . , P̃3, up to an el-
ement of H (the group of homotheties and translations). Therefore, in the case (a),
we may assume that P̃0, . . . , P̃3 are precisely the points constructed in the first step of
the algorithm (by applying an element of H to K if necessary). The same is true with
P̃ ′0, . . . , P̃

′
3 in the case (b). So we are in the setting of Lemma 4.3.

• Conversely, it is clear that a set K satisfying properties (i) through (iv) of Lemma 4.3
for one of those two quadruples will also satisfy properties (I) through (IV).

Remark 4.5. In fact, it is not necessary to consider case (b), because it is possible to prove the
following. If s0 is a slope of an affinely-regular polygon K̃, there is another affinely-regular
polygon K which has s0 as a boundary slope and such that slp(K̃) = slp(K).

We can now give the claimed algorithm. The problem here is that we do not know
a priori which slopes of S will be used by K.

Proposition 4.6. Assuming Jamison’s conjecture, there is an O((n− k+ 1)4n) time deter-
ministic algorithm for the SCGD problem restricted to n ≤ 2k − c1:

Input. • A sorted list S of n slopes
• A natural number k such that n ≤ 2k − c1

Problem. Does there exist a simple set K of k points with slp(K) ⊆ S?

Proof. If n < k, return NO, as every simple set of k points has at least k slopes. By Jamison’s
conjecture, the problem is equivalent to: “does there exist an affinely-regular m-gon P with
slp(P) ⊆ S for some m ≥ k?”. Let r := n− k.

http://jocg.org/

JoCG 11(1), 371–396, 2020 391

Journal of Computational Geometry jocg.org

1: Let T be the list of the first r + 4 slopes of S.

Suppose that there exists an affinely-regular m-gon P with slp(P) ⊆ S for some
m ≥ k. We have |slp(P)∩T | ≥ 4, as otherwise |slp(S)| ≥ |slp(P)∪T | ≥ m+(r+4)−3 > n.
So, there exist four slopes of T which are also slopes of P . Let s0, . . . , s3 be the first four
occurrences of slopes of P in the list T , in this order. By construction, the slopes T were
chosen to be consecutive slopes of S. As slp(P) ⊆ S, this implies that s0, . . . , s3 must be
consecutive slopes of P .

2: For every subsequence of four slopes of T , execute the algorithm of Lemma 4.4 (with
the same S and k). If the output is YES for at least one subsequence of four slopes of
T , return YES. Otherwise, return NO.

As the algorithm in Lemma 4.4 has runtime O(n), the time complexity of the full
algorithm is O

((
r+4
4

)
n
)
.

Remark 4.7. • If we restrict the inputs to have n ≤ k + M for some fixed M , we get
an algorithm in O(n). This is the optimal complexity since all the slopes have to be
taken into account in the worst case.

• Jamison’s conjecture was proven in the cases n = k (by Jamison in his original pa-
per [14]) and n = k + 1 (recently, by Pilatte [23]). In those cases, the correctness of
our algorithm is independent of any assumption.

• For n = k, Wade and Chu presented an algorithm in O(n4) for this problem (see [26]).
We have thus reduced the complexity to O(n). For n = k+1, no polynomial algorithm
had been proposed before.

4.4 Monte-Carlo algorithm

The previous algorithm has runtime O((n−k+ 1)4n), which is O(n5) in the worst case. We
can improve it to O(n) if we are willing to use a probabilistic algorithm.

Proposition 4.8. Assuming Jamison’s conjecture, there is a one-sided error Monte-Carlo
algorithm with running time O(n) for the decision problem described in Proposition 4.6.

Proof. The idea is the same as in the proof of Proposition 4.6: we will find quadruples of
four consecutive slopes in S and apply Lemma 4.4 with them.

1: Pick one slope t1 of S uniformly at random.
2: Select the slopes t2, . . . , t12 of S such that T = (t1, . . . , t12) is a list of consecutive

slopes in S.
3: For each subsequence of four slopes of T , use Lemma 4.4. If the output is YES for at

least one subsequence, return YES. Otherwise, return NO.

• If this algorithm outputs YES, the existence of a valid setK is guaranteed by Lemma 4.4,
so the output is correct.

http://jocg.org/

JoCG 11(1), 371–396, 2020 392

Journal of Computational Geometry jocg.org

• What is left is to show that the probability of incorrectly outputting NO is bounded
away from 1. Suppose that the correct answer is YES. Equivalently, by Jamison’s
conjecture, there is an affinely-regular polygon P of with slp(P) ⊆ S and |P | ≥ k. Let
X be the random variable defined by X = |T ∩ slp(P)| (S and P are fixed and T is
random). The algorithm outputs YES whenever X ≥ 4. As

|slp(P)| ≥ |P | ≥ k ≥ n+ c1
2
≥ n

2
=
|S|
2
,

we have

E(X) =
∑

1≤i≤12
P[ti ∈ slp(P)] = 12 · |slp(P)|

|S|
≥ 6.

Hence P[output is NO] ≤ P[X < 4] = P[12 − X ≥ 9] ≤ 2/3, by Markov’s inequality,
which completes the proof.

Acknowledgements

I am very grateful to Christian Michaux for his lasting support and valuable advice, and to
Pierre Vandenhove for the fruitful discussions that we had about slope-generic sets.

References

[1] János Barát, Jiří Matoušek, and David R Wood. Bounded-degree graphs have arbi-
trarily large geometric thickness. The Electronic Journal of Combinatorics, 13(1):3,
2006.

[2] P Van Emde Boas. Machine models and simulations. In Handbook of Theoretical
Computer Science, volume A, pages 1–66. 2014.

[3] G. Brückner, N. D. Krisam, and T. Mchedlidze. Level-planar drawings with few slopes.
In International Symposium on Graph Drawing and Network Visualization, pages 559–
572. Springer, 2019.

[4] Javier Cilleruelo. A greedy algorithm for Bh[g] sequences. arXiv preprint
arXiv:1601.00928, 2016.

[5] H. S. M. Coxeter. Affinely regular polygons. In Abhandlungen aus dem Mathematischen
Seminar der Universität Hamburg, volume 34, pages 38–58. Springer, 1969.

[6] Max Engelstein. Drawing graphs with few slopes. Intel Competition for high school
students, New York, 2005.

[7] J. Chris Fisher and Robert E. Jamison. Properties of affinely regular polygons. Ge-
ometriae Dedicata, 69(3):241–259, 1998.

[8] M. Formann, T. Hagerup, J. Haralambides, M. Kaufmann, F. T. Leighton, A. Symvonis,
E. Welzl, and G. J. Woeginger. Drawing graphs in the plane with high resolution. SIAM
Journal on Computing, 22(5):1035–1052, 1993.

http://jocg.org/

JoCG 11(1), 371–396, 2020 393

Journal of Computational Geometry jocg.org

[9] Ashim Garg and Roberto Tamassia. On the computational complexity of upward and
rectilinear planarity testing. SIAM Journal on Computing, 31(2):601–625, 2001.

[10] A. Heyting. Axiomatic projective geometry, 2nd ed. North-Holland Publishing Com-
pany, 1980.

[11] Udo Hoffmann. On the complexity of the planar slope number problem. J. Graph
Algorithms Appl., 21(2):183–193, 2017.

[12] Juraj Hromkovič. Theoretical computer science: introduction to Automata, com-
putability, complexity, algorithmics, randomization, communication, and cryptography.
Springer, 2003.

[13] Robert E. Jamison. A survey of the slope problem. Annals of the New York Academy
of Sciences, 440(1):34–51, 1985.

[14] Robert E. Jamison. Few slopes without collinearity. Discrete mathematics, 60:199–206,
1986.

[15] Richard M Karp. Reducibility among combinatorial problems. In Complexity of com-
puter computations, pages 85–103. Springer, 1972.

[16] Balázs Keszegh, János Pach, and Dömötör Pálvölgyi. Drawing planar graphs of bounded
degree with few slopes. SIAM Journal on Discrete Mathematics, 27(2):1171–1183, 2013.

[17] Balázs Keszegh, János Pach, Dömötör Pálvölgyi, and Géza Tóth. Drawing cubic graphs
with at most five slopes. Computational Geometry, 40(2):138–147, 2008.

[18] Derik H. Lehmer. A note on trigonometric algebraic numbers. The American Mathe-
matical Monthly, 40(3):165–166, 1933.

[19] Bruce E. Meserve. Fundamental concepts of geometry. Dover Publications, 1983.

[20] Padmini Mukkamala and Dömötör Pálvölgyi. Drawing cubic graphs with the four basic
slopes. In International Symposium on Graph Drawing, pages 254–265. Springer, 2011.

[21] Padmini Mukkamala and Mario Szegedy. Geometric representation of cubic graphs
with four directions. Computational Geometry, 42(9):842–851, 2009.

[22] János Pach and Dömötör Pálvölgyi. Bounded-degree graphs can have arbitrarily large
slope numbers. The Electronic Journal of Combinatorics, 13(1):N1, 2006.

[23] Cédric Pilatte. On the sets of n points forming n+1 directions. The Electronic Journal
of Combinatorics, 27(1):1.24, 2020.

[24] Franco P. Preparata and Michael I. Shamos. Computational geometry: an introduction.
Springer, 2012.

[25] Michael Sipser. Introduction to the Theory of Computation, 2nd ed. Thomson Course
Technology, 2006.

http://jocg.org/

JoCG 11(1), 371–396, 2020 394

Journal of Computational Geometry jocg.org

[26] G. A. Wade and J.-H. Chu. Drawability of complete graphs using a minimal slope set.
The Computer Journal, 37(2):139–142, 1994.

[27] Chee-Keng Yap. Towards exact geometric computation. Computational Geometry,
7(1-2):3–23, 1997.

A Source code for Lemma 3.15

This is the source code of the Python program mentioned in the proof of Lemma 3.15. It
runs in Python 3.7.7. It uses the Sympy library (see https://www.sympy.org) for symbolic
computations. It is also available on arXiv (https://arxiv.org/src/2001.04671v4/anc)
as a Python file.

from time import sleep
import itertools as it
from sympy import * # Symbolic computations

def parse_expression(expression):
'''
Input: a linear combination of the X_i's, e.g. 2*X_1-X_3+X_4.
Output: two lists of terms with coefficients, one with the positive coefficients

and one with negative coefficients.e.g. [(2, X_1), (1, X_4)], [(-1, X_3)].
'''
list_terms = Add.make_args(expression)
coeff_terms = [Mul.make_args(term) for term in list_terms]
for i, term in enumerate(coeff_terms):

if len(term) == 1: # No coefficient -> the coefficient is 1
coeff_terms[i] = (1, term[0])

positive_terms = [t for t in coeff_terms if t[0] > 0]
negative_terms = [t for t in coeff_terms if t[0] < 0]
return positive_terms, negative_terms

def substitute_all(old_var, new_var, equations, remove_trivial = False):
'''
Substitutes the occurrences of old_var by new_var in all equations.
If 'remove_trivial' is True, all expressions which are zero after substitution are discarded.
'''
new_equations = [eq.subs(old_var, new_var) for eq in equations]
return [new_eq for new_eq in new_equations if new_eq != 0 or not remove_trivial]

def solve_recurs(equations, inequations, substitutions = []):
'''
Input: - 'equations' and 'inequations', two lists of expressions (each expression

is a linear combinations of the X_i's)
- 'substitutions', a list of pairs of variables (X_i, X_j), indicating that X_i has

previously been substituted with X_j
Output: A list of substitutions

Finds all partitions on the set of variables {X_0, ..., X_11} with the property that:
- for every expression in 'equations', the reduced expression is zero
- for every expression in 'inequations', the reduced expression is nonzero.

By reduced expression, we mean the following. If X_i_1, ..., X_i_k is a set of representatives
for the partition, and if 'e' is an expression, the reduced version of 'e' is the expression
obtained by
1) substituting in 'e' every variable (an element of {X_0, ..., X_11}) by the

variable X_i_k that is in the same class of the partition;
2) simplifying the expression as much as possible.

http://jocg.org/
https://www.sympy.org
https://arxiv.org/src/2001.04671v4/anc

JoCG 11(1), 371–396, 2020 395

Journal of Computational Geometry jocg.org

The partition is represented as a sequence of substitutions. The partition corresponding
to a list of substitutions is the partition with the fewest number of classes with the
following property: for every substitution (X_i, X_j), X_i and X_j are in the same class.
'''
ans_substitutions = []
if len(equations) == 0:

return [substitutions]
positive_terms, negative_terms = parse_expression(equations[0])
old_var = positive_terms[0][1] # old_var is in the first equation with a positive coefficient
for coef, new_var in negative_terms: # old_var must cancel out with some other variable new_var

that appears in the first equation with a negative coefficient
new_inequations = substitute_all(old_var, new_var, inequations)
for nonzero in new_inequations:

if nonzero == 0: # The substitution old_var <- new_var leads to a contradiction
break

else: # Perform the substitution and make a recursive call
new_equations = substitute_all(old_var, new_var, equations, remove_trivial = True)
sub = solve_recurs(new_equations, new_inequations, substitutions+[(old_var, new_var)])
if sub is not None:

ans_substitutions.extend(sub)
return ans_substitutions

def pretty_print_sub(substitutions):
'''Prints the given list of substitutions as a sequence of equalities.'''
partition = []
sub_to_str = lambda t: (str(t[0]).ljust(4), str(t[1]).ljust(4))
str_substitutions = map(sub_to_str, substitutions)
for old, new in str_substitutions:

for partition_class in partition: # We search for the class of old and new in the partition
if old in partition_class or new in partition_class:

partition_class.update({old, new})
break

else: # Create a new class in the partition with old and new
partition.append({old, new})

for partition_class in partition:
print(" = ".join(partition_class))

if __name__ == "__main__":
Define the variables X_i, the Z_i's and the factors appearing in the proof
X = [None] + list(symbols('X_1:13')) # We do not use X[0] to match the notations of the proof
Z = [None] + [X[2*i-1] + X[2*i] for i in range(1, 7)]
factors_LHS = [Z[3]-Z[5], Z[6]-Z[2], Z[4]-Z[1]]
factors_RHS = [Z[2]-Z[4], Z[5]-Z[1], Z[6]-Z[3]]

nonzero_expressions = [] # List of conditions of the form 'expr != 0' satisfied by the X_i's
for i in range(1, 7):

nonzero_expressions.append(X[2*i-1] - X[2*i])
nonzero_expressions.extend([Z[i] - Z[j] for j in range(1, i) if i + j != 7])

cnt_print = 0
max_num_sol_to_print = 10
all_solutions = []
for signs in it.product([+1, -1], repeat = 3): # Choose 3 signs

if prod(signs) == 1:
for permuted_factors_RHS in it.permutations(factors_RHS):

Each factor on the LHS must equal a factor on the RHS, up to a sign
equations = [factors_LHS[i] - signs[i]*permuted_factors_RHS[i] for i in range(3)]

Printing parameters
cnt_print += 1
print("Case", cnt_print, "out of 24.")
print("-> The signs are", ", ".join([str(sign).rjust(2, "+") for sign in signs]))
print("-> Permutation", (cnt_print-1)%6+1, "out of 6.")

http://jocg.org/

JoCG 11(1), 371–396, 2020 396

Journal of Computational Geometry jocg.org

print("The system of equations is:")
for eq in equations:

print(str(eq)+" = 0")
print("Computing the solutions...")

answer = solve_recurs(equations, nonzero_expressions)
all_solutions.extend(answer)

Printing solutions
print("...there are", len(answer), "solutions.")
if len(answer) > 0:

num_sol_to_print = min(len(answer), max_num_sol_to_print)
print("\nFor example, here are", num_sol_to_print, "solutions:\n")
for i in range(num_sol_to_print):

pretty_print_sub(answer[i])
print()

print("There are", len(answer)-num_sol_to_print, "more solutions.\n")
print()
sleep(1)

http://jocg.org/

	Introduction
	Notations and terminology
	NP-completeness of the SCGD problem
	Motivation
	Slope-generic sets
	Proof of NP-completeness
	Construction of slope-generic sets

	Algorithms for the restricted SCGD problem
	Affinely-regular polygons
	Model of computation
	Deterministic algorithm
	Monte-Carlo algorithm

	Source code for lem:example

