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1 Introduction

Achieving a deeper understanding of string theory, and quantum gravity in general, as
well as building stronger ties with phenomenology, requires addressing the problem of
supersymmetry breaking. Despite remarkable progress has been accomplished in a variety
of directions, the lack of an overarching guiding principle together with numerous issues in
low-energy effective field theory (EFT) constructions points to high-energy supersymmetry
breaking as the natural environment to seek instructive lessons, both from a theoretical
and a phenomenological perspective. Indeed, it is possible to concoct perturbative models
in which supersymmetry is either absent or broken at the string scale. Within the scope of
this paper, the former setting comprise the SO(16)× SO(16) heterotic model of [1, 2] and
the U(32) “type 0′B” model of [3, 4], while the latter setting is embodied by the USp(32)
model of [5], which exhibits the peculiar phenomenon of “brane supersymmetry breaking”
(BSB) [6–9].1 The notion that high-energy supersymmetry breaking is in some sense natural
also resonates with recent considerations stemming from the Swampland program [11, 12],
and in particular the central role played by the gravitino mass is suggestively reminiscent
of BSB, as discussed in [10].

1See also [10] for a recent investigation of models featuring a novel type of BSB.
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At any rate, in order to elucidate deeper features of supersymmetry breaking it appears
paramount to go beyond the EFT regime. Specifically, one can consider the dynamics of
branes, which manifest themselves in various guises in different regimes of string theory,
ranging from soliton solutions of space-time field equations to conformal field theory (CFT)
boundary states to world-volume gauge theories. They have been proven an invaluable
tool to investigate any setting, supersymmetric or not, and in this paper we would like
to pursue this approach to shed some light on the subtle, and so far elusive, physics of
high-energy supersymmetry breaking. Concretely, we shall compute static interaction
potentials between stacks of parallel branes of various charges and dimensions, comparing
the results obtained in different regimes. In particular, the interactions between extremal
branes reveal a peculiar, novel mechanism giving rise to a repulsive force [13], which we
shall discuss in detail in the following, further grounding the connections between top-down
settings and the Swampland program that were developed in [14].

The contents of this paper are organized as follows. In section 2 we provide an
overview of the non-supersymmetric string models at stake, describing their brane content
in section 2.1 and low-energy EFT description in section 2.2. In section 3 we discuss the
gravitational back-reaction of branes of various dimensions, namely uncharged D8-branes
and charged D1, D3 and NS5-branes. The latter feature near-horizon Anti-de Sitter (AdS)
throats, characteristic of extremal black objects, with the exception of D3-branes in the
type 0′B model of [3, 4] which feature quasi-AdS geometries that converge non-uniformly
to AdS5 × S5 for a large number of branes [15, 16]. In section 4 we present in detail the
computation of interaction potentials for parallel brane stacks of various dimensions and
charges. Our analysis spans three complementary regimes, depending on the numbers
N1 , N2 of branes in the two stacks. In particular, for N1 � N2 the branes in the first
stack effectively probe the space-time geometry sourced by the second stack, while for
N1 , N2 = O(1) the interaction potential is calculable via perturbative string amplitudes,
at least in principle. Whenever both stacks have the same dimensions and charges the
resulting expressions are highly involved, but in all other cases the leading contribution for
large brane separations can be extracted from the annulus amplitude. Finally, we study the
world-volume gauge theory of D1-branes in the USp(32) model of [5], where the bosonic
and fermionic contributions to the one-loop effective potential do not cancel, leading to a
non-trivial result along the lines of [17, 18].

The emergence of an AdS3 throat for a large number of D1-branes suggests a holographic
interpretation of the results, opening new avenues in top-down holography with broken
supersymmetry. Moreover, branes with the same charges always repel, corroborating the
Weak Gravity Conjecture (WGC) [19] in a non-supersymmetric context. In the probe regime,
this behavior stems from a novel renormalization of the effective charge-to-tension ratio due
to the supersymmetry-breaking gravitational tadpoles [13], while in the world-volume gauge
theory it stems from the absence of the fermionic contribution to the one-loop effective
potential. More generally, the qualitative repulsive or attractive behavior is shared among
different regimes whenever they apply. This non-trivial agreement points to a tantalizing
deeper principle behind our findings.
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2 Branes and gravitational tadpoles

In this section we briefly review the three non-supersymmetric string models that we shall
investigate on in this paper, focusing on their brane content. In particular, the USp(32)
model of [5] and the U(32) type 0′B model of [3, 4] contain several charged and uncharged
branes in their perturbative spectra [20]. In suitable probe regimes, their dynamics can
be studied via string amplitudes or effective world-volume actions, while in the opposite
regime their back-reaction can be described from the bulk gravitational action. Similarly,
the heterotic NS5-branes in the SO(16) × SO(16) model of [1, 2] can be studied at low
energies, despite the absence of strong-weak dualities.2

While the type 0′B model arises as a non-tachyonic orientifold of the tachyonic type
0B model, and is thus non-supersymmetric at the outset, the USp(32) model and the
SO(16) × SO(16) heterotic model arise as projections of the type IIB and the E8 × E8
superstrings respectively, thereby featuring supersymmetry breaking at the string scale.

The relevant orientifold projections [25–32] can be constructed via one-loop vacuum
amplitudes,3 in a similar fashion to that of the type I superstring. In particular, one can
obtain the USp(32) model of [5] introducing an O9-plane with positive tension and charge
together with D9-branes, yielding a vanishing R-R tadpole. However, the NS-NS tadpole is
not canceled, and thus supersymmetry is broken at the string scale.4 Since the residual
tension in the NS-NS tadpole does not cancel, the low-energy physics of this model includes
the string-frame runaway exponential potential5

T

∫
d10x

√
−gs e

−φ , (2.1)

whose Einstein-frame counterpart is

T

∫
d10x

√
−g eγφ , γ = 3

2 . (2.2)

Similar exponential potentials actually appear also in the other models at stake, and
resonate with the considerations in [39, 40]. We shall review some aspects of their dramatic
back-reaction in the next section. The U(32) type 0′B model of [3, 4] arises instead from a
projection of the type 0B model. The corresponding O9-plane, which arises from a particular
combination of elementary O9-planes [34], has vanishing tension, and therefore the relevant
exponential potential is halved with respect to eq. (2.2).

Finally, the E8×E8 superstring admits a tachyon-free projection that breaks supersym-
metry [1, 2]. In particular, one can project onto the states with even total fermion number,6

2See [21, 22] for some efforts in this direction. A possible non-perturbative construction of the SO(16)×
SO(16) heterotic model, along the lines of Hořava-Witten theory [23], has been proposed in [24]. It would be
interesting to describe NS5-branes in this setting, and I would like to thank A. Faraggi for pointing this out.

3The following construction is based on the characters (O2n , V2n , S2n , C2n) of the level-one affine so(2n)
algebra. See [33–36] for reviews.

4More precisely, supersymmetry is preserved in the closed-string sector, but it is non-linearly realized in
the open-string sector via “brane supersymmetry breaking” (BSB) [6–9].

5See [37, 38] for more details on the low-energy couplings of BSB models.
6Let us recall that T-duality corresponds to a projection onto the states with even right-moving

fermion number.
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and taking modular invariance into account the final perturbative spectrum is devoid of
tacyhons by virtue of level matching. However, the one-loop vacuum energy does not
vanish,7 and its value is of order one in string units. In the string-frame low-energy effective
action it appears as a cosmological constant, and thus as a runaway exponential potential

T

∫
d10x

√
−g eγφ , γ = 5

2 (2.3)

in the Einstein frame. All in all, the low-energy manifestation of gravitational tadpoles in
both the orientifold models and in the SO(16)×SO(16) heterotic model can be encompassed
by the same type of exponential potential for the dilaton.

2.1 Charged and uncharged branes

One-loop vacuum amplitudes can be also employed to investigate the D-brane content of
the orientifold models, as described in detail in [20]. Indeed, the consistency of (transverse-
channel) Dp-Dp and Dp-D9 annulus amplitudes and Möbius strip amplitudes in the R-R
sectors allows one to recover the spectrum of charged “BPS-like” branes, while combining
their contributions reconstructs the dimensions of the adjoint representations of the world-
volume gauge group, namely USp(2N) or SO(2N). Finally, the coefficients in front of the
NS-NS and R-R characters correspond to tension and charge respectively.

The analysis in [20] shows that, similarly to the type I superstring, the USp(32)
orientifold model contains charged D1-branes and D5-branes, whose world-volume gauge
groups are symplectic and orthogonal respectively. Moreover, the remaining values of p
pertain to uncharged branes, whose stability can be addressed studying tachyonic excitations.
In particular, a single D3-brane and a single D4-brane are free of tachyons in this model, while
a single D0-brane, whose tachyons belong to the adjoint representation of USp(2) ' SU(2),
is unstable. Similarly, a single D2-brane, whose tachyons belong to the anti-symmetric
(singlet) representation of USp(2), is unstable. The other Dp-branes are unstable on account
of bi-fundamental tachyons, arising from the interaction with the background D9-branes.

The spectrum of D-branes in the type 0′B model was studied in [20, 47]. The model
contains charged Dp-branes with p odd, and while their world-volume excitations are devoid
of tachyons, Dp-Dq exchanges include tachyons for |p− q| < 4, analogously to the type IIB
setting. Furthermore, once again mirroring the type IIB setting, the world-volume gauge
groups are unitary. However, the D9-D7 exchange spectrum contains a tachyon. Even
values of p pertain to uncharged branes.

At leading order the Dp-Dp interaction between charged branes vanishes [20], but one
is to take into account the presence of the D9-branes and O9-plane, which bring along
non-trivial contributions. The main aim of this paper is to investigate this interaction in a
number of complementary regimes, and the resulting dynamics appears to realize the WGC
in a non-trivial fashion [13] when supersymmetry is broken.

2.2 Low-energy effective description

Let us now introduce the low-energy effective description pertaining to the models introduced
in section 2. As we have anticipated, both the orientifold models and the heterotic model

7Some projections allow vanishing or suppressed leading contributions to the vacuum energy [41–46].
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can be described, at low energies, by an Einstein-frame action of the form8

S = 1
2κ2

D

∫
dDx
√
−g

(
R− 4

D − 2 (∂φ)2 − V (φ)− f(φ)
2(p+ 2)! H

2
p+2

)
, (2.4)

where the bosonic fields include a dilaton φ and a (p+ 2)-form field strength Hp+2 = dBp+1.
In the relevant string models D = 10, while

V (φ) = T eγφ , f(φ) = eαφ , (2.5)

and their perturbative spectra also include Yang-Mills fields, whose contribution to the
action takes the form

Sgauge = − 1
2κ2

D

∫
dDx
√
−g

(
w(φ)

4 TrFMN FMN
)

(2.6)

with w(φ) an exponential. Although AdS compactifications supported by gauge fields of
this type were studied in [48], their perturbative corners seem not to exhibit any novel
features, and thus we shall neglect this contribution to the EFT action in this paper.

The (bosonic) low-energy dynamics of the orientifold models is described by the
Einstein-frame parameters

D = 10 , p = 1 , γ = 3
2 , α = 1 , (2.7)

while the residual tension
T = 2κ2

10 × 64TD9 = 16
π2 α′

(2.8)

in the BSB model reflects the presence of 16 D9-branes and the O9-plane [5]. In the type
0′B model T is half of this value, since the corresponding O9-plane is tensionless.

The heterotic model is described by the Einstein-frame parameters

D = 10 , p = 1 , γ = 5
2 , α = −1 , (2.9)

and the one-loop cosmological constant T , which was estimated in [1], is of order one
in string units. Dualizing the Kalb-Ramond form one can equivalently work with the
parameters

D = 10 , p = 5 , γ = 5
2 , α = 1 , (2.10)

which highlight the electric coupling of NS5-branes to the dual B6 potential.
Let us collect a few remarks on the reliability of the effective action of eq. (2.4). The

dilaton potential contains one less power of α′ with respect to the other terms, and thus its
runaway effects are to be balanced by an additional control parameter. The AdS landscapes
studied in [13, 48, 49] achieve this by means of large fluxes, whereby curvature corrections
and string loop corrections are expected to be under control. However, in the orientifold
models these are R-R fluxes, and thus a world-sheet formulation appears subtle.9 In the
heterotic model the fluxes are NS-NS, but the dilaton tadpole arises at one-loop level. On
the other hand, the flux-less Dudas-Mourad solutions [51] contains regions where string-loop
and curvature corrections are expected to be important.

8Throughout this paper we use the “mostly plus” metric signature.
9It is worth noting that world-sheet CFTs on AdS3 backgrounds have been related to α′-exact WZW

models [50], which in principle could be relevant in this case.
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3 Back-reaction of non-supersymmetric branes

Let us now turn to the gravitational back-reaction of the branes described in section 2.1.
The motivation to investigate it is two-fold: on one hand, we would like to understand
interactions between two stacks of branes beyond the regime in which both stacks are
light. In particular, whenever one of the stacks is parametrically heavier one can expect to
describe the interaction replacing the heavy stack with its gravitational back-reaction. On
the other hand, large fluxes appear to constitute the most reliable tool to retain control of
the low-energy EFT in the presence of gravitational tadpoles [48], and the (near-horizon
limit of the) geometries generated by charged branes can realize settings of this type in a
natural fashion [13].

3.1 Back-reaction of extremal branes

In this section we review the construction of the Toda-like reduced dynamical system for
extremal branes, outlining the resulting gravitational back-reaction [13]. The standard
procedure for constructing brane solutions [52, 53] is hindered by the gravitational tadpole,
and the resulting geometries cannot be expressed in closed form [15, 16, 47] (see also [54] for
similar considerations on tachyonic type 0 strings) except for special cases [51]. Extremal
p-branes entail a residual SO(1, p)×SO(q) space-time symmetry, so that in a suitable gauge
the most general solution to the field equations stemming from eq. (2.4) takes the form

ds2 = e
2
p+1v−

2q
p
b
dx2

1,p + e
2v− 2q

p
b
dr2 + e2bR2

0 dΩ2
q ,

φ = φ(r) ,

Hp+2 = n

f(φ)(R0 eb)q
Volp+2 , Volp+2 = e

2v− q
p

(p+2)b
dp+1x ∧ dr ,

(3.1)

where r is the transverse radial coordinate, R0 is an arbitrary reference radius. The resulting
equations stem from a constrained Toda-like system [47, 54], described by the action

Sred =
∫
dr

[ 4
D − 2

(
φ′
)2 − p

p+ 1
(
v′
)2 + q(D − 2)

p

(
b′
)2 − U] , (3.2)

with
U = −T eγφ+2v− 2q

p
b − n2

2R2q
0
e
−αφ+2v− 2q(p+1)

p
b + q(q − 1)

R2
0

e
2v− 2(D−2)

p
b
, (3.3)

and the Hamiltonian constraint reads

4
D − 2

(
φ′
)2 − p

p+ 1
(
v′
)2 + q(D − 2)

p

(
b′
)2 + U = 0 . (3.4)

Here, the (electric) flux n ought to be proportional to the number N of branes, and is
defined by

n = 1
Ωq

∫
Sq
f ? Hp+2 (3.5)

with Ωq the volume of the unit q-sphere. Let us remark that eq. (3.5) reflects the brane-like
nature of the source, which is supported on the world-volume spanned by the x coordinates.

– 6 –
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Indeed, locally d (f ? Hp+2) = 0, but its integral in the transverse space yields a finite
charge. Similar considerations hold for the energy-momentum tensor, and these sources
can be reproduced adding a brane action to eq. (2.4) of the form that we shall employ in
section 4.1.

In [13] the AdS× S solutions of [48] were recovered according to

φ = φ0 ,

ev = L

p+ 1

(
R

R0

) q
p 1
−r

,

eb = R

R0
,

(3.6)

where r < 0. Anticipating that this solution arises as a near-horizon limit, this choice places
the core at r → −∞. Rescaling x by a constant, and substituting

r 7→ − z
p+1

p+ 1 (3.7)

in the metric of eq. (3.1) reveals that the solution in eq. (3.6) is indeed AdS× S in a Poincaré
patch. Following the analogy with the supersymmetric cases of the four-dimensional Reissner-
Nordström black hole and type IIB D3-brane stacks, where infinite AdS throats behave
as attractors, in [13] it was shown that radial perturbations always contain modes that
decay going toward the horizon, while the blow-up modes are expected to be associated
to extremality breaking. While control of the full solution appears necessary to connect
the asymptotic parameters to these modes, one can verify that they reassuringly match in
number studying the sub-leading behavior in the far-away region. Indeed, while we shall
not need this result in the following, it turns out that the back-reacted geometry ends,
at a finite radial geodesic distance, in a pinch-off singularity where strong-coupling effects
are expected to play a crucial rôle. The resulting suggestive, albeit incomplete, picture
is presented in figure 1, and highlights the obstructions in defining tension and flux as
asymptotic quantities. The non-extremal version of this construction contains an additional
blackening factor [55], but the pinch-off singularity appears to be universal [56] and has
been recently connected to some swampland conjectures [39, 40].

3.1.1 Nucleation in AdS and brane tension

The AdS× S near-horizon solution of eq. (3.6) can be recast in the coordinate-free fashion

ds2 = L2 ds2
AdSp+2 +R2 dΩ2

q ,

Hp+2 = cVolAdSp+2 ,

φ = φ0 ,

(3.8)

where ds2
AdSp+2

is the unit-radius space-time metric and VolAdSp+2 denotes the canonical
volume form on AdSp+2 with radius L. The geometry exists if and only if the parameters
γ , α in eq. (2.5) satisfy

α > 0 , q > 1 , (q − 1) γ > α , (3.9)

– 7 –
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φ → ∞

∫ √
grrdr

AdSp+2×Sq
φ = φ0

Sq

Figure 1. a schematic depiction of the back-reacted geometry sourced by the branes, where the
world-volume directions are excluded. The geometry interpolates between the AdS× S throat and
the pinch-off singularity.

and using eq. (2.5) the string coupling gs = eφ0 and the curvature radii L , R are given by

c = n

gαsR
q
,

g(q−1)γ−α
s =

(
(q − 1)(D − 2)(
1 + γ

α (p+ 1)
)
T

)q 2γT
αn2 ,

R
2 (q−1)γ−α

γ =
(
α+ (p+ 1) γ

(q − 1)(D − 2)

)α+γ
γ
(
T

α

)α
γ n2

2γ ,

L2 = R2
(
p+ 1
q − 1 ·

(p+ 1) γ + α

(q − 1) γ − α

)
.

(3.10)

The solution of eq. (3.10), originally found in [48] for the string models presented in section 2,
was generalized and studied in detail in [13, 49]. Among its intriguing features, it appears
complementary to the supersymmetric AdS5 × S5 solution of type IIB supergravity, but it
has no moduli. Moreover, the large-n limit corresponds both to small string couplings and
small curvatures, and thus one can expect that the EFT description encoded in eqs. (2.7)
and (2.10) be reliable in this regime. However, let us emphasize that a dimensionally
reduced EFT description would not be consistent, since there is no scale separation. This is
consistent with general considerations on scale separation [57, 58],10 while the behavior of
Kaluza-Klein excitations corroborates the Swampland distance conjecture (SDC) [60, 61]
and AdS distance conjecture (ADC) [57]. The connection between the non-supersymmetric
backgrounds that we have discussed and Swampland conjectures, in particular those
regarding dS vacua [61–63], has been articulated in detail in [14].

In light of the preceding discussion, the AdS×S solutions of eq. (3.10) appear to capture
the near-horizon back-reaction of extremal branes in the presence of gravitational tadpoles.
Specifically, they pertain to D1-branes in the orientifold models and NS5-branes in the

10See also [59] for a detailed study of bounds on scale separation in flux compactifications.

– 8 –



J
H
E
P
1
0
(
2
0
2
1
)
0
8
0

heterotic model, while an analogous solution describing extremal D5-branes is still lacking
and presents some subtleties.11 Although the internal sphere ought to reflect the simplest
setting of parallel branes in the vacuum, it brings along perturbative instabilities [49]. Since
eq. (3.10) readily generalizes to any compact Einstein manifold, in principle it could be
possible to eliminate the unstable modes choosing a different internal manifold, possibly
pertaining to branes on conical singularities, and for the heterotic model an antipodal
Z2 orbifold of the internal S3 indeed achieves this. In this paper we shall thus neglect
these instabilities.

However, these solutions are also fraught with non-perturbative instabilities, and
undergo flux tunneling [13]12 in accord with the non-supersymmetric AdS Swampland
conjecture [60]. In particular, in [13] it was shown that the semi-classical decay rate per
unit volume of the AdS solutions is given by the exponentiated (extremized) instanton
action of a brane. Furthermore, consistency with the semi-classical limit requires that the
string-frame tension τp = Tp e

−σφ of the brane scale with the dilaton according to

σ = 2(p+ 1)
D − 2 + α

2 = 1 + αS
2 , (3.11)

where αS is the string-frame counterpart of the parameter α in eq. (2.5). This result
remarkably reproduces the correct couplings of fundamental branes, namely D-branes in the
orientifold models, NS5-branes in the heterotic model and the “exotic” branes of [73–77],
thereby further suggesting that the branes sourcing the AdS throat and nucleating in it are
indeed D1-branes in the orientifold models and NS5-branes in the heterotic model. As we
shall see shortly, the fact that brane nucleation occurs also entails a novel realization of the
WGC in the presence of gravitational tadpoles.

3.2 Static Dudas-Mourad solutions as 8-branes

As described in [13], at least in the orientifold models the Dudas-Mourad solution [51]
resonates with the back-reaction of D8-branes. This is because the Toda-like dynamical
system that we have discussed, along with its non-extremal version [55], describe a gen-
eral family of p-brane solutions, and the p = 8 case yields an integrable system which
matches the Dudas-Mourad solution. In detail, they comprise static solutions with nine-
dimensional Poincaré symmetry,13 where one dimension is compactified on an interval, and
ten-dimensional cosmological solutions. In the ensuing discussion we shall focus on the
former, in light of our preceding considerations.

The gravitational tadpole signals the absence of a ten-dimensional Minkowski solution,
and therefore the maximal possible symmetry available to static solutions is nine-dimensional
Poincaré symmetry, compatibly with the presence of 8-brane sources that break its ten-
dimensional counterpart. Correspondingly, the most general solution of this type is a warped
product of nine-dimensional Minkowski space-time, parametrized by coordinates xµ, and a

11This state of affairs mirrors, to a certain extent, the peculiar near-horizon geometry sourced by BPS
D5-branes, since it breaks the pattern of conformal AdSp+2 × S8−p throats [52, 53, 64, 65].

12For more details, see [66–72].
13A T-dual version of this configuration in the USp(32) model was investigated in [78].
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one-dimensional internal space, parametrized by a coordinate y. In the orientifold models
of section 2, the Einstein-frame solution is given by

ds2
orientifold =

∣∣∣αO y
2
∣∣∣ 1

18 e−
αOy

2
8 dx2

1,8 + e−
3
2 Φ0

∣∣∣αO y
2
∣∣∣− 1

2 e−
9αOy

2
8 dy2 ,

φ = 3
4 αO y

2 + 1
3 log

∣∣∣αO y
2
∣∣∣+ Φ0 ,

(3.12)

where, here and in the following,

dx2
1,p ≡ ηµν dxµ dxν (3.13)

denotes the (p+ 1)-dimensional Minkowski metric. The absolute values in eq. (3.12), as well
as the singularities in the dilaton profile, highlight that the physical range of the internal
coordinate is y ∈ (0,∞). The heterotic model affords an analogous solution, and similar
considerations on the range of y apply.

In accord with the conventions of [51], in eqs. (3.12) the scale αO ≡ T
2 , while Φ0 is a

free parameter which specifies the value of the local string coupling at some y = y0. In both
solutions, the internal spaces parametrized by y are actually intervals of finite length

Rc ≡
∫ ∞

0

√
gyy dy <∞ , (3.14)

and, for gs ≡ eΦ0 � 1, the interior of the parametrically wide interval is weakly coupled.
Moreover, since αO ∝ T , as one approaches the supersymmetric case the internal length
diverges.14

3.3 D3-branes in the type 0′B model

As we have discussed, the AdS× S solutions that we have reviewed in the preceding section
appear in some sense complementary to the supersymmetric type IIB setting. Indeed, for
p 6= 3 , 5 the near-horizon geometry of BPS black branes in ten dimensions is conformal to
AdSp+2 with a singular warp factor [52, 53, 64, 65], while for p = 3 (and for M-branes in
eleven-dimensional supergravity) it reproduces the familiar AdSp+2. On the other hand, in
the models that we have presented in section 2 there are no such solutions, since α = 0 for
D3-branes in the type 0′B model. The relevant near-horizon geometry that was studied
in [15, 16, 47] actually involves an O3-plane, but its contribution is sub-leading for large
fluxes. In [16] the authors found non-homogeneous deviations from AdS5 × RP5 which are
suppressed, but not uniformly so, in the large-flux limit.15 In detail, in coordinates in which
the (string-frame) metric takes the form16 [16]

ds2 = R2(u) du
2

u2 + α′2 u2

R2(u) dx
2
1,3 + R̃2(u) dΩ2

5 , (3.15)

14Let us remark that, strictly speaking, T cannot be sent to zero, but it is still instructive to consider the
formal limit T → 0.

15Similar results in tachyonic type 0 strings were obtained in [54].
16The local expression in eq. (3.15) does not account for the global distinction between S5 and RP5.
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the would-be AdS5 and RP5 curvature radii R(u) , R̃(u) and the dilaton φ(u) acquire a
dependence on the energy scale u that, in the large-flux limit, behaves as

R2(u)
R2
∞
∼ 1− 3

16 gs α
′T log

(
u

u0

)
,

R̃2(u)
R2
∞
∼ 1− 3

16 4√8
g2
s N α′T log

(
u

u0

)
,

1
N
e−φ ∼ 1

gsN
+ 3

8 4√8
gs α

′T log
(
u

u0

)
,

(3.16)

where u0 is a reference scale, R2
∞ =

√
4π gsN is the supersymmetric value of the radii and

N � 1 ought to be interpreted as the number of D3-branes sourcing the geometry. In the
large-N limit the ’t Hooft coupling λ = 4π gsN in the absence of the tadpole T ought to
be fixed, but the validity of the EFT description also requires λ� 1 [79], while on account
of the second of eq. (3.16) g2

s N � 1.
Although the resulting geometry is not completely under control because of the non-

uniform character of these corrections, it is in principle amenable to numerical investigation
via the Toda-like formalism that we have developed in section 3.1 [47]. In the following
section we shall discuss the interactions of D3-branes in the type 0′B model in the regime in
which a heavy stack generates the solution of eq. (3.16), and probe light stacks are subjects
to a potential encoding the interaction.

Let us conclude this section briefly summarizing how the branes and geometries that
we have discussed are related. To begin with, the longitudinal and transverse dimensions
match, as the corresponding isometry groups. Furthermore, the type of fluxes, if any, also
match, and the solutions all arise from a single family of Toda-like dynamical systems that
reproduce the Dudas-Mourad solutions as a special case. Going beyond the background
geometry, the AdS throats exhibit both an attractor-like mechanism, typical of near-horizon
limits, and non-perturbative brane nucleation, whose semi-classical consistency requires
precisely the tensions pertaining to the fundamental branes at stake. Although the absence
of supersymmetry hinders the extrapolation of these results beyond the EFT regime to
some extent, the overall picture appears coherent, and we shall explore the resulting lessons
for the dynamics of branes in the remainder of this paper.

4 Brane interactions and the WGC

In this section we study in detail the interactions between the branes that we have introduced
in section 2.1. To this end, we shall discuss a number of complementary regimes in which
computations are expected to be under control. Namely, considering two parallel stacks of
Np Dp-branes and Nq Dq-branes, the cases that we shall address are the following:

• The probe regime Np � Nq, in which one can replace the heavy stack of Np Dp-branes
with the corresponding back-reacted geometry probed by the Dq-branes, as shown
in figure 2. We shall distinguish three cases: extremal branes probing AdS throats,
uncharged D8-branes probing AdS throats, Dp-branes probing the Dudas-Mourad ge-
ometry sourced by D8-branes. We shall also address NS5-branes probing the heterotic
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Dudas-Mourad geometry for completeness, although in that case an interpretation in
terms of 8-branes appears obscure in the absence of established dualities.

• The string-amplitude regime Np , Nq = O(1), which ought to be described by pertur-
bative string amplitudes. In particular, since interactions between extremal branes
yield vanishing annulus amplitudes, we shall focus on the case in which at least one
stack is uncharged.17

• The holographic regime, in which we shall consider the asymptotically free world-
volume gauge theory that describes D1-branes. In this paper we shall focus on the
weakly coupled UV regime, although the strongly coupled IR regime ought to be
directly related to near-horizon AdS throats. We shall discuss this interesting case in
future work.

Despite the absence of supersymmetry, whenever any two regimes overlap we shall
find qualitative agreement. In particular, extremal branes of equal dimension strictly
repel, realizing the WGC in the absence of supersymmetry, while the NS-NS interactions
in the presence of at least one uncharged stack are repulsive or attractive depending on
the values of p and q. To wit, in section 4.1 we compute static potentials for extremal
Dp-branes in the orientifold models (resp. NS5-branes in the heterotic model) probing the
geometries sourced by a heavy stack of parallel Dp branes (resp. NS5-branes in the heterotic
model), according to the evidence presented in the preceding section, finding a repulsive
behavior and a O(1) verification of the WGC bound. Then, we compute static potentials
for Dp-branes probing the Dudas-Mourad geometry, which according to our arguments
ought to sourced by D8-branes, and for 8-branes probing the AdS throats presented in
section 3. We compare our results with the string-amplitude computations of section 4.2,
finding qualitative agreement for repulsive and attractive behaviors. Finally, in section 4.3
we address D1-branes holographically computing the one-loop effective potential of the
world-volume gauge theory.

4.1 Probe potentials and Weak Gravity

Let us begin analyzing the probe regime, replacing the heavy brane stack with its back-
reacted geometry. In particular we shall focus on the near-horizon AdS× S throats that
we have described in section 3.1.1, which ought to pertain to D1-branes and NS5-branes,
and on the Dudas-Mourad geometry, which appears to arise from 8-branes. In order to
encompass all the relevant cases, we shall consider a string-frame world-volume action of
the form

Sp = −Tp
∫
dp+1ζ

√
−j∗gS e−σφ + µp

∫
Bp+1 , (4.1)

where j is the embedding of the world-volume coordinates ζ in space-time. Its Einstein-frame
expression reads

Sp = −Tp
∫
dp+1ζ

√
−j∗g e

( 2(p+1)
D−2 −σ

)
φ + µp

∫
Bp+1 , (4.2)

17The first non-trivial contribution to the potential between two extremal stacks would involve three-legged
pants diagrams. In the bosonic case, the systematics of such computations were developed in [80].
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Figure 2. a depiction of the interaction between a heavy stack of N � 1 branes and δN � N

probe branes. The heavy stack sources the AdS× S throat probed by the light stack.

and σ = 1 , 2 for D-branes and NS5-branes respectively. For the sake of generality we
shall not assume that Tp = µp in the non-supersymmetric models at stake, although the
results of [20] point toward extremality. However, as we shall now see in detail, in the
string models that we have presented in section 2 even in this case charged brane stacks
repel, due to a non-trivial renormalization of the charge-to-tension ratio mediated by
supersymmetry breaking.

4.1.1 Repulsive forces between extremal branes

Let us begin our analysis of probe-brane interactions considering the dynamics of an
extremal p-brane moving in the AdSp+2 × Sq geometry of eq. (3.8). The action in eq. (4.2)
encompasses both D1-branes in the orientifold models, where B2 is a R-R potential, and
NS5-branes in the heterotic model, where B6 is the (magnetic dual of the) Kalb-Ramond
potential. As we have stressed in the preceding section, the putative electromagnetic dual
of these background would describe D5-branes and F1-strings, but their construction has
proven elusive so far.

Let us remark that the dynamics at stake emerge spontaneously on account of the
considerations in section 3.1.1, since bubble nucleation entails separation of pairs of branes
and anti-branes. The results in [13] show that like-charge branes are repelled while anti-
branes are attracted, leading to brane-flux annihilation. In order to appreciate this, it is
convenient to work in Poincaré coordinates, where the Einstein-frame metric of the AdS× S
throat reads

ds2 = L2

z2

(
dz2 + dx2

1,p

)
+R2 dΩ2

q , (4.3)

choosing the world-volume embedding

j : xµ = ζµ , z = Z(ζ) , θi = θi0 (4.4)
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with θi0 fixed coordinates on Sq. The action of eq. (4.2) then evaluates to

Sp = −τp
∫
dp+1ζ

(
L

Z

)p+1
[√

1 + ηµν ∂µZ ∂νZ −
c L

p+ 1
µp
τp

]
, (4.5)

where the dressed tension
τp ≡ Tp g

−α2
s (4.6)

on account of the considerations of section 3.1.1. Therefore, rigid branes are subject to the
potential

Vprobe(Z) = τp

(
L

Z

)p+1
1− c L g

α
2
s

p+ 1
µp
Tp


= τp

(
L

Z

)p+1
[
1− v0

µp
Tp

]
,

(4.7)

where the O(1) constant v0 > 1 in our string models [13]. While non-rigid branes exhibit
richer dynamics, in the present setting we would like to emphasize that, since crucially
v0 > 1, extremal probes µp = Tp are indeed repelled by the stack, being driven toward Z → 0.
In the orientifold models the picture is intuitive: D1-branes are mutually BPS,18 but their
interaction with the space-time-filling D9-branes and O9-plane renormalizes the charge-to-
tension ratio, as depicted in figure 3. Similarly, in the heterotic model the corresponding
interactions are mediated by the quantum-corrected vacuum energy. This peculiar result
realizes the WGC in this particular setting in a non-trivial fashion: while brane nucleation
in non-supersymmetric AdS has been thoroughly investigated [60, 68, 69], let us stress that
in the present case this phenomenon arises from extremal branes interacting in the absence
of supersymmetry.

To conclude this section, let us consider probe-regime interactions between D3-branes,
whose corresponding near-horizon throat deviates from AdS× S as we have discussed in
section 3.3. Indeed, since the EFT parameter α = 0 in this case, an AdS× S solution cannot
exist. For more details on the back-reacted geometry, see [16]. Our starting point is now
the solution in eqs. (3.15) and (3.16). Let us once again embed the probe world-volume
parallel to the xµ, according to

j : xµ = ζµ , u = U(ζ) , θi = θi0 , (4.8)

where the coordinate u is to be interpreted as an energy scale.
The five-form R-R field strength F5 is self-dual, closed,19 and reads

F5 = (1 + ?) f5N volS5

= f5N volS5 + f5N

R̃(u)5

(
α′ u

R(u)

)3
d(α′u) ∧ d4x

(4.9)

18More precisely, despite the absence of supersymmetry, in the type 0′B model charged branes exhibit a
“BPS-like” no-force behavior at tree-level [20].

19Since the orientifold projection removes the Kalb-Ramond form, no additional terms appear in the
Bianchi identity.
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Figure 3. a depiction of the interaction between extremal branes mediated by supersymmetry
breaking, reflecting the renormalization of the effective charge-to-tension ratio v0 of eq. (4.7).

with volS5 the volume form of the unit 5-sphere. The flux quantization condition
1

2κ2
10

∫
S5
F5 = µ3N (4.10)

then fixes
f5 = 2κ2

10 µ3
Ω5

, (4.11)

and the relevant contribution to the potential C4, to be pulled back on the probe world-
volume, takes the form

C4 = c4(u) d4x+ . . . (4.12)

where dC4 = F5 implies
c′4(u)
α′

= f5N

R̃(u)5

(
α′ u

R(u)

)3
. (4.13)

Collecting all the ingredients, and using the string-frame world-volume action of eq. (4.1),
the probe potential evaluates to

V D3
probe(U) = T3

(
α′ U

R(U)

)4
e−φ(U) − µ3 c4(U) , (4.14)

and its dominant contribution in the EFT limit gs , g2
s N � 1, gsN � 1 is

V D3
probe(U)
U4 ∼ 16π α′2 T3 − f5 µ3

64π2 g2
s N

+ 15 f5 µ3 α
′T

8192 4√8π2

+ 3
(
64π α′2T3 − 5 f5 µ3

)
α′T

2048 4√8π2 log
(
U

u0

)
.

(4.15)

As expected, substituting the supersymmetric values

2κ2
10 = (2π)7 α′4 , T3 = µ3 = N3

(2π)3 α′2
(4.16)
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D3-D3 probe potential

Figure 4. the normalized probe potential in eq. (4.15) in units of the reference scale u0.

for N3 � N probes, and using eq. (4.11), the leading term vanishes, on account of the BPS
property, while the remaining sub-leading terms reflect supersymmetry breaking and their
U -dependence simplifies to

V D3
sub-leading(U) ∝ U4

[
5− 4 log

(
U

u0

)]
. (4.17)

Once again this potential is repulsive, realizing the WGC also in this “marginal” setting,
since U →∞ corresponds to exiting the throat. Interestingly, as depicted in figure 4, the
potential in eq. (4.17) features a maximum at U = e u0 before crossing zero at U = e

5
4 u0,

and the height of the potential barrier scales proportionally to u4
0. Therefore, even if the

probe stack were initially located in the classically attractive region, it would eventually
tunnel to the repulsive region. Indeed, for suitably small velocities α′∂tU � 1, the kinetic
term in the DBI action is asymptotic to

α′2 T3
2 gs

[
1 + 3α′T

8 4√8
g2
s N log

(
U

u0

)]
(∂tU)2 , (4.18)

and since the potential is purely sub-leading the canonical field redefinition would not
modify its dominant contribution. Furthermore, let us recall that the geometry in eq. (3.16)
has a limited regime of validity, which we expect to extend at most up to u

u0
= O(eN ),

where sensible dynamics is expected to replace the unbounded approximate potential of
eq. (4.15). A potentially instructive toy model, in which the unknown large-u dynamics is
substituted by a hard wall at some cut-off scale u = Λ, would then feature an asymmetric
double-well, which can result in bubble nucleation [81, 82].

– 16 –



J
H
E
P
1
0
(
2
0
2
1
)
0
8
0

As we have discussed in the preceding section, an attempt to reproduce these results
via a string amplitude computation, at least for the orientifold models, would be met by
considerable difficulties, since the relevant annulus contribution vanishes. On the other
hand, in the non-extremal case one has access both to the gravitational back-reaction of
D8-branes and to a string amplitude computation, and thus we shall turn to this issue in
section 4.1.2.

As a final comment, let us observe that in the heterotic model one can also compute
the potential for probe F1-strings, extended along one of the directions parallel to the
NS5-branes. However, the Kalb-Ramond form B2 vanishes upon pull-back on the string
world-sheet, and thus the resulting force is attractive. The counterpart of this setting in
the orientifold models would involve probe D5-branes, but these would wrap contractible
cycles on the spheres, leading to an uncontrolled computation.

4.1.2 Brane probes in the Dudas-Mourad geometry

Let us now extend the considerations of the preceding section to the case in which at least
one of the two brane stacks is uncharged. While this case is not directly relevant for the
WGC, it is instructive to compare the resulting dynamics to string amplitude computations
in the absence of supersymmetry. Indeed, with respect to the extremal case, the leading
contribution to the relevant string amplitude corresponds to annulus, which does not vanish
and does not entail Riemann surfaces of higher Euler characteristic and other complications.
In particular, we shall focus on D8-branes in the orientifold models, since their back-reacted
geometry is described by the static Dudas-Mourad solution20 [51] that we have described in
section 3.2.

Furthermore, the other controlled back-reacted geometry in this setting corresponds to
D1-branes, and D8-branes are the only other probes whose potential can be reliably computed
in this case, since they can wrap the S7 in the near-horizon AdS3 × S7 throat. On the other
hand, as we have discussed, while similar considerations apply to the heterotic model a
microscopic interpretation appears more subtle. Nevertheless, probe-brane calculations
in this setting yield attractive potentials for 8-branes and fundamental strings, as in the
orientifold models, while NS5-branes are repelled. In addition, in some cases the potential
scales with a positive power of gs. At any rate, the instability appears to be under
control, since probes would reach the strong-coupling regions in a parametrically large time
for gs � 1.

To begin with, we shall consider a stack of Np Dp-branes probing the Dudas-Mourad
geometry. According to the considerations in the preceding sections, this ought to describe
a stack of Dp-branes parallel to a stack of D8-branes.21 In order to simplify the ensuing
discussion, we work in the string frame in units where αO = 1. Since the boundary of the
interval spanned by the coordinate y hosts two singularities, we expect this configuration to

20The generalization to non-extremal branes of different dimensions involves non-integrable Toda-like
systems [55], whose correct boundary conditions are not well-understood hitherto. In addition, a reliable
probe regime would exclude the pinch-off asymptotic region, thereby requiring numerical computations.

21By analogy with the results in [13], the number N8 of D8-branes, should be implicitly determined by
the only free parameter gs ≡ eΦ0 in eq. (3.12), with gs � 1 for N8 � 1.
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be under control insofar as the (string-frame) geodesic coordinate

r ≡ 1
√
gs

∫ y

0

du

u
1
3
e−

3
8 u

2 (4.19)

is far away from its endpoints r = 0, r = Rc. This overlap regime indeed exists, provided
that gs ≡ eΦ0 � 1.

Defining the (string-frame) warp factors A(y) , B(y) of [51] according to

ds2
10 = e2A(y) dx2

9 + e2B(y) dy2 , (4.20)

the probe action for Dp-branes reduces to the DBI action in the absence of fluxes, and it
evaluates to

Sp = −Np Tp

∫
dp+1x e(p+1)A(y)−Φ(y)

≡ −Np Tp

∫
dp+1xVp8 ,

(4.21)

where we have defined the potential per unit tension

Vp8 = gs
p−3

4 y
2
9 (p−2) e

p−5
8 y2

. (4.22)

The non-trivial dependence of eq. (4.22) on p is depicted in figures 5 and 6. If the potential
drives probes toward y → ∞ it is repulsive, since the pinch-off this regime hosts the
pinch-off singularity discussed in [13]. As a result, for p < 3 probes are repelled by the
D8-branes, while for p > 4 they are attracted to the D8-branes. The cases p = 3 , 4 exhibit
unstable equilibria, but at large separations the potentials are repulsive. This is the regime
that we shall compare with a string amplitude computation.

As we have anticipated, branes probing the back-reacted geometry sourced by non-
extremal p branes, with p < 8, entail considerable difficulties. Indeed, even if a reliable regime
were numerically under control, the correct asymptotic boundary conditions pertaining to
branes are yet to be found. In contrast, for extremal branes one can exploit the fact that
the near-horizon throat should be deep enough to ensure the reliability of the probe regime.

In order to further investigate the parametric control of our results, one can verify that
the probe stack remains far away from the boundary of the interval for parametrically large
times. To this end, one can consider rigid branes moving along y, starting from the initial
conditions y(0) = y0 , ẏ(0) = 0. The reduced Lagrangian

Lred = −TpNp Vp8

√
1− e2(B−A) ẏ2 (4.23)

leads to the conserved Hamiltonian

Hred = TpNp Vp8√
1− e2(B−A) ẏ2

= TpNp Vp8(y0) , (4.24)

and thus, solving by quadrature, one finds that

t =
∫ y

y0

eB(u)−A(u)√
1−

(
Vp8(u)
Vp8(y0)

)2
du =

∫ y

y0

g
− 3

4
s e−

u2
2

u
5
9

√
1−

(
u
y0

) 4
9 (p−2)

e
p−5

4 (u2−y2
0)

(4.25)

is indeed parametrically large in string units for gs � 1.
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Figure 5. probe potentials for gs = 1 and p ≤ 8. For p < 3 the probe stack is repelled by the
D8-branes, while for p > 4 it is attracted to the D8-branes. A string amplitude computation yields
a qualitatively similar behavior, despite the string-scale breaking of supersymmetry.

4.1.3 Probe 8-branes in AdS× S throats

To conclude our analysis of probe branes, let us finally consider N8 D8-branes probing the
near-horizon geometries sourced by N1 � N8 extremal D1-branes or N3 � N8 extremal
D3-branes in the orientifold models. For completeness we shall also consider 8-branes
probing the AdS7 × S3 throat sourced by N5 � N8 NS5-branes in the heterotic model.
These comprise the last settings that we shall consider, since the 8-branes can wrap the
internal spheres without collapsing in a vanishing cycle, while leaving enough dimensions
to be parallel to the heavy stack. These are also the only cases where computations can
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Figure 6. probe potentials for gs = 1 and p ≤ 8, plotted as functions of the geodesic coordinate
along the compact direction.

be compared to the results in the preceding sections, which hold in the opposite regime
N1 , N3 , N5 � N8. The respective potentials V81 , V83 , V85 arise from the DBI contribution
only, and take the form

V81 ∝ N8 T8R
7
(
L

Z

)2
,

V85 ∝ N8 T8R
3
(
L

Z

)6 (4.26)

for the AdS× S throats of eq. (3.8), up to an irrelevant (positive) constant, while

V83 ∼
√

2π
1
4 α′

9
2 g
− 3

4
s N

1
4

3 N8 T8 U
4
(

1 + 3
8 gs T log

(
U

u0

))
(4.27)
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in the near-horizon limit of the geometry of eq. (3.15) sourced by D3-branes in the type 0′B
model. These potentials are attractive, which may at first glance appear in contradiction
with the results in the following section. However, at large separation, 8-branes wrapped
around the internal spheres should behave as (uncharged) 1-branes, 5-branes and 3-branes
respectively, consistently with an attractive potential between branes of equal dimension.

4.2 String-amplitude regime

We can now compare the results of the preceding probe-brane analysis for uncharged branes
to a string amplitude computation. The relevant leading-order amplitude encoding the
interaction between parallel stack of Np Dp-branes and Nq Dq-branes,22 with p < q for
definiteness, corresponds to the annulus. The transverse-channel integrand in the present
cases takes the form [20]

Ãpq ∝ NpNq (V8−q+pOq−p −O8−q+p Vq−p) (4.28)

up to a (positive) normalization, where the characters are evaluated at q = e−2π`. In
suitable units for the transverse separation r, the potential Vpq is then given by

Vpq ∝ −NpNq

∫ ∞
0

d`

`
9−q

2

Ãpq
η8−q+p

(2η
ϑ2

) q−p
2
e−

r2
` . (4.29)

For large r, the integral is dominated by the large-` region. In this region eq. (4.28)
asymptotes to q−

1
3 Ãpq, with

Ãpq ∝ V8−q+pOq−p −O8−q+p Vq−p

∼ 2 (4− q + p) q
1
3 ,

(4.30)

so that for q < 7 one finds
Vpq ∝ (q − p− 4) NpNq

r7−q . (4.31)

This potential is repulsive for p < q − 4 and attractive for p > q − 4. While the integral
in eq. (4.29) diverges for q ≥ 7, a distributional computation for q = 7 , 8 yields a finite
force stemming from potentials proportional to (p− 3) log(r) and (p− 4) r respectively. In
order to compare these results to the probe-brane analysis of the preceding section, the
relevant cases are thus p = q, which leads to an attractive potential, consistently with
eqs. (4.26) and (4.27), and q = 8, which leads to a potential proportional to (p − 4) r.
Therefore, the latter interaction is repulsive for p < 4 and attractive for p > 4, consistently
with the results in the preceding section. Let us remark that, in the absence of (linear)
supersymmetry, as well as a flat space-time background, the agreement between the two
computations, performed in complementary regimes, seems quite non-trivial, and suggests
a deeper principle akin to the WGC, or the repulsive force conjecture, for uncharged
extended objects.

22One can expect that an amplitude computation be reliable for Np , Nq = O(1), in contrast to the probe
regimes Np � Nq and Np � Nq.
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4.3 Holographic regime

The appearance of (unstable) AdS geometries in the models that we have investigated,
together with their connection to non-supersymmetric brane configurations, suggests that the
world-volume gauge theories living on the branes could encode their dynamics holographically,
including gravitational instabilities. Indeed, the perturbative instabilities studied in [49, 83]
ought to correspond to operators with complex anomalous dimension [84, 85], while the
holographic description of non-perturbative instabilities is more subtle [86–95] and has been
proposed to be captured by dual RG flows [96, 97]. In the latter picture, the putative CFT
deformations ought to be “heavy”, since their effect is suppressed in the large-flux limit,
but some properties of brane dynamics can be understood holographically, if qualitatively,
in the weak-coupling regime of the gauge theory.

Concretely, the weak-gravity repulsive effect that we have discussed in section 4.1
suggests that the gauge group undergoes a dynamical breaking according to [69, 98]

U(N) → U(N − δN)×U(δN) ,
USp(2N) → USp(2N − 2δN)×USp(2δN)

(4.32)

in the type 0′B model and the Sugimoto model respectively. However, the initial expectation
value attained by scalars upon separating the branes would increase due to the repulsive
force, and thus a conventional Higgs mechanism would not appear to be involved, at least
not in its usual guise. While the bulk AdS geometry is expected to be dual to the IR
regime of the world-volume gauge theory, which as we shall see is strongly coupled, one can
make progress studying its weakly coupled UV counterpart, under the assumption that the
qualitative character of brane interactions be preserved under RG flow. In the Sugimoto
model, the relevant gauge theory arises projecting a supersymmetric one. In settings of this
type the projected theory retains some properties of the parent theory [99–106], and we
intend to explore this intriguing idea in future work. However, for the time being we shall
focus on the weakly coupled UV regime of this gauge theory, alongside its U(N) counterpart
in the type 0′B model.23

To begin with, one is to address the issue of which background the branes are placed in.
According to general considerations along the lines of [79], one ought to place the branes
in the flux-less limit of the back-reacted geometry of eq. (3.8). However, in the absence of
supersymmetry the resulting configuration appears highly curved and far outside the EFT
regime of validity, and in particular there is no Minkowski solution to replace it. However,
introducing N8 � 1 D8-branes sourcing the static Dudas-Mourad geometry of eq. (3.12),
the situation appears more tame, since N � N8 D1-branes placed in the controlled region
described in section 4.1.2 would dominate the back-reaction. If this construction is reliable,
standard decoupling arguments [79] should lead to a two-dimensional world-volume gauge
theory on flat space-time. In the case of the Sugimoto model, the massless perturbative
spectrum has been described in [5], while the case of the type 0′B model was studied in [47].

23For similar considerations on D3-branes in the type 0′B model, for which the gauge theory is strongly
coupled in the UV, see [47].
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The corresponding world-volume (Euclidean) effective action SD1 then takes the
schematic form

SED1 = 1
g2

YM
Tr
∫
d2ζ

(
(∂+A−)2 + ∂+Xi [D− , Xi]−

1
4 [Xi , Xj ] [Xi , Xj ]

+ ψ+ [D− , ψ+] + ψ− ∂+ψ− + ψ− Γi [Xi , ψ+] + λA− ∂+ λ
A
−

) (4.33)

in the (Euclidean) light-cone gauge A+ = 0. In the Sugimoto model, in contrast to its
supersymmetric counterpart, the scalars Xi which comprise a vector of the transverse
rotation group SO(8) are in the anti-symmetric representation of USp(2N), while the
adjoint is symmetric and the world-volume fermion ψ+ (resp. ψ−) is in the symmetric
(resp. anti-symmetric) representation and is a SO(8) spinor. The λA− are bifundamental
fermions of USp(2N)×USp(2Nf ) with Nf = 16 “flavors”, and arise from (massless modes
of) open strings stretching between the D1-branes and the D9-branes. The type 0′B model
is analogous mutatis mutandis, with the important difference that the scalars are in the
adjoint representation of the gauge group U(N), since the Möbius strip contribution does
not modify the structure encoded in the annulus due to the vanishing O9-plane tension.
While the light-cone gauge is convenient, since in two dimensions ghosts decouple [107]
and the gauge field can be integrated out exactly,24 here we shall content ourselves with a
one-loop analysis. In this respect, the β function of the gauge coupling depends only on the
(perturbative) matter content. In order to derive it, let us recall that, in four dimensions,
the result

β4d = b1
g3

YM
16π2 (4.34)

arises from the (dimension-independent) a4 coefficient in the heat-kernel expansion of the
one-loop functional determinant [109]. Therefore, in the two-dimensional case the bare
coupling g0 would be related to the renormalized coupling according to

1
g2

0
= 1
g2

YM(µ) −
b1
4π

1
µ2 . (4.35)

In terms of the dimensionless coupling gYM ≡ ĝ µ, the one-loop β function is then

β̂2d = −ĝ + b1
4π ĝ

3 , (4.36)

with [110–112]

b
USp(2N)
1 = 9N +Nf − 15

3 , b
U(N)
1 = 9N + 2Nf

3 (4.37)

for the Sugimoto model and the type 0′B model respectively. Therefore, the gauge coupling
eventually flows to a strongly coupled region, which could exhibit confinement or screen-
ing [113], even in the large-N limit where the suitable parameter is the ’t Hooft coupling.
From the perspective of the bulk, the IR behavior of the gauge coupling ought to reflect the

24Non-perturbative methods of this type in light-cone gauge have been recently employed in [108].
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radial perturbations of the dilaton described in [13]. Specifically, power-like perturbations
φ− φAdS ∝ |r|−λ about the fixed-point AdS throat, encoded in eqs. (3.1) and (3.10), would
translate into the IR β function

β̂IR = (2λ− 1) (ĝ − ĝ∗) , (4.38)

since r is related to the Poincaré-patch holographic coordinate z 7→ 1
µ according to |r| = z2

2 .
In particular, the two independent power-like perturbations that decay in the IR yield [13]

β̂IR =
√

5 (ĝ − ĝ∗) or β̂IR =
√

13 (ĝ − ĝ∗) (4.39)

in the orientifold models. The overall picture appears daunting, but the (non-local) quartic
effective action obtained integrating out the gauge field is potentially amenable to large-N
Hubbard-Stratonovich techniques [114, 115] or non-Abelian bosonization [116].

As we have anticipated, one can still attempt to make some progress studying the
UV regime computing the one-loop effective potential. To this end, in order to connect
with a space-time interpretation, we shall consider “geometric” configurations that describe
two parallel stacks indexed by α = 1 , 2 and transverse positions x(α). The corresponding
configuration for the scalars Xk is

Xk = gYM√
2N

2∑
α=1

Ωα x
(α)
k , (4.40)

where the Ωα are block-diagonal. In detail, they are the projections onto the first and
second stacks of the (symplectic-)trace singlet, which is the symplectic matrix iΩ in the
Sugimoto model and the identity matrix in the type 0′B model. The resulting quadratic
kinetic operator yields a functional determinant akin to that studied in [17, 18], and using
a covariant, Feynman-like gauge the contributions of the gauge field cancels that of the
ghosts. This is to be expected on account of our preceding considerations. Furthermore,
the fermionic terms also vanish in the Sugimoto model, while in the type 0′B they cancel
the bosonic contribution, mirroring the results of [18] for self-dual D3-branes. All in all, for
the Sugimoto model the quadratic action for fluctuations δXi ≡ δXa

i ta, decomposed in an
orthogonal basis {ta} of the space of (imaginary) anti-symmetric matrices, takes the form

S
(2)
D1 =

∫
d2ζ

(
∂+δX

a
i ∂−δX

a
i + 1

2 δX
a
i

(
M2

)ab
ij
δXb

j

)
, (4.41)

where the (positive semidefinite) mass matrix

(
M2

)ab
ij

= g2
YM
N

δij
∑
α , β

x(α) · x(β) ω
(αβ)
ab , ω

(αβ)
ab ≡ Tr ([Ωα , ta] [Ωβ , tb]) (4.42)

arises from the quartic potential of eq. (4.33), and one is thus led to the one-loop effective
potential

V
(1)

D1 = 1
2 Tr

∫
d2p

(2π)2 log
(
p2 +M2

)
. (4.43)
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The non-vanishing eigenvalues of the mass matrix comprise not only the separation r2 ≡∣∣∣x(1) − x(2)
∣∣∣2 between the stacks, as in the case of orthogonal and unitary gauge groups,

but also (twice) the mean position
∣∣∣x(1) + x(2)

∣∣∣2. Furthermore, when a stack contains more

than one brane, there are eigenvalues proportional to the square
∣∣∣x(α)

∣∣∣2 of its position.
While we were not able to provide a complete explanation of this behaviour, which is due
to the non-Abelian nature of the (projected) symplectic matrices Ωα and thus reminiscent
of brane polarization [117], when interpreted in terms of smooth space-time geometry
the apparent breaking of translational symmetry could presumably be ascribed to the
absence of a flat background in which the branes can be placed, along with the presence
of a force acting on them. This resonates with our preceding considerations, whereby the
world-volume gauge theory can be constructed placing probe branes in the controlled region
of the Dudas-Mourad geometry: the force acting on probes, which we have discussed in
section 4.1.2, appears to be encoded in the one-loop effective potential of the world-volume
gauge theory, at least for the Sugimoto model.

Focusing on the contribution to the trace in eq. (4.43) that depends on the brane
separation r, one finds

V
(1)

D1
∣∣
sep = m

π

∫ Λ2
UV

0
ds log

(
s+ g2

YMr
2

N

)
(4.44)

with m the corresponding multiplicity. Notice that the renormalized dimensionless coupling
ĝ(µsep) evaluated at the separation scale µ−1

sep ≡ r/ΛUV appears, and the perturbative regime
translates into the requirement ĝ(µsep)� 1, so that

V
(1)

D1
∣∣
sep ∼ −

m

π

g2
YMr

2

N
log
(
g2

YMr
2

NΛ2
UV

)
(4.45)

indeed exhibits a repulsive behavior induced by tunneling. This result, although marginally
reliable at the tunneling scale, appears in agreement with axial-gauge computations, and is
consistent with our preceding considerations. Moreover, as expected, for N = 1 the (gauge
singlet) scalars decouple, and thus their effective potential receives no corrections even
beyond the one-loop level. This is reflected in eq. (4.45) by the fact that m = 0 for N = 1.

5 Conclusions

In this paper we have investigated the interactions of branes in non-supersymmetric string
models. In particular, we have focused on the USp(32) [5] and U(32) “type 0′B” [3, 4]
orientifold models and on the SO(16)× SO(16) heterotic model of [1, 2], computing static
interaction potentials for parallel stack of branes. Despite the absence of supersymmetry,
the presence of R-R charges entails the existence of charged extremal branes in the spectrum,
which comprise D1 and D5-branes in the Sugimoto model and D1, D3, D5 and D7-branes
in the type 0′B model. In addition, we have included heterotic NS5-branes in our analysis,
since their behaviour mirrors that of D1-branes to a certain extent. On the other hand,
we have excluded D5−D5 and D7−D7 interactions, since the corresponding background
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geometries and string amplitudes present a number of subtleties. Our computations span a
variety of regimes: whenever one stack is parametrically heavier than the other, one can
replace the heavy stack with the corresponding background geometry probed by the light
stack, while whenever both stacks are parametrically light one can compute the interaction
potential via the annulus amplitude, provided that the two stacks do not share the same
charges. Finally, we have investigated the world-volume gauge theory of D1-branes in
the Sugimoto model in an attempt to extend our results beyond the perturbative regime,
connecting them to a top-down non-supersymmetric holography of the type discussed
in [13, 96]. We have computed the one-loop β function and effective potential for separated
branes, finding a departure from the supersymmetric case and from the type 0′B model.

The interaction potentials that we have obtained are qualitatively consistent among these
complementary regimes whenever comparisons are possible. Namely, separated stacks either
attract or repel in each case. The agreement is non-trivial, since there is no apparent principle
that protects this behavior upon increase of the strength of gravitational backreaction.
Moreover, for branes that share the same charge(s), we found a novel mechanism that
realizes the Weak Gravity Conjecture via a renormalization of the effective charge-to-tension
ratio. This peculiar effect arises from an interaction between the branes mediated by the
supersymmetry-breaking ingredients, which at the level of the ten-dimensional EFT are
reflected by the gravitational tadpole potential in eq. (2.4). This behavior is also consistent
with the world-volume computations that we have presented in section 4.3, although its
reliability is confined to the UV due to asymptotic freedom. On the other hand, a proper
holographic comparison would entail flowing to the strongly coupled IR, where arguments
from the bulk suggest that a large-N fixed point ought to exist. We would like to pursue
this direction further in future work, possibly relying on non-perturbative large-N and
two-dimensional methods.

All in all, our findings suggest that the instructive lessons that have been gathered
from brane dynamics can be robust, to some extent, with respect to the dramatic effects
of high-energy supersymmetry breaking. One can expect that deeper connections with
holography and Swampland proposals can be unveiled from this perspective, which would
nicely complement the bottom-up considerations of [118, 119] (see also [39, 40]). In this
paper we have only taken a first step toward a deeper understanding of these fundamental
issues, and a more detailed investigation could encompass D5−D5 and D7−D7 interactions,
either in the probe regime or in the string-amplitude regime, and more generally probe-brane
potentials for the (so far elusive) background geometries sourced by D5 and D7-branes. Other
avenues for future research include exploring further the back-reaction and thermodynamics
of non-extremal branes, as well as involving higher-order Wess-Zumino terms along the
lines of [120] to take into account the effects of R-R interactions for branes of different
dimensions. Aside from cases where the leading contribution vanishes, one can expect
that couplings of this type be required to all orders, at least in α′, in order to circumvent
a Dine-Seiberg-like argument [121]. Some progress along these lines has been achieved
via all-order string-amplitude computations (see, e.g., [122, 123]) and via T-duality in
the context of cosmology [124–133]. Furthermore, from the perspective of holography, it
would be interesting to understand whether the IR fixed-point structure exhibited by the
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near-horizon AdS throats discussed in section 3 can be reproduced via strong-coupling
effects in the putative dual gauge theory. While the limit of a large number of branes
appears necessary in order to probe this regime, small-N computations seem to reveal
intriguing hints concerning the scenarios proposed in [13, 96] and their connections to the
conjectures put forth in [57, 61, 134–138]. These and other related issues are currently
under investigation.
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