Cutting tool life management in turning process: a
new approach based on a stochastic wear process
and the Cox model

Lucas Equeter, Christophe Letot, Clément Dutoit,
Pierre Dehombreux
Machine Design and Production Engineering Department
University of Mons
20 Place du Parc, 7000 Mons, Belgium
Email: lucas.equeter@umons.ac.be

Abstract—In machining processes, a significant cost contribu-
tion is related to the cutting tool insert. A precocious replacement
leads to lesser profitability of the cutting tool while a late
replacement tends to produce more scraps due to advanced wear
of the cutting tool insert. To optimize the replacement times, there
is a need to develop an integrated monitoring framework to assess
the wear of the cutting tool for different cutting conditions during
the machining process and to predict the remaining useful life.
The aim of this paper is to propose a complementary approach
based on a gamma process to model the stochastic behaviour
of the flank wear evolution and a Cox proportional hazard
model to consider different cutting conditions. Experimental
data measured in turning is used to fit a piecewise stationary
gamma process on 29 cutting tool inserts using identical cutting
conditions. Another set of data is used to fit a Taylor law to take
into account different cutting speeds. The piecewise stationary
gamma process is then adapted to simulate random flank wear
paths for a defined cutting speed range. Using this model, several
cutting tool lifetimes are simulated and used to feed a Cox
proportional hazard model. The fitting procedure relies on a
learning phase and a control phase to ensure the accuracy of
the model. The results of both models are then discussed, and
the robustness of the Cox Proportional Hazards Model to noise
in the data is assessed.

I. INTRODUCTION

The general framework of this study is the optimization of
mechanical equipment in order to diminish costs and increase
availability. Proper knowledge concerning the reliability and
updated Remaining Useful Life (RUL) estimates allow this
improvement. In particular, this methodology is applied to the
wear of cutting tools. During the machining process, cutting
inserts undergo several wear mechanisms. Flank wear (see Fig.
1) appears between the flank face of the cutting tool and the
machined part. This wear is mainly due to abrasive wear, and
is the most commonly studied, as it is stable and may be
predicted.

The importance of this wear in the maintenance of cutting
inserts stems from the bad surface quality and the poor
dimensional precision of parts, and thus more scraps and the
associated costs, which may be crippling, in particular in high
added-value production industry. The present study proposes
methodologies that may help optimize the cutting inserts
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Fig. 1.  Flank wear, which is a result of abrasive wear, is traditionally
considered as the wear that appears in nominal machining conditions. Abrasive
wear progressively eats away the cutting edge of the insert, and the material
loss results in the apparition of a wear face. Its width, denoted VB, is the
standardized criterion for flank wear (ISO 3685).

lifetimes, reduce costs and increase the assets availability. First,
a stochastic flank wear model characterizes the flank wear
evolution (see Fig. 2) for each cutting insert. This model is
calibrated on experimental data and allows the production of
degradation trajectories following the measured experimental
behaviour. Then, a Cox Proportional Hazard Model (PHM),
using the lifetimes generated by the stochastic model as
learning set, is used to predict the Mean Up Time of the cutting
inserts for varying cutting speeds.

The present study allows to represent the stochastic nature
of the cutting tool wear and to produce updated reliability
and RUL estimates at each inspection time. This estimate
may then supply a more global industrial maintenance policy,
providing additional relevant information about the upcoming
degradation.

On an analytical point of view, [2] described the effects of
adhesive, abrasive and other wear processes, and compared the
contributions of several authors concerning the quantification
of the tool wear rate and proposed a new mathematical model
of flank wear. [3] proposed an analytical tool wear model
including the different wear processes for ceramic inserts in
hard turning. [4] has a more physical point of view on the
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Fig. 2. Flank wear (adapted from [1]) — The evolution of Flank wear is
usually divided into three phases: a first quick wear phase, followed by a
longer steady-state region, and finally an accelerated wear after a given time.
The VB end-of-life criterion displayed on this figure comes from the ISO 3685
standard. Regardless the cutting speed, this behaviour is seen, albeit steeper
as the cutting speed increases.

wear mechanisms, and described the abrasive wear of flank
face as a function of the removed material per unit of time,
which also includes a tool life criterion proposition. Finally,
[5] proposed a methodology for predicting the Probability Den-
sity Function (PDF) of degradation under aperiodic condition
monitoring that is based on a gamma process and is close in
its mathematical aspects to this study. In that study, Yan et al.
used Maximum Likelihood Estimation, but this method does
not allow for various cutting speed, as additional information
is necessary to determine the variation of the shape parameter
of the gamma process under those varying cutting conditions.
This is why the present study considers the use of Taylor’s
Law as the corresponding additional information in the case
of various cutting conditions.

The Cox PH model was first proposed by Cox [6], and was
originally used for medical applications in survival analysis.
Further developments late confirmed its validity as a statistical
methodology applied to the general framework of machining
and maintenance [7].

Tool wear modelling is a recurring subject in recent lit-
erature, because of the huge opportunity for cost reduction it
represents [8]. The semi-continuous process that is machining
calls for on-line Tool Condition Monitoring (TCM) [9]. Several
approaches have been shown to be of use regarding TCM, such
as [10], which recently presented a mathematical modelling of
a linear control system based on a transfer function between
the tool wear rate and cutting forces.

This work is organized as follows: first, the methodology
and results of the experimental campaign that gathered the
data necessary for the stochastic model fitting are presented.
Second, the stochastic model highlights, fitting, and appli-
cations are presented for constant cutting speeds. It is then
shown how it can be extended to varying cutting speeds.
The Cox Proportional Hazards (CPH) model is then defined
and presented along with its results and robustness. Finally,
we conclude on the highlight of both methodologies and the
perspectives of future developments.

II. MEASUREMENTS

For the experimental phase, several machining operations
were conducted on a CNC SOMAB “"UNIMAB 450” lathe

using a cutting tool DCLNL 2525M 12 with a tungsten carbide
insert coated CNMG 1204 085B OR SAFETY SA brand. The
first data set was obtained using the same cutting conditions
as in [11].

A batch of 30 identical inserts was used to assess the evo-
lution of the flank were for determined machining conditions.
The cutting conditions are: a cutting speed v, = 340 m/min, a
feed rate f = 0.18 mm/rev, a depth of cut a, = 1.5 mm. The
workpiece is a cylinder made of gray cast iron with lamellar
graphite FGL250 that presents a hardness of 322 Hv.

Obviously, quantitatively different results are to be ex-
pected in the case of machining materials that are different
in nature or in hardness, or with different cutting tools. The
present study addresses only the mentioned tools, material and
cutting parameters, but the methodology that is described is
expected to be usable in other materials, tools and properties.
These considerations however fall beyond the scope of this
study.

The machining operations were designed to ensure a con-
tact time of exactly one minute between the cutting tool and the
workpiece, which correspond to the duration of one pass. The
dimensions are a length of 220 mm and a diameter of 190 mm.
Each minute (after one pass), the machining is stopped and
the flank wear level on the insert is measured using an optical
microscope LEICA MSS5 type that allows a magnification of 4
times the actual size and presents a measurement error of 2%.

A second batch of insert was used to assess the influence
of the cutting speed. Three different cutting speeds v. that
are 340, 390 and 440 m/min were considered, the remaining
machining parameters were unchanged. The figures 3, 4 repre-
sent the evolution of the measured flank wear for the first and
second data sets respectively. For the first data set, the cutting
insert 18 presented another failure mode than the soft flank
wear and was rejected for this study.

For the lifetime computation, we refer to the standard
ISO 3685 that considers a maximum flank wear level of 0.3
mm before the failure of the cutting. Actually this criterion
is not physically related to a failure of the cutting tool in
the common sense, but rather relates to the quality of the
workpiece (i.e. the higher the wear of the cutting tool insert, the
higher the probability to produce workpieces that are beyond
the tolerances).

III. STOCHASTIC FLANK WEAR MODEL

As illustrated in figure 3, the flank wear evolution is
characterized by a stochastic behaviour despite the fact that
identical inserts as well as machining conditions were used.
In consequence, the hitting times of the failure threshold are
randomly distributed which impacts the decision of replacing
the cutting tool insert. In order to take into account these
uncertainties, there is a need to consider a stochastic model
for the flank wear evolution.

A. The gamma process

The gamma process has been widely used in various
research topics involving monotonous degradation processes,
reliability analyses and maintenance optimization of aging
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Fig. 3. First data set, gathered by repeating the experiment at a constant
cutting speed (340 m/min)
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Fig. 4. Second data set, gathered by varying the cutting speed

components [12]. Due to its monotonic behaviour, this stochas-
tic process is particularly well suited to model the evolution
of some physical degradation such as wear, crack growth,
corrosion, fatigue, degrading health index, creep that can only
increase in proportion with the elapsed time or the number
of usages. According to [12] the definition of the gamma
process if the following. Let Z(t¢) denotes the evolution of
a degradation process with respect to time and Z(tg) is the
initial degradation at ¢ = O:

Z(t) = Z(to) + G(tlm(t), A) ()

G is the gamma process with the following characteristics:

e (4 has independent increments;
e (G(0) = 0 with probability one;

e (G is a stochastic continuous process, and for Vio, t1
(ta > t; > 0), the intensity of the jump G(t2)—G(1)
follows a gamma distribution with shape parameter
m(ta) — m(t1) and scale parameter A\ with density
function:

/\m(tQ)—m,(tl)

m(ta)—m(t1)—1 _
Tt — m()” xp(=Az) @)

fz) =

I" being the gamma function defined as:

“+oo
Dlm(ta) = m(t) = [ @m0 exp(-a) ()
0

Since the domain of the gamma function is RT, this
stochastic process can only produce positive increments. The
mathematical expectation and variance of the gamma process
at a given time ¢ are:

E@(m(n), ) = ™0 @
v(@m(), ) = " ®)

When the shape parameter is a linear function of time
m(t) = «t, the gamma process is said to be stationary;
i.e. the increments are identically distributed. The case of
non-stationary gamma process is thoroughly discussed in
[12]. On figure 3, the typical evolution of the flank wear looks
like a ”’S” shape function with an inflection point. While
it is possible to consider a complex function for the shape
parameter m(¢) for this study (see [13] for an example on
the deterioration of choke valves), it was decided to consider
a piecewise linear gamma process instead. The amount of
available data being significant, a piecewise gamma process
allows to improve the accuracy of the model since it is able
to catch the transient effects observed at each inspection time.

A piecewise linear gamma process consists in fitting a
stationary gamma process for each inspection interval At; =
t; — t;—1 on several degradation jumps Az;; observed on
several j identical items. For each time interval At; a linear
gamma process G;(a;, A;)) is obtained as illustrated on figure
5. Considering the wear of the cutting tools, this approach
allows to capture the non-stationary effect that occurs at the
very beginning (phase I) and just before the end of the tool
life (i.e. phase I and phase III on figure 2).

The analytical mean and variance for the piecewise gamma
process are:

2
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Fig. 5. Tllustration of the piecewise gamma process fitted on data.

B. Fitting the gamma process

As presented in [12], there are four approaches to estimate
the parameter of a gamma process to fit experimental data:
the method of maximum likelihood, the method of moments,
the method of Bayesian statistics and the method of expert
judgement. In this study we used the method of maximum
likelihood. The maximum likelihood estimation is a method
of estimating the parameters of a statistical model given
observations ; it consists in finding the set of parameters p
that maximizes the likelihood of producing the observations
again given the parameters. The likelihood function is:

I sl ®)
=1

In the case of the stationary gamma process, the observa-
tions are different jump intensities Az; at given time intervals
A;.

I )\ B n )\aAti A a1
(Ol, )_HF(OéAtz) 2

i=1

exp(—AAz;) 9)

Using the log-likelihood I(a, A) = In L, A), it becomes:

/\aAtl
(aAt;)

Zln(

AzeAl exp(—)\Azi)> (10)

l(a,\) = i In(aAt; In A — In(T'(aAt;))

+ (aAt; — 1) In(Az) — AAz)  (11)

Taking the partial derivative of equation 11 gives the
maximum likelihood estimator (&, A). This gives equations:

T'(aAt)
(aAti)

8l(a, ) _ -

=1

TABLE 1L PARAMETERS OF THE PIECEWISE LINEAR GAMMA PROCESS.
THE LAST COLUMN IS THE EXPECTED DEGRADATION RATE.

Gi(ai, M) a; Ai i/
G1 349.65 5583.64 0.0626
Go 7.12 580.07 0.0123
G3 7.62 378.36 0.0201
Gy 2.54 291.01 0.0088
Gs 2.46 307.40 0.0080
Gg 2.14 382.25 0.0056
Gr 1.19 91.27 0.0130
Gg 1.48 138.41 0.0107
Gy 2.15 210.99 0.0102
G1o 1.11 12.46 0.0891
G11 1.59 8.49 0.1875
G2 0.99 6.69 0.1487
G 1.84 18.59 0.0992

Sla, N) = [(alt
OA Z( A

i=1

- Azi) =0 (13)

The estimator \ can be directly obtained from equation
13. The estimator & is obtained by numerically searching for
the root of equation 12 using the Newton-Raphson method for
instance.

C. Application on the first data set

Since the measurement of the flank wear evolution was
recorded every minute, the interval time is one minute for each
of the linear gamma process G;. For each interval time, 29
degradation jumps were observed. The gamma piecewise linear
process was fitted accordingly considering the couples (At;,
Az; ;), i being the index of the current time interval (i =
1,2,...,13) and j the index corresponding to the current cutting
tool (j =1,2,...,29).

Table I gives the values of the estimated parameters for
each linear gamma process. The third column indicates the
average degradation rate for a given linear gamma process
(i.e. for the corresponding interval time). As expected, the
degradation rate is higher for the first minute (phase I) and
then decreases to present a monotonic behaviour with a flank
wear rate of around 0.01 mm/min (phase II) before suddenly
increasing after 10 minutes (phase III).

It should be noted that for the last minutes (i.e. at times 12
and 13 minutes), only a few cutting tools were at disposal
for measurements, they are the ones that were still below
the failure threshold. In consequence, the adjustment of the
gamma process did not consider the cutting tools that had
already passed over the threshold ; leading to an inaccurate
analysis since it tends to underestimate the degradation rate.
For this reason, only the first eleven minutes are considered
in the following analyses. If a simulated flank wear path lasts
longer than 11 minutes, the linear gamma process G11 is used
for simulation of the next degradation jumps.

Fig. 6 presents a comparison of the data obtained from
simulations using the piecewise gamma process and the exper-
imental flank wear evolutions that were recorded. The mean
flank wear is represented in green for both cases.
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Fig. 6. Comparison of the simulated data obtained with the piecewise gamma
process and the experimental data.

IV. EXTENSION TO CONSIDER VARIOUS CUTTING SPEED
A. The Taylor law

The cutting tool life assessment or various cutting con-
ditions (e.g. mainly the cutting speed) is obtained using the
Taylor’s tool life equation [14]:

v I =C (14)

T, being the cutting tool life (min), v. the cutting speed
(m/min), n the Taylor exponent and C' a constant parameter for
a given cutting tool and workpiece set. Using the logarithmic
operator, the Taylor law is fitted by regression on experimental
tool life data obtained with different cutting speeds. The
definition of tool life tests to obtain the value of the parameters
n and C are specified in the standard ISO 3685 (1993) for
turning operations and ISO 8688 (1989) for milling operations.
Considering the reference case vref = 340 m/min that leads to
an average tool life duration T, = 10.6 min (i.e. the mean
failure time obtained for the first data set at constant cutting
speed). The tool life T, for any cutting speed v, is:

(1/n)
T. = <C> 15)

Ve

Consequently, considering various cutting speed conditions
in the piecewise gamma process is achieved by introducing
the relative factor Tyef/7. in the shape parameter so that the
degradation rate for each observation is modified by the cutting
speed (i.e. on table I the shape parameters «; are multiplied
by Tief/T. ; the higher the cutting speed v, the shorter the
cutting tool life 7. and so the higher the degradation rate). It
was decided to not modify the first degradation jump «; since
the first measurement is conditioned by the initial quality of
the cutting tool (i.e. the model supposes that the degradation
at initial time is null but this might not be the case in practice)
and also because the degradation rate is significant.

B. Applications to the second dataset

Using the Taylor law on the second data set, the parameters
of the Taylor law are C' = 840 and n = 0.383. The figure 7
shows some simulations of the piecewise gamma process for
different cutting speed values. On figure 7 The comparison
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Fig. 7. Simulated data for different cutting speeds using the piecewise gamma
process.

with experimental data shows that the model successfully
reproduces the behaviour at different cutting speeds.

V. CUTTING TOOL MONITORING AND RUL

Given the fitted degradation model, the next step is to
assess the remaining useful life of a cutting tool during
machining operations for given cutting conditions. For the
sake of illustration, the methodology is applied on one of
the cutting tools that were used at the experimental step
(e.g. the cutting tool number 4). The flank wear VB of this
cutting tool is monitored every minute. At each inspection,
the piecewise stochastic gamma process is used to simulate
degradation trajectories by Monte Carlo simulations (consid-
ering 500 simulations for each inspection). The figure 8 shows
an illustration of 5 simulated degradation paths at inspection
times 5 min and 10 min. With these simulations, the hitting
times of the threshold VB = 0.3 mm are computed. A log-
normal distribution is then fitted on the simulated failure times
to obtain a parametric representation of the reliability (see
figure 9). The reliability law if fitted using the regression
method with the rank adjust non-parametric estimator [15].
This reliability is used to compute the RUL distribution and
the mean residual life (MRL). The RUL is obtained for each
inspection considering the power density function of the hitting
times and the MRL is used using the following equation:

MRL(t;) = E(T. — t{T. > t,VB(t;) < 0.3 mm)  (16)

= /OOR(u|VB(tj))du, (17)
t

J

with R (u|VB(t;)) the conditional degradation-based relia-
bility of the cutting tool that has survived until inspection time
t; and given the measured flank wear VB(¢;). The figure 10
shows the RUL after each minute and a comparison between
the mean residual life and the true residual life.

Concerning the cutting tool number 4, it is observed that
the MRL is underestimated during the first inspection times.
It is necessary to wait until 10 min to observe a shift in the
MRL that match the true residual life. This is due to the burst
in period (stage 3 accelerated wear) in the VB evolution that
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Fig. 9. Illustration of the updating of the reliability model at each inspection
time given the last VB measurement.

is hard to predict in practice. Such methodology can also be
performed considering a different cutting speed.

VI. CoxXx MODEL

A. Model description

Cox’s Proportional Hazards Model is the most important
model in survival analysis [16]. Its assumption is that the
failure rate of a system depends both on a hazard baseline,

o1 Cutting time (min)

Fig. 10. RUL distribution at each inspection time and comparison of the
mean residual life (blue dot) with the true residual life (continuous red line).

which may be parametric, and on covariates that describe
the characteristics of the system and represent the way. As
the name of the model states, one of the main hypotheses
is the proportionality between the observed hazard rate and
the baseline hazard rate, which is usually estimated at the
mean value of the covariates. The weighing with respect to
the covariate is expressed through an exponential function of
a linear combination of the covariate.

In a general way, the Cox PH Model can be expressed as
follows:

p
h(t) = ho(t) -exp [ Y Bioy (18)
i=1

with h(t) being the hazard function or failure rate, ho () being
the baseline hazard function, 3; the weighing coefficients for
the p covariates and «; the covariates.

The estimation of the weighing coefficient 5 and the base-
line hazard curve are made through the Maximum Likelihood
Method, through the computation of partial likelihoods for /3
and methods analogous to the Kaplan-Meier estimators for
the baseline hazard curve ho(t). In the experimental phase
described hereunder, the estimations are performed with the
help of R’s f1lexsurv package [17], which also ensure proper
convergence of the results. The baseline hazard curve is fitted
to a Weibull distribution, which is commonly used to describe
the general behaviour of mechanical systems, as it adequately
can match the typical different hazard functions of mechanical
systems.

In the framework of this study, the only explanatory
variable that is chosen to describe the characteristics of the
system is the cutting speed. Sections II and IV showed the
influence of this cutting parameter on the life expectancy of
cutting inserts. Equation (18) is then written as:

h(t) = ho(t) - exp (Bve) 19)

From the hazard function given by the Cox PH model, it
is then possible to compute the Mean Up Time (MUT) of the
cutting inserts, which are our prediction for the cutting insert
lifetime:

—+oo

MUT = R(t)dt (20)

0

with R(t) being the reliability in the case of the 2-parameter
Weibull distribution:

R(t) = exp | — (;)B

7 being the scale parameter and (3, the shape parameter of the
Weibull distribution.

@1
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Fig. 11. Because of the non-linear relationship between failure time and

cutting speed in the sample, which is due to Taylor’s law linking the failure
time to the cutting speed (see eq. (15)), in order to obtain a flat distribution
in the failure time domain, one needs to distribute the sample data along
a negative exponential with respect to v.. This is done in the first sample,
denoted “Taylor distribution” in this figure. This distribution is to be assessed
by comparison with a flat distribution of the sample with respect to the cutting
speed. As further comparison, a third distribution is chosen, that amplifies the
unbalance toward high cutting speed. The control set distribution is, as always,
uniform over the sample.

B. Numerical experiment description

The numerical experiment presented in this section follows
previous work [18]. This paper introduces to the Cox PH model
applied to cutting tools and in particular a sensitivity analysis
to the data sample distribution with respect to the covariate
value, and sensitivity to noise in the measurements. In this
numerical experiment, cutting inserts lifetimes are generated
through the method shown in sections III through V. The
numerical experiment is divided into the following phases:

1) The Cox PH model will be built from data samples

following specific distributions with respect to the
covariate, as [18] showed a strong sensitivity of the
model to this statistical aspect of the data sample.
The lifetime generation method that has been pre-
sented allows to build four sets of data following
specific distributions along the v, learning interval.
All numerical integrations are performed through
the trapezoidal rule. A single set of 1850 generated
lifetime, which is uniformly spread over the control
interval, is used to assess the precision of the Cox PH
models and determine the quality of the tool lifetime
prediction.
Previous work [18] showed important discrepancies
toward the low cutting speeds. It was assumed that
the non-linear relationship between the failure time
and the cutting speed lead to few data points at high
failure times. In order to assess this hypothesis, three
distributions are tried and compared, as shows figure
11.

2) A Cox PH model is built from data showing the best
results among the previous phase of the experiment.
This time, the model is built from noised data (i.e.
the observed value is added to a noise component
that follows a certain distribution), with the noise
following two possible distributions:

e  Continuous uniform distribution depending

20
1

o Prediction (flat dist.)
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o — Meanx1lo
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|
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Learning interval
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Fig. 12.  The Cox PH model prediction for the lifetime of cutting inserts
(circles), built on 400 data points evenly distributed with respect to the cutting
speed (see figure 11) provides accurate predictions of the cutting tools within
the learning interval. The control set is made of 1850 additional lifetimes.
Discrepancies appear at both ends of the curve, while the prediction is very
good inside the learning interval. Because of the narrowing distribution of the
lifetime at higher cutting speeds, becoming quasi-deterministic, the prediction
is off the 1o interval at the higher end of cutting speeds.

on the mean of observed value
U(—0.1(T), +0.14(T)),
w(T') being the mean observed failure time

value given the covariate value.

e Normal distribution A/ (0, %),

w(T) being the mean observed failure time
value given the covariate value.

The objective of the first experiment is to confirm or infirm
the influence of the learning data sample for building a Cox
PH model for cutting inserts. The second experiment aims
at assessing the robustness of the Cox PH Model. A noise
component is added to the observed value. In a first case, it
follows a uniform distribution and generates a noise of which
the width is 10 % of the mean observed value. In a second
case, it follows a normal distribution and generates a noise
of which the standard deviation is about 5 % of the mean
observed value.

C. Results and discussion

The results of the first phase of the numerical experiment
are displayed in figure 12. The output predictions of the
three distributions proposed and illustrated in figure 11 are
not graphically distinguishable one from another (values vary
slightly).

The methodology proposed for the first experiment does
not allow to witness any substantial change, regardless the
distribution of the sample data. The hypothesis linking the
discrepancies between the prediction and the learning set distri-
bution appears to be false and will call for further mathematical
developments and experimentations in order to determine the
exact origin of the phenomenon.

Because no distribution proved better than others, the
flat distribution was used during the second phase of the
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Reference value 840 | 0.383 -

Phase 1 - Flat dist. 749 | 0.335 | 0.996
Phase 1 - Taylor dist. 737 | 0.329 | 0.996
Phase 1 - 3rd dist. 753 | 0.338 | 0.996
Phase 2 - Uniform noise | 751 | 0.337 | 0.996
Phase 2 - Normal noise 749 | 0.336 | 0.996

Fig. 13.  The estimates of Taylor’s constant C' and Taylor’s exponent n
allow another point of view on the numerical experiment results. It is to be
noted that the parameter estimate is worse when using a sample distribution
following the Taylor law. Other estimates, on the other hand, are quite similar
one to another, but still far from the reference value. Moreover, the noise on
measurements does not seem to influence the quality of the estimate of the
Taylor parameters.

experiment. The results of the second phase are not different
than the ones of the first phase. Figure 12 shows the prediction
that is achieved. No graphically distinguishable discrepancy
can be noted when the data is affected by the noise of either
proposed distribution. This shows how robust the Cox PH
model is with respect to noise. These results are to be expected
with zero-centred noise distributions. Further experiments on
this subject should focus on otherwise-centred distributions.

Moreover, for all generated predictions, a least squares log-
log regression allows to generate an estimate of the Taylor
coefficient n and the Taylor constant parameter C'. Figure 13
compares the estimated values with the reference values used
for the data generation, as explained in section IV.

VII. CONCLUSION

This work presents a combination of two approaches to the
cutting tool end of life prognosis in turning process. The first
part features the experimental methodology and results that
allowed to first build the stochastic flank wear model. In this
part, the use and pertinence of the use of a gamma process for
modelling the cutting tool flank wear evolution is discussed.
It also features the mathematical developments that allow the
fitting of the piecewise gamma process to the experimental
data through the use of a maximum likelihood estimator. A
comparison with the experimental data shows the quality of
the proposed model for the evolution of tools flank wear. It
is also shown how this gamma process may be extended to
various cutting speed through the Taylor’s law.

The second part of this work uses the gamma process in
order to generate degradation trajectories and thus, large tool
lifetime samples. In particular, it was shown how, knowing
the degradation trajectory up to a given point, the gamma
process model that was developed allows the projection of
future degradation trajectories at the given cutting speed, and
thus a MRL estimate.

Finally, it is shown how a Cox PH model may be built
from the data generated by the gamma process in order to
predict the MUT of cutting tools at various cutting speeds.
Numerical experiments are performed to evaluate the interest
of varying the distribution, with respect to the cutting speed,
of the learning set in order to favour accuracy of the Cox PH
model. A second phase of numerical experiments attempts to
determine the impact of noise, which is applied to the learning
set of the Cox model, on the quality of the prediction. In the

case studied here, it was found no impact from the learning
set distribution nor from zero-centred noise distributions on
the Cox prediction accuracy. Further developments on this
subject may focus on the poor reproduction of the chosen
Taylor parameter by the Cox PH model, and extension to
cutting speeds varying over time. Moreover, in order to provide
more specific decision aid concerning the tool replacement,
cost models are to be developed and used in synergy with the
presented MRL and degradation prognosis tools.
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