UMONS inforTech

| _ UMONS RESEARCH INSTITUTE
Université de Mons FOR INFORMATION TECHNOLOGY
AND COMPUTER SCIENCE

Advanced support for
executable statechart modelling

Tom Mens & Alexandre Decan

Software Engineering Lab
Department of Computer Science

informatigue.umons.ac.be/senlog



http://informatique.umons.ac.be/genlog/

Research Context
Model-driven software engineering

Goal

Increase quality and reliability of software systems before
implementation phase through use of visual design models

How?
e Specify structure and behaviour of software-intensive systems
* at high level of abstraction
e without considering technical details

Allow formal reasoning over the system

Test and simulate system behaviour

Facilitate system evolution

Explore design alternatives

Automated code generation

Tom Mens — INFORTECH day — UMONS — 21 April 2016



Research Context
Model-driven software engineerin

Activities: Model execution, model simulation,
automated testing, code generation, ...
Modeling languages: UML models, business process models, ...

Bottom Up Top Down

Activities: Formal verification, model checking, theorem proving, ...
Formalisms: temporal logics, automata, Petri nets, game theory, ...

Tom Mens — INFORTECH day — UMONS — 21 April 2016 .



Research Context
Executable modelling

Abstraction level

A
code code round-trip model executable
only centric engineeringi centric models

Model | | | Model | | | Model | | | Model
A ' : :
visualise synchronise generate
l ! v
Code | : | Code | : Code i Code
state of
the art
—>
Automation level

Tom Mens — INFORTECH day — UMONS — 21 April 2016 4



Research Context
Executable modelling

Focus on statechart models
&) Frequently used in industry

Well-suited for describing
event-driven behaviour of
concurrent, real-time systems




floorListener

floorSelecting

floorSelected J

/ destination=valueof(floorSelected)

doors

/.

doorsOpen
entry / raise doorsReady

toggleDoors  after 10s
foggleDoors
doorsClosed )

entry / raise doorsReady

Executable statechart modelling

Elevator example

elevator

notMoving

ri
after 30s / raise floorSelected:0

g .

[current != destination]
/ raise toggleDoors

waitingForDoors |

[destination == current] /
raise toggleDoors

UMONS

Université de Mons

moving

ri

movingUp
» entry /

ﬁ)orsReady
[current<destination]

doorsReady
[current>destination]

current=current+1

[current<destination]

movingDown
entry /

d
\ \

J emergency

emergency /
raise toggleDoors

resume

halted

current=current-1

[current>destination]

emergency /
raise toggleDoors

<

Tom Mens — INFORTECH day — UMONS — 21 April 2016




Executable statechart modelling
Pros and cons

&) Commercial tool support available

 |BM Statemate, IBM Rhapsody, MathWorks
Stateflow, Yakindu Statechart Tools

&3 “Standardisation” through UML

Many semantic variations
No open source solutions

Limited support for advanced development
techniques

Tom Mens — INFORTECH day — UMONS — 21 April 2016



Executable statechart modelling
Research goals

Provide more advanced support for statecharts

Dealing with semantic variation
Automated testing and test generation
Design by contract
Behaviour-driven development
Formal verification and model checking
Composition mechanisms
Design space exploration
Detecting quality problems
Applying model refactoring
Model evolution
Tom Mens — INFORTECH day — UMONS — 21 April 2016




Executable statechart modelling MONS
Sismic =

* |nteractive Statechart Model Interpreter and
Checker
— Python library available on Python Package Index (PyPl)
— released under open source licence LGPL v3

— Source code
 github.com/AlexandreDecan/sismic

— Documentation

* sismic.readthedocs.org

Tom Mens — INFORTECH day — UMONS — 21 April 2016


http://sismic.readthedocs.org

Executable statechart modelling

Sismic

* Executing statechart behaviour

simulator = Interpreter(my_statechart)
simulator.execute_once()
simulator.queue(Event(’floorSelected’, floor=4))

simulator.execute_once()

* Defining and running a story
story = Story([Event('floorSelected’, floor=1),
Pause(10),
Event('floorSelected’, floor=4),
Pause(10)])
story.tell(simulator)
print(simulator.time) # 20
print(simulator.context.get('current')) #4

UMONS

Tom Mens — INFORTECH day — UMONS — 21 April 2016



— Executable statechart modelling M O N S

e e ot o i
e

* Add precise and dynamically verifiable specifications
to executable software components (e.g., methods,
functions, classes)

class DICTIONARY [ ELEMENT ]

, feature
* Based on Bertrand Meyer’s put (x : ELEMENT; key : STRING ) is
“Design by Contract” SEJHIE |
count <= capaC|ty
 The code should respect not key.empty
a contract, composed of snetre
’ P has (x)
— preconditions item (key) = x
o count = old count + 1
— postconditions e
— invariants Invariant
0 <= count
count <= capacity
Tom Mens — INFORTECH day — UM({ end




et S e o et

""" ~»~ Contract-driven development = v

~°°"4'%L‘_E/ Executable statechart modelling U M O N S

Example of statechart contract

Aoortistener clevator contract ElevatorSystem

‘ floorSelecting S notMoving¢ moving
- pre: current =0
ri
floorSelected J .J el :Q;/ raise floorse p re : d e Sti n at i O n - O movingUp

/ destination=valueof(floorSelected) standing
1 [ ]
|nVZ CU rre nt >= O ht=current+1

t<destination]

doors

[current != destination]

‘ / raise toggleDoors Inv: deStInatlon >= O gDown

/ 7 T
a3 t>destination]
waitingForDoors | [curren entry /
doorsOpen » current=current-1
entry / raise doorsReady ~— ~
[current>destination]

)

t \ J emergency
toggleDoors  after 10s emergency /
foggleDoors raise toggleDoors emergency /

doorsClosed | halted raise toggleDoors
entry / raise doorsReady <

resume

Tom Mens — INFORTECH day — UMONS — 21 April 2016



e e S e A b e e
e ot S e e
e

Executable statechart modelling

-y~ Contract-driven development—

UMONS

Université

Example of statechart contract

floorListener

floorSelecting
floorSelected J

/ destination=valueof(floorSelected)

doors

/0

doorsOpen
entry / raise doorsReady

| [

eleva

context notMoving
pre: destination = current

.—v

context moving
pre: destination <> current

post: current = destination@pre

notMoving moving
<
rl [destination == current] /4
after 30s / raise floorSelected:0 raise toggleDoors
movingUp

p entry /

[current != destination]
/ raise toggleDoors

waitingForDoors

/ doorsReady

X [current>destin

doorsReady
[current<destination]

current=current+1

[current<destination]

context movingUp
pre: current < destination
post: current > current@pre

\ S

context doorsOpen
inv: not ocIIsInState(movmg)

emergency /
raise toggleDoors
resume

TITOy 7 TUoT UuuToncaay

emergency

|

halted

J

emergency /
raise toggleDoors

<

Tom Mens — INFORTECH day — UMONS — 21 April 2016




h°°"ﬂi_¥ Executable statechart modelling U M O N S

et S e o et

..... ;—M:E;-~L;7' CO nt ra Ct_d rlve N d eve I @) p me nt ~ Université de Mons

Detecting contract violations

InvariantError

Object: BasicState(doorsOpen)
Assertion: not active('moving’)

Configuration:
['doors', 'elevator’, 'floorListener', 'doorsOpen’, 'floorSelector’, 'moving', 'movingUp']

Step: MacroStep@10(
InternalEvent(doorsReady),
[Transition(waitingForDoors, movingUp, doorsReady)],
>['moving', 'movingUp'],
<['waitingForDoors', 'notMoving'])

Evaluation context:
- destination =4
- current =2




Executable statechart modelling UM ON S
Test-driven & behaviour-driven development  — universie de mons

Write afailing
feature test

Write a
failing test

=

'lllll

Make the
Refactor t est pass

°yc'es




Executable statechart modelling MONS
Behaviour-Driven Development —

* Include acceptance test and customer test practices into
test-driven development

 Encourage collaboration between developers, QA, and
non- technical stakeholders (domain experts, project
managers, users)

e Use a domain-specific (non-technical) language to specify
how the code should behave
— By defining feature specifications and scenarios
— Using Gherkin language

e Reduces the technical gap between developers and other
project stakeholders

Tom Mens — INFORTECH day — UMONS — 21 April 2016



Executable statechart modelling U M ON S
Behaviour-driven development — s

Example
(taken from docs.behat.org/en/v2.5/guides/1.gherkin.html)

Feature: Serve coffee
In order to earn money customers should be able to buy coffee

Scenario: Buy last coffee
Given there is 1 coffee left in the machine
And | have deposited 1 dollar
When | press the coffee button
Then | should be served a coffee

Tom Mens — INFORTECH day — UMONS — 21 April 2016



Executable statechart modelling

Behaviour-driven development —

MONS

Example: Feature specification for Elevator statechart

floorListener

elevator

O floorSelecting

floorSelected
/ destination=valueof(floorSelecte

doors

/.

doorsOpen

‘ entry / raise doorsReady]
toggleDoors  after 1p0s
toggleDoors

doorsClosed
entry / raise doorsReady

Feature: Elevator system

Scenario: Elevator starts on ground floor
When | execute the statechart

Then the value of current should be 0
And the value of destination should be 0
And state doorsOpen should be active

Scenario: Elevator moves to 4th floor

When | send event floorSelected with floor=4
Then the value of current should be 4

And state doorsOpen should be active

moving

LA LA —J B B | LA

Then the value of current should be 0

TV JV JC VT TUHD

Ton

movingUp ‘
entry /
current=current+1
{current<destination]
movingDown

ntry /
current=current-1
>destination]
ency /
toggleDoors




Executable statechart modelling | ’MONS
Behaviour-driven development —

* Supporting BDD

Feature: Elevator System

[...]

1 feature passed, O failed, O skipped

4 scenarios passed, 0 failed, O skipped

13 steps passed, O failed, 0 skipped, O undefined
Took Om0.017s

Tom Mens — INFORTECH day — UMONS — 21 April 2016



Executable statechart modelling

Behaviour-driven development “MONS

* Supporting BDD

Failing scenarios :
Elevator moves to ground after 30 secs

Assertion Failed:
Variable current equals 4 1= 0

O features passed, 1 failed , 0 skipped
3 scenarios passed, 1 failed, O skipped
12 steps passed, 1 failed, O skipped , O undefined

Took O0m0.014s

Tom Mens — INFORTECH day — UMONS — 21 April 2016



Executable statechart modelling MONS
Sismic =

* Coverage analysis

State coverage: 92.86%
Entered states:
root (4) | elevator (4) | moving (4) | movingUp (12) | movingDown (4) |
notMoving (8) | standing (9) | waitingForDoors (4) |
doors (4) | doorsOpen (8) | doorsClosed (6) |
floorSelector (4) floorListener (4) |
Remaining states: halted

Transition coverage: 73.33%

Processed transitions:

movingUp [None] -> movingUp (9) |
moving [None] -> notMoving (4) |
standing [None] -> waitingForDoors (4) |




Executable statechart modelling LUMONS
Sismic B '

* Defining properties over statecharts

— |If elevator does not receive floorSelected event during 30 seconds,
ground floor should be reached 5 seconds after

— Can be checked dynamically by means of runtime monitoring

failure

. @ preamble: floor = 0
A after 35s
[floor != 0]
active
check for timeout
state_entered
./' stopped | [valueof(state_entered) == "moving"] > moving )
» state_exited
. [valueof(state_entered) =="moving"]

Tom Mens — INFORTECH\day — UIMIONS — 21 April 2016



Executable statechart modelling U |V| ON S
Future work

 Composition and communication mechanisms

==zPureContainer==
AnElevatorSystem
==PureActiveObject== bUpG ==PureContainer== callUp ==PureActiveObject==
gui: UserJTree | floor : Floor [8] L ispatcher : Dispatcher
bFIUp bDownG bUpD callDowwn
I:'l r
i L]
bFIDowwn hDownD
L bFloor ==PureContainer==
levator : Elevator [2]
Floor
iFloo
loor
hOpen
LR hClose
hClose
doorControl
oorControl elevatorDispatchD

elevatorDispatch
levatorDispatch I:|]disp I:l:l




Executable statechart modelling MONS
Future work —

 Automated detection of contracts, based on

* dynamic analysis of statechart executions

 static symbolic analysis of actions and guards
* Automated test generation

e Based on contract specifications

e Based on mutation testing or concolic testing
* Formal verification and model checking

* Based on temporal logic properties

* Expressed in domain-specific language

(e.g. Dwyer specification patterns)
Tom Mens — INFORTECH day — UMONS — 21 April 2016



Executable statechart modelling MONS
Future work —

e Support for quality analysis
e Detection of model smells
* Support for quality improvement

* Automated (behaviour preserving)
model refactoring

Tom Mens — INFORTECH day — UMONS — 21 April 2016



Executable statechart modelling

Future work

UMONS

niversité de Mo

e Software product family design and variability

analysis a
 Example:

feature model

of an elevator

control system »
product line

Tom Mens — INI

Capabilities/Services

Driving Services

Auto

VIP ... Hall Call
Handll?g Handling

Emergency

ECS Capability

Operations

Call Handling Capacity

Speed

Car Call Motor Door

Control Control

Car Call /\ /\

Cancellation

Operating
Environment

Real-time OS
----------- A

RTLinux VxWorks

ECS Operation Environment

Weight Sensor Kiokor

r~o
-
/\/‘“ s
- ~
¢ . Y

WndowsCE w oad Col Limit Switch

Design Decisions

Position Control

Current Position

Calculation Compensation

ECS Design Decision
___-/7

Communication
Method

Speed Profile L_)x

o (. T uop

Leveling Running
Profile Profile




