SETra 2004 Preliminary Version

On the evolution complexity of design patterns

Tom Mens?

Software Engineering Lab, Université de Mons-Hainaut
B-7000 Mons, Belgium

Amnon H. Eden 2

Department of Computer Science, University of FEssex
and Center For Inquiry International

Abstract

Software co-evolution can be characterised as a way to “adjust” any given software
implementation to a change (“shift”) in the software requirements. In this paper, we
propose a formal definition of evolution complexity to precisely quantify the cost of
adjusting a particular implementation to a change (“shift”) in the requirements. As
a validation, we show that this definition formalises intuition about the evolvability
of design patterns.

Key words: software evolution, design pattern, complexity

1 Introduction

According to Lehman’s first law of software evolution, “An E-type program
that is used must be continually adapted else it becomes progressively less sat-
isfactory.” [10]. Despite growing awareness of this law, evolution of industrial
quality software systems is notoriously expensive. It is therefore paramount
to investigate the flexibility or evolvability of software and to find ways to
quantify it.

Claims about the evolvability of design patterns, architectural styles and
object-oriented programs have appeared in numerous publications. Most au-
thors, however, stop short from quantifying the benefits gained by using a par-
ticular implementation policy or qualifying the claim by the class of “shifts”
(i.e., changes in the software requirements) it best allows.

Experience shows that flexibility is relative to the change. Every manu-
factured product is designed to accommodate to a specific class of changes,

! Email:tom.mens@umh.ac.be
2 Email:eden@essex.ac.uk
This is a preliminary version. The final version will be published in

Electronic Notes in Theoretical Computer Science
URL: www.elsevier.nl/locate/entcs

MENS AND EDEN

which makes it flexible towards these changes but inflexible towards others.
Locomotives, for example, are very flexible with relation to the type of cars
they can pull but they can hardly be adapted to tracks of a different size.

The same applies to software: Every implementation policy (e.g., architec-
tural style [14], design pattern [5]) is flexible towards the class of changes it
was designed for. For example, a program designed using Layered Architec-
ture style, such as the Unix operating system, adapts easily to changes in the
uppermost layer (the application layer) but changes to the lowermost layer
(the kernel) are much more difficult to implement. As another example, the
Visitor design pattern “makes adding new operations easy” while “adding new
concrete element classes is hard” [5] (pp. 335-336).

There is a common misconception in the software engineering community,
however, that flexibility and evolvability are absolute qualities. Consider for
example the following standardised definitions:

Flexibility The ease with which a system or component can be modified
for use in applications or environments other than those for which it was
specifically designed [6]

Extendability The ease with which a system or component can be modified
to increase its storage or functional capacity [6]

Changeability The capability of the software product to enable a specified
modification to be implemented [7]

These definitions fail to observe that flexibility of a program is relative to a
particular class of changes. As a notable exception, Gamma et al. were more
precise in characterising the quality of flexibility [5] : “Fach design pattern lets
some aspect of system structure vary independently of other aspects, thereby
making a system more robust to a particular kind of change.”

In this paper we examine the relationship between shifts, i.e., changes in
the requirements, and adjustments, i.e., the respective changes in the imple-
mentation. We offer a precise definition of evolution complexity and propose
various metrics to approximate its cost. To illustrate its usefulness, we com-
pute the evolution complexity of adjusting a selected number of design pat-
terns to specific shifts and prove informal statements about how difficult is
each. For example, we prove that the “Visitor pattern makes adding new oper-
ations easy” by showing that the evolution complexity of adding an operation
is constant, and that “Adding new concrete element classes is hard” by show-
ing that the evolution complexity of adding a new concrete element is linear
in the number of visitors.

Furthermore, we use evolution complexity to show that whether one im-
plementation policy is more evolvable than another depends on the class of
changes in question. For example, given the requirements for representing a
deterministic finite-state automaton, we demonstrate that a procedural imple-
mentation is more evolvable towards shifts in the alphabet, while an object-
oriented implementation (using the State pattern) is more evolvable towards

2

MENS AND EDEN

shifts in the set of states.

To summarise, the intended contributions of this paper are: (a) To for-
malise and prove the intuition behind flexibility and evolvability of specific im-
plementation policies, in particular of design patterns; (b) To provide means
for choosing a particular implementation policy; (c) To provide means for
quantifying the cost of implementing specific changes;

2 Setting the scene

In this section, we clarify the terminology that will be used in the remainder
of the paper. These definitions are summarized in Table 1 and illustrated in
Figure 1.

Table 1
Key to notation

requirements Tdfsas Tguiy -+

implementations | i fore, lafters ---

problem domain | D ={Dy,...,D,}

shift o=os(r,U,u)

adjustment a = (i,1)

co-evolution step | € = (0, @)

Requirements. A well-defined specification of the program’s expected be-
haviour, expressed in terms of the problem domain D. For example:

Tafsa = Implement a deterministic finite state automaton with states S
and alphabet L.

In this case, the problem domain Dy, = {5, L}.

Tgui = Implement a GUI to represent and instantiate a family of widgets
(e.g., button, window and menu) in a specified set of operating systems (e.g.,
Windows and MacOS).

In this case, the problem domain Dgy,; = {W,0}, where W = { button,
window, menu } and O = { Windows, MacOS }.

Implementation. The actual program that is the subject of the evolution
effort. Each implementation is designed to satisfy a specific set of require-
ments and must be adjustable to changes therein. In this paper, we will use
the term implementation policies to reflect that fact that we abstract away
from language-specific details.

Shift. A specific change to a given set of requirements. More specifically, a
shift may add entities to, or remove entities from, the sets contained in the
problem domain D. A shift is represented as a function og(r, D, d) where

3

MENS AND EDEN

D € D, and d is added to D if § =“4”, while d is removed from D if
o =“=".

For example, the shift o (rg4sq, L,) adds a letter [to the alphabet L in
Tdfsa-

Adjustment. A specific change to a given implementation, triggered by a
shift in the requirements. As shown in Figure 1, each implementation needs
to be “adjusted” in order to satisfy the changed requirements. An adjust-
ment is represented as a pair a = (4,4") where 7 is the old implementation
and 4’ is the new implementation.

Co-evolution step. A pair € = (0, «) consisting of a shift o transforming r
into 7’ and an adjustment o = (7,4’), such that implementation i satisfies
requirements r and implementation i’ satisfies requirements 7’.

old realises old
requirements implementation
. |
ﬂ adjustment
old realises old
requirements implementation

Fig. 1. A co-evolution step.

3 Evolution complexity

In this section, we use the previously introduced vocabulary to define a notion
of evolution complexity. With this definition we attempt to quantify the cost
of a co-evolution step, i.e., the effort that is required to adjust a specific
implementation to a particular shift.

In order to define evolution complexity, we draw an analogy with the no-
tion of computational complexity. “The theory of computational complexity
is concerned with estimating the resources a computer needs to solve a prob-
lem.” [16] In analogy, evolution complexity is concerned with estimating the
resources required to “evolve” an implementation. Using metaprogramming
as a central metaphor, we suggest that evolution complexity, i.e., the complex-
ity of the process of adjusting the implementation to changed requirements,
can be approximated by calculating the computational complexity of a meta-
programming algorithm that actually makes these adjustments to the software
implementation. This leads us to the most general formulation of evolution
complexity:

Definition 3.1 The complexity C(¢) of a co-evolution step € is the complexity
of the meta-programming algorithm that implements it.

Note that there are as many meta-programming algorithms (for imple-

4

MENS AND EDEN

menting the adjustment) as there are manual ways for implementing them.
We seek to approximate the manual (adjustment) process by measuring the
respective (hypothetical) metaprogramming process.

Since € = (0,«) is a pair, this definition implies that the actual effort
required to “evolve” a program correlates primarily with two factors:

(i) The shift o, i.e., the distance between the old and the new requirements;

(ii) The adjustment «, i.e., the distance between the implementation before
and after the change.

The obvious question is: How can we measure these distances? In the
following section, we illustrate some of the ways to approximate evolution
complexity:.

4 Case studies

In this section, we use evolution complexity to quantify the evolvability of dif-
ferent implementation policies. We do this in two different ways. To compare
the evolvability of different implementations (e.g., procedural versus object-
oriented implementation), we fix the shift and calculate the evolution com-
plexity for each implementation. To compare the difficulty of implementing
different shifts, we fix the implementation and calculate the evolution com-
plexity for each shift.

The presentation of each case study will be structured in the same way:
Example; Requirements; Shifts; Implementation; Metric; Analysis; Discus-
sion.

4.1 Case study 1: Visitor

The Visitor design pattern [5] can be used to “Represent an operation to be
performed on the elements of an object structure.” The class of shifts that the
Visitor supports is declared from the outset: “Visitor lets you define a new
operation without changing the classes of the elements on which it operates.”
Further on in the chapter, the authors are more explicit: “Visitor makes
adding new operations easy” and “Adding new concrete element classes is
hard”. In this case study, we prove these statements and quantify how easy
or hard is each one of these co-evolution steps.

Example

Gamma et. al describe the representation of abstract syntax trees as object
structure and the collection of operations that a compiler performs on each
element in the tree. Figure 2 illustrates this example.

5

MENS AND EDEN

| Program |<>_> Node NodeVisitor

accept(NodeVisitor) visitAssignment(AssignmentNode)
visitVariableRef(VariableRefNode)

_— N

AssignmentNode VariableRefNode TypeCheckingVisitor CodeGeneratingVisitor
accept(NodeVisitor v) | | accept(NodeVisitor v) visitAssignment(AssignmentNode) visitAssignment(AssignmentNode)
visitVariableRef(VariableRefNode) visitVariableRef(VariableRefNode)

v.visitAssignment(this) v.visitVariableRef(this)

Fig. 2. Example for the Visitor pattern.

Requirements
Tvisit *= Represent a set of operations O that need to be performed on a family

of elements E.
The problem domain is D, = {O, E'}

Shifts

In this case study we will consider the following two shifts to r,;4;:
04 (Tyisit, O, 0p) = add operation op to O
04 (Tvisit, £, €) = add element e to E

Implementation
tvisit ‘= The implementation policy described by the Visitor pattern as illus-
trated in Figure 2.

By this policy, two class hierarchies, NodeVisitor and Node are used to
represent the set of operations O and the family of elements F, respectively.
Each operation op € O is represented as a class in the NodeVisitor hierarchy,
and each element e € E is represented as a class in the Node hierarchy.

Metric
Below we definite a simple metric that calculates the complexity of a co-
evolution step by counting the number of classes affected by it.

Definition 4.1 Let (0,«) be a co-evolution step such that a = (i,4"). Let
A be the symmetric set difference, ie., AAB = (A\B) U (B\A). Let
Classes(i) = the set of classes in i .

Clinsses(0, @) == |Classes(i)AClasses (i)

In class-based languages such as C++, Smalltalk and Java, Classes(i)
yields the set of classes defined in the program. For example,
Classes(iyisit) = {Node, AssignmentNode, VariableRefNode, NodeVisitor,
TypeCheckingVisitor, CodeGeneratingVisitor}

Analysis
Gamma et. al recognized the class of shifts that the visitor accommodates to.
We will use the above metric to prove some of their claims about the flexibility

6

MENS AND EDEN

of the Visitor pattern:

o “Adding new concrete element classes is hard.” ([5], p.335) To prove this
statement, consider the shift o (rysit, £, e). In order to adjust our imple-
mentation i, to this shift, we need to add a method to every class in the
visitors hierarchy O. Thus, the number of implementation entities affected
by this shift equals the number of operations:

Cé‘lasses(o--‘r (TUiSitv E’ 6)7 'L.UiSit) = |O|
Read: The class-level evolution complexity of adding an element to the
Visitor pattern is linear in the number of operations.

o “Visitor makes adding new operations easy.” ([5], p.336) To prove this
statement, consider the shift o (rysi, O,0p). In order to adjust our im-
plementation 7,;.; to this shift, we need to add a new class to the visitors
hierarchy. Thus, the number of implementation entities affected by this
shift is 1:

Cé’lasses <a+ (Tvisih 07 Op)7 ivisit) =1
Read: The class-level evolution complexity of adding an operation to the
Visitor pattern is constant.

The results of this case study are summarized in Table 2.

Cé’lasses O+ (Tvisitu E7 6) 04 (Tvz’sity O, Op)

ivisit |O| 1

Table 2
Class-level evolution complexity for shifts of ry;s

Discussion

Our analysis proves the intuitions of Gamma et al. about the Visitor pattern,
but it also goes beyond that: The evolution complexity metric quantifies the
effort required to add a new element to the elements hierarchy. Specifically,
it indicates that effort required to add a new operation is proportional to the
number of operations.

4.2 Case study 2: Abstract Factory

The Abstract Factory pattern can be used to “Provide an interface for cre-
ating families of related or dependent objects without specifying their concrete
classes.” [5] Below, we show that Abstract Factory is only flexible towards
specific shifts, and that the adjustments necessary can also be very expensive.

Ezxample
A typical example is an object-oriented graphical user interface (GUI) for cre-
ating graphical “widgets”, such as windows, buttons and menus. Each win-

7

MENS AND EDEN

dowing environment offers a variation on each one of these widgets. Figure 3
illustrates the “families” of widgets for three windowing environments.

A client in cross-platform implementation that needs a new button, for ex-
ample, must decide which variation of button is appropriate. The obvious way
to do this would be to use complex conditional statements that determine the
appropriate variation. The alternative, offered by the Abstract Factory design
pattern, is to offer each such client a uniform interface for generating each wid-
get, and to delegate the decision which version is appropriate to a “concrete
factory” object. The dashed lines in Figure 3 illustrate the “create” relation
between factory method, concrete factories and the products hierarchy.

Look

newWindow
newButton
newMenu
MacLook proo
newWindow ------1----
MSLook newButton MacButton
newMenu MacMenu
newWindow MSWindow ’7
MSButton

newButton
newMenu MSMenu

Fig. 3. Example for Abstract Factory.

Requirements

Teonf/prod ‘= Given a set of clients K, a family of configurations C' = {ci, ...c, },
and a family of products P = {p1,...om}. FEvery client k in K needs a new
instance p in P depending on the current configuration c in C.

The problem domain Deonf/prod = {K, C, P}.

Shifts

In this case study we will consider the following two shifts to 7conf/prod:
04 (Teonf fprod; C, €) 1= add configuration c to C
0_(Teonf/prods P, p) 1= remove product p from P

Implementation policies
We will compare two implementation policies to 7conf/prod:

Gabs—factory ‘= use the Abstract Factory design pattern ([5], page 87). The
solution this pattern dictates consists of two class hierarchies, factories and
products. Each class in the factories hierarchy (“concrete factory”) is respon-
sible for creating products of a specific configuration ¢ € C. For this purpose,
each concrete factory defines a method (“factory method”) for each product
p € P. Overall, there are |C| concrete products with | P| methods each in this
implementation.

MENS AND EDEN

teond = use conditional style. Each client that needs a specific product
implements a switch statement that has a conditional branch for each config-
uration ¢ € C.

In both implementations, we assume that there are |K| separate clients
(i.e., | K| classes in a class-based language) such that each client needs a new
instance of one or more products.

Analysis

An example of shift o_(7conf/prod, P, p) would be to remove the product Menu
in Figure 3. This requires us to remove all concrete subclasses of Menu, as well
as the methods newMenu that are implemented in each concrete factory.

Table 3
Class-level evolution complexity for shifts of r.opf/prod

Cé’lasgeg 04 (Tconf/produ C, C) (o (Tconf/produ P7 p)
iabs—factory |P| |C| + |P|
lcond K| K|

The effect of implementation policy iaps— factory 0N the evolution complexity
is described informally in [5], pages 89 and 90: “It makes exchanging product
families easy”; “supporting new kinds of products is difficult”. Again, we will
quantify exactly how easy or difficult it is.

As shown in Table 3, the evolution complexity at class level of i4ps— factory
is linear for both shifts. For shift o (reonf/prod, C, ¢), it is linear in the number
of products, since we need to add a new concrete product class for each pos-
sible product, to specify how each product needs to be addressed by the new
configuration. For shift o_(7conf/prod, P), it is linear in the number of con-
figurations and products, since we need to remove all concrete product classes
for the considered product, and we need to remove a corresponding method
in each of the configuration classes.

For implementation i.,,4, the evolution complexity is linear in the number
of clients for both shifts.

Discussion
The results presented in Table 3 demonstrate that the decision to use the
Abstract Factory design pattern is not straightforward. If the number of
clients is very small then the overhead in using the pattern is not justified.
Similarly, it shows that removing a product can be a labour-intensive task
even if the pattern is used.

Obviously, the evolution complexity is not the only criterion that should be
used for preferring a particular implementation policy over another. For exam-
ple, the Abstract Factory has a number of other important advantages that are

9

MENS AND EDEN

not measured by our evolution complexity measure: “it isolates clients from
implementation classes”; “it promotes consistency among products”. Thus,
evolution complexity only captures one of many concerns that guide designers
in the choice of a particular implementation policy.

4.3 Case study 3: Procedural vs. object-oriented implementation

Object-oriented programming is hailed for promoting flexibility. Experienced
programmers, however, observe that flexibility is relative to a specific class
of changes that our implementation must specifically be designed to accom-
modate. As our analysis of the Visitor pattern demonstrated, changes to the
interface of the base class in a large inheritance class hierarchy can be very
expensive to implement, but adding a new “leaf” class is usually very easy.

In this case study, we use evolution complexity to compare the flexibility
of a procedural and an object-oriented implementation policy in the context of
a specific problem: the representation of a finite-state automaton. Our anal-
ysis will demonstrate that an object-oriented implementation is more flexible
towards changes in the set of states, while the procedural implementation is
more flexible towards changes in the alphabet.

Ezxample

Consider a digital clock with three display states Display Hour, Display Sec-
onds and Display Date and two setting states Set Hour and Set Date. The
clock accepts input from two buttons b; and by, which are used to change
between states or to perform a specific action depending on the current state.
The clock behaviour is modelled in Figure 4 as a deterministic finite state au-
tomaton with set of states S={Display Hour, Display Seconds, Display Date,
Set Hour, Set Date} and an alphabet L={b;,bs}.

Dlsplay Display
Hour Seconds

b1

Fig. 4. State machine for a digital clock.

Requirements

Tafsa = Implement a deterministic finite state automaton (DFSA) with a set
of states S and a set of letters L (i.e., an alphabet).

The problem domain Dy, = {S, L}.

10

MENS AND EDEN

Shifts

In this case study we will consider the following two shifts to 74fs,:
04+ (Tafsas L, 1) := add letter | to the alphabet L
04+ (Tdfsa, S, 8) 1= add state s to the set of states S

Implementations
We will compare two implementation policies for the digital clock:

istate = use the State design pattern ([5], p.305). This pattern dictates that
each state s € S is represented by a separate class such that every state class
defines a method for each [€ L. In all, there are |S| classes with |L| methods
per class in this implementation. This implementation is illustrated below:

interface ClockState {
void b1(); \\ button 1 pressed
void b2(); \\ button 2 pressed

}

class DisplayHour implements ClockState {
public void b1() {* bl pressed *\}
public void b2() {* b2 pressed *\}

}

class DisplaySecond implements ClockState {
public void b1() {* bl pressed *\}
public void b2() {* b2 pressed *\}

}

class DisplayDate implements ClockState {
public void b1() {* bl pressed *\}
public void b2() {* b2 pressed *\}

}

class SetHour implements ClockState {
public void b1() {* bl pressed *\}
public void b2() {* b2 pressed *\}

}

class SetDate implements ClockState {
public void b1() {* bl pressed *\}
public void b2() {* b2 pressed *\}

}

icona = use conditional style, ([5], p.307): “An alternative is to use data
values to define internal states and have context operations check the data
explicitly. But then we’d have look-alike conditional or case statement scattered
throughout the context’s implementation.” In this style of implementation, we
define one class that contains a method for each letter [€ L such that the
body of each method consists of a switch statement that contains a conditional
branch for each state s € S. This implementation is given below:

enum states = {
DisplayHour, DisplaySecond, DisplayDate,

11

MENS AND EDEN

SetHour, SetDate} state; // Current state

void b1() { \\ button 1 pressed
switch (state) {
case DisplayHour: *...*\;
case DisplaySecond: *...*\;
case DisplayDate: *...*\;
case SetHour: \x*...x*\;
case SetDate: *...x*x\; }
}
void b2() { \\ button 2 pressed
switch (state) {
case DisplayHour: *...*\;
case DisplaySecond: *...*\;
case DisplayDate: *...*\;
case SetHour: \x*...x*\;
case SetDate: *...x*x\; }

Metric

The class-level metric of Definition 4.1 is too coarse since it assumes that all
software entities require approximately the same effort to be adjusted. Such
an approximation is useful when the number of software entities is large or
when there is insufficient detailed information about individual entities. For
example, at the design level, before the implementation is complete, we may
only have information about the classes and their variables, but not necessarily
about their methods. When the implementation is complete, however, and
when it is evident that some software entities are more difficult to adjust than
others, we may replace the class-level metric by a generalized metric that
measures the (software) evolution complexity of individual modules:

Definition 4.2 Let (0,a) be a co-evolution step such that o = (i,7').
Let A be the symmetric set difference. Let Modules(i) = the set of
modules in 2. Let p be a software complexity metric that is defined for all
x € Modules(i) U Modules(i'),

Cﬁ\L/Iodules (O', Oé) = ZmeModules(i)AModules(i’) M(.T)

Let us show how the generalized metric can be used in specific cases:

Célusses When Modules = Classes and the software complexity u(c) = 1
for all ¢ € Classes(i), the generalized metric is reduced to the class-level

evolution complexity metric of Definition 4.1.

Chiethods When Modules = Methods (the set of all methods in ¢) and the
software complexity u(m) = 1 for all m € Methods(i), we have a method-
level evolution complexity metric. This metric measures the complexity of

12

MENS AND EDEN

a co-evolution step by counting the number of methods affected by it. It
treats all methods as equal with respect to their change effort.

CoCinoas When Modules = Methods and p = CC (cyclomatic comple-
ity, [12]), the metric takes into account the cyclomatic complexity of each
method such that adjustments applied to a “complicated” method (e.g., a
method with many conditional statements) are more expensive than adjust-
ments applied to a “simple” method.

Analysis

The effect of the two implementation policies 744t and i.,,qg on the evolution
complexity is described informally in [5]. For example, pages 307 and 308
mention for 7g..: “new states ... can be added easily”; “decentralizing the
transition logic in this way makes it easy to modify or extend the logic”. For
leond, Page 307 mentions: “Adding a new state ... complicates maintenance.”
Our formal framework lets us precisely quantify this intuition in terms of the
entities of the problem domain Dy, = {5, L} that are affected by a particular
shift, assuming a particular implementation policy.

Cll\/[odules 0+ (Tdfsm L7 l) (e (Tdfsm S, S)

'L.state | S|]-
'L.cond 1 | L|
Table 4

Class-level evolution complexity for shifts of rgss,

Analysing the evolution complexity at the class level (Table 4), we observe
for shift o4 (rgfsq, L, 1) that implementation policy isie is more difficult to
evolve than implementation policy ¢..,4. Indeed, the State design pattern
requires us to add a new method (corresponding to the new letter to be added)
to each of the |S| state classes. Hence, the evolution complexity for igae is
linear in the number of states, whereas it is constant for i..q-

cc
CMethods 04 (Tdfsaa Sa 5)

Z.state |L|

Leond |S] x |L]

Table 5
Method-level evolution complexity for shifts of rgfs,

Focussing on the method level (Table 5) shows us two other impor-
tant results. At this level of abstraction, the evolution complexity for shift
04+ (Tdfsa; L, 1) is the same for both implementation policies (linear in the num-
ber of states). Shift o, (r4sq,S,s), on the other hand, is more difficult to

13

MENS AND EDEN

evolve for implementation policy iconq than for ig.. (complexity |S x L| and
|L|, respectively). These results were obtained by using the cyclomatic com-
plexity metric C'C' for each affected method. It reflects the intuition that an
implementation policy with lots of conditional statements is more difficult to
evolve than one with few conditionals.

Discussion

While Table 4 shows that adding a state is constant in the number of states,
removing a state with implementation policy 744 is potentially linear in the
number of states, since we need to modify the state transition function, which
is embedded in, and dispersed over, all state classes. As an alternative im-
plementation policy, we could opt for a variant of the State design pattern,
where state transitions are implemented in the context. Needless to say, this
implementation policy will yield different results for the evolution complexity
when compared to 2541 and Zeong-

5 Related work

Despite its importance, cost estimation in the context of software maintenance
and software evolution remains relatively unexplored. Jgrgensen [8] used sev-
eral models to predict the effort of randomly selected software maintenance
tasks. The size of individual maintenance tasks was measured in LOC. Sneed
[15] proposed a number of ways to extend existing cost estimation methods
to the estimation of maintenance costs. Ramil et al. [13] provided and vali-
dated six different models that predict software evolution effort as a function
of software evolution metrics.

All of the above approaches rely make use of software metrics, and can
rely on experimentally validated results of the software metrics community
[3,4,12,17]. While our definition can also incorporate existing software com-
plexity metrics (e.g., cyclomatic complexity) easily, an important distinction
is that our approach goes beyond existing attempts to measure the “evolvabil-
ity” of implementations, since we have shown that it is not possible to give
an absolute measure of the evolvability of a particular program. Instead, the
evolvability depends on the chosen implementation policy and on the changes
in the requirements that are likely to be performed.

Perhaps a better (i.e., less absolute) way to measure the changeability of a
software system relies on algorithms or measures that compute the impact of
changes [11]. For example, Chaumun et al. [2] report on experimental results
with a change-impact model for object-oriented systems.

Because the cost and complexity of software evolution may depend on the
type of evolution activity, we also require a more objective and finer granularity
recognition of types of software evolution activities. An attempt to make such
an objective classification of evolution activities was carried out in [1].

14

MENS AND EDEN

6 Conclusion

In this paper we proposed a formal definition of evolution complexity to quan-
tify the cost of adjusting a particular implementation policy to a change
(“shift”) in the requirements. As a case study, we used our formalism to
formally validate the intuition that design patterns improve the evolvability
of programs. We were able to determine precisely to which extent, and for
which changes in the requirements, a particular design pattern is “more evolv-
able” than another implementation policy. Despite all this evidence, a more
scientific empirical validation of our proposed evolution complexity metric re-
mains to be done.

In general terms, our formalism allows us to precisely quantify the cost of
implementing particular changes in the requirements, and to choose the most
flexible implementation policy to implement these changes. Our formalism
can be used at various levels of granularity (e.g., class level and method level).
This implies that it can also be used during the design phase, when not all
implementation details are known yet.

In the future we even plan to apply our ideas at an architectural level (as
opposed to a design level), by considering changes to architectural styles [14]
instead of design patterns. This will allow us to adapt existing architectural
cost estimation models [9] to an evolution context.

7 Acknowledgements

This research was carried out in the context of the scientific network RE-
LEASE financed by the ESF. We thank Jeff Reynolds for his useful comments
and for his contribution to the definition of evolution complexity. We also
thank Bart Dubois for proofreading this paper.

References

[1] Chapin, N., J. Hale, K. Khan, J. Ramil and W.-G. Than, Types of software
evolution and software maintenance, Journal of software maintenance and
evolution 13 (2001), pp. 3-30.

[2] Chaumun, M. A., H. Kabaili, R. K. Keller and F. Lustman, A change impact
model for changeability assessment in object-oriented software systems, Science
of Computer Programming 45 (2002), pp. 155-174.

[3] Chidamber, S. R. and C. F. Kemerer, A metrics suite for object oriented design,
Transactions on Software Engineering 20 (1994).

[4] Fenton, N. E. and S. L. Pfleeger, “Software Metrics: A Rigorous and Practical
Approach,” PWS Publishing Company, 1997.

15

MENS AND EDEN

[5] Gamma, E., R. Helm, R. Johnson and J. Vlissides, “Design Patterns: Elements
of Reusable Object-Oriented Software,” Addison-Wesley, 1995.

[6] IEEE 610.12-1990, “Standard Glossary of Software Engineering Terminology,”
IEEE Standards Software Engineering: Customer and Terminology Standards
1, IEEE Press, 1999 .

[7] ISO 9126, “Information technology - software product evaluation - quality
characteristics and guidelines for their use.” ISO/IEC, 1991 .

[8] Jorgensen, M., Experience with the accuracy of software maintenance task effort
prediction models, IEEE Trans. Software Engineering 21 (1995), pp. 674-681.

[9] Kazman, R., J. Asundi and M. Klein, Quantifying the costs and benefits of
architectural decisions, in: Proc. Int’l Conf. Software Engineering, 2001, pp.
297-306.

[10] Lehman, M. M., J. F. Ramil, P. Wernick, D. E. Perry and W. M. Turski, Metrics
and laws of software evolution - the nineties view, in: Proc. Int’l Symp. Software
Metrics (1997), pp. 20-32.

[11] Li, L. and A. Offutt, Algorithmic analysis of the impact of changes to object-
oriented software, in: Proc. Int’l Conf. Software Maintenance (1996), pp. 171-
184.

[12] McCabe, T., A software complexity measure, Transactions on Software
Engineering 2 (1976), pp. 308-320.

[13] Ramil, J. F. and M. M. Lehman, Metrics of software evolution as effort
predictors - a case study, in: Proc. Int’l Conf. Software Maintenance, 2000,
pp. 163-172.

[14] Shaw, M. and D. Garlan, “Software Architecture — Perspectives on an
Emerging Discipline,” Prentice Hall, 1996.

[15] Sneed, H., Estimating the costs of software maintenance tasks, in: Proc. Int’l
Conf. Software Maintenance (1995), pp. 168-181.

[16] Urquhart, A., Complexity, in: L. Floridi, editor, The Blackwell Guide to
Philosophy of Computing and Information (2004).

[17] Zuse, H., “Software Complexity: Measures and Methods,” De Gruyter, 1991.

16

	Introduction
	Setting the scene
	Evolution complexity
	Case studies
	Case study 1: Visitor
	Case study 2: Abstract Factory
	Case study 3: Procedural vs. object-oriented implementation

	Related work
	Conclusion
	Acknowledgements
	References

