
Towards a Survival Analysis of
Database Framework Usage in Java Projects

Mathieu Goeminne and Tom Mens
Software Engineering Lab, University of Mons, Belgium

Email: { first . last } @ umons.ac.be

Abstract—Many software projects rely on a relational
database in order to realize part of their functionality.
Various database frameworks and object-relational map-
pings have been developed and used to facilitate data
manipulation. Little is known about whether and how such
frameworks co-occur, how they complement or compete
with each other, and how this changes over time. We empir-
ically studied these aspects for 5 Java database frameworks,
based on a corpus of 3,707 GitHub Java projects. In partic-
ular, we analysed whether certain database frameworks co-
occur frequently, and whether some database frameworks
get replaced over time by others. Using the statistical
technique of survival analysis, we explored the survival
of the database frameworks in the considered projects.
This provides useful evidence to software developers about
which frameworks can be used successfully in combination
and which combinations should be avoided.

I. INTRODUCTION

Many software projects are relying on databases for
the proper functioning of the application. To facilitate
this data management and manipulation, a wide variety
of database frameworks has been proposed and used,
especially for software projects developed in popular
languages such as Java. These frameworks typically
introduce a language-specific abstraction layer to avoid
hardcoding and manually adapting SQL queries to any
changes occurring in the database schema.

Software developers occasionally replace database
frameworks used in their projects, or introduce extra
database frameworks that offer additional functionality.
In order to help developers cope with this phenomenon,
it is necessary to study which database frameworks are
used together and how they interact over time.

In this paper, we shed more light on this framework
usage in open source Java projects, by carrying out
an empirical study on the evolution of a corpus of
Java projects in GitHub that use relational database
technology. Despite the rising popularity of more recent
technologies such as NoSQL, we focus on relational
databases, because they are still omnipresent in current-

day software projects and because more historical data
is available to analyze their usage.

Our longitudinal study of database framework usage in
Java projects addresses the following research questions:
RQ0: Which database frameworks are most popular?
RQ1: Which combinations of database frameworks “co-
occur” in the projects in which they are used?
RQ2: How long do database frameworks “survive” in
the projects in which they occur?
RQ3: Does the introduction of a database framework
influence the survivability of another one?

II. SURVIVAL ANALYSIS

Many of these research questions are clearly related to
the time-dependent nature of the projects being analyzed,
and the occurrence of specific “events” during the projects
lifetime (such as the introduction or disappearance of a
particular database framework). To answer these questions
in a statistically valid way, we therefore resort to the
statistical technique of survival analysis [1]. We rely
on the CRAN packages survival for computation and
ggplot2 for visualization.

Survival analysis models the time it takes for a specific
event (such as the disappearance of a particular database
framework in a Java project at some point in time)
to occur. The technique allows to take into account
right-censored data, for which it may be unknown
whether the event occurred or not because the subject has
“disappeared”. For example, we have no precise idea of
when a particular database framework will disappear from
a Java project if the database framework is still present
in the project at the last day of the considered period of
study. Since we cannot assume a particular distribution
of survival times, we need to resort to non-parametric
methods such as the Kaplan-Meier estimator [2]. A
survival function models the probability of an arbitrary
subject in the dataset to survive t units of time after the
start of the study. A Kaplan-Meier curve visualizes the
cumulative probability to survive, or, more generally, that
an event occurs. It starts at value 1 (100% probability of

survival at time zero) and decreases monotonically over
time. In this study, the observed event is the definitive
disappearance of a framework from a project. To test
whether there is a difference with statistical significance
between two survival distributions we use the survdiff
function that implements the Mantel-Haenszel test [3].

III. RELATED WORK

In [4], we empirically analyzed the evolution of the
usage of SQL, Hibernate and JPA in a single large open
source Java project. The current paper carries out a macro-
level study on thousands of projects. Chen et al. [5]
proposed a static code analysis framework for detecting
and fixing performance issues and potential bugs in ORM
usage. Their analysis revealed that the modifications
made after analysis caused an important improvement
of the studied systems’ response time. Maule et al. [6]
studied a commercial object-oriented content management
system to statically analyze the impact of database schema
changes on the source code. Qiu et al. [7] empirical
analyzed the co-evolution of database schemas and code
in ten open-source database applications from various
domains. Whereas our focus is on Java projects, they
studied specific change types inside the database schema
and the impact of such changes on PHP code.

The statistical technique of survival analysis used
in this paper has been employed by other software
engineering researchers as well. Samoladas et al. [8]
predicted the survivability of open source projects over
time. Scanniello [9] analyzed dead code in five open
source Java software systems. Kyriakakis et al. [10]
studied function usage and function removal in five large
PHP applications. Claes et al. [11] studied the survival
of installability conflicts in Debian packages.

IV. DATA EXTRACTION

We focus on open source projects only since we need
full access to the source code development history of
the studied projects. We analyse Java projects because
Java is one of the most popular programming languages
today. More specifically, we study projects taken from
the Github Java Corpus proposed by Allamanis and
Sutton [12]. They processed GitHub events stored by
Github Archive (www.githubarchive.org) and only re-
tained projects marked as Java projects. In order to get
a quality corpus, they removed all projects that were
never forked according to GitHub. They also compared
the ids of commits in order to manually remove projects
that are very likely (undeclared) forks of another project.
This filtering decreases the probability to obtain strongly
related individuals in the considered project population,

and hence reduces the risk to obtain statistical results
biased by overrepresented (groups of) projects. Among
the 14,765 projects proposed in the Github Java Corpus,
13,307 (90.1%) projects have still an available Git
repository on 24 March 2015. We considered these Java
projects as potential candidates for our empirical analysis,
and created a local clone of each of them.

We considered 19 Java database frameworks as po-
tential candidates for our study. These frameworks need
to have a direct means for accessing the database. The
frameworks were selected by skimming recent scientific
publications, Stack Exchange and blog posts. As an
additional constraint, since our goal is to study the
evolution over time of database framework usage in Java
projects, we only consider frameworks of at least 3 years
old. Although our list is not exhaustive, it covers the
most frequently cited frameworks.

As a baseline, we also included JDBC in our study.
Unlike other considered frameworks, it doesn’t provide
any abstraction of a database schema and forces the
developers to write SQL queries. JDBC is still heavily
used because such a low level connection allows to submit
complex queries that would be difficult or impossible to
express with a higher level database framework.

We determined the presence of each framework in each
Java project by analyzing the import statements in Java
files, as well as the presence of specific configuration files
(e.g., for Hibernate). For each commit of each considered
Java project, we retraced a historical view of the files
that can be related to a particular framework.

V. EMPIRICAL ANALYSIS

This section addresses our research questions by means
of tables, visualizations and statistical tests.

RQ0: Which database frameworks are most popular?

Fig. 1: Number of projects (in log scale) in which a given
database framework occurs. Threshold 200 shown in red.

Fig. 1 shows the number of considered Java projects
in which the considered database frameworks occur. We

observe a high imbalance. Only 5 frameworks (including
JDBC), summarized in Table I, occur in more than 200
distinct projects. Of all considered active projects from
Github Java Corpus, only 3,707 Java projects used at least
one of these 5 frameworks. Only these 5 frameworks will
be analyzed for the remaining research questions, because
for the other frameworks we do not have sufficient
occurrences to obtain statistically significant results.

Framework
name

URL Occurs if the
project contains
at least a file

#projects

JDBC www.oracle.com/
technetwork/java/
javase/jdbc

importing
java.sql

2,271

Spring projects.spring.io/
spring-framework

importing
org.springframework

1,562

JPA www.tutorialspoint.
com/jpa

importing
javax.persistence

1,168

Vaadin-
GWT

vaadin.com importing
com.google.gwt

361

Hibernate hibernate.org whose name ends
with .hbm.xml

238

TABLE I: Selected Java database frameworks.

The Spring framework aims to facilitate the implemen-
tation of a standard structure in Java applications. An
optional Spring extension based on JDBC and an object-
relational mapping can provide access to relational and
NoSQL databases. JPA is a Java API for describing the
relation between a Java entity and its mapped database
element. Several frameworks, including Hibernate, can
exploit this description for providing such a service. Be-
cause the frameworks that actually use these annotations
cannot always be determined, we don’t consider JPA
annotations as an indicator of the use of any framework
but JPA itself. Vaadin is a framework for developing
web applications. It introduces the notion of domain
layer, which abstracts the database structure through Java
classes hosting the business logic of the application.

RQ1: Which combinations of database frameworks “co-
occur” in the projects in which they are used?

We identified which of the 5 considered database frame-
works occurred throughout the lifetime of each considered
project, and we computed all possible intersections of
framework occurrence in Fig. 2.

JDBC occurs as the only database framework in
56.3% of all projects. At the other side of the spectrum,
Hibernate occurs as the only framework in only 2.9%
of all projects. If we look at their intersection, the large
majority (82.8%) of all projects that have used Hibernate
have also used JDBC during their lifetime.

Something similar can be observed for JDBC and JPA.
JPA occurs in isolation in 29.5% of all projects, while
almost half of all projects that have used JPA (49.3% to
be precise) have also used JDBC during their lifetime.

Similarly, when comparing Hibernate and JPA, we ob-
serve that 49.6% of all projects that have used Hibernate
have also used JPA, while 44.1% of all projects that have
used Hibernate have also used JPA and JDBC.

Fig. 2: Number of Java projects using a given number of
database frameworks (over the entire project’s lifetime).

These high numbers could be due to the fact that some
database frameworks are used as supporting technologies
for others (e.g., Spring typically uses JDBC for database
access), while some frameworks are complementing
each other (e.g., Vaadin has an optional module called
JPAContainer for supporting JPA annotations). To deter-
mine for which frameworks this is the case, we studied
the “co-occurrence” of different frameworks within the
same project. This happens when files relating to both
frameworks are present in at least one of the project’s
commits (but typically in many more commits).

co-occurring fw. → 1 2 3 4 5
↓ total # frameworks used
1 2,443
2 22 776
3 2 16 328
4 0 0 18 104
5 0 0 1 1 5

TABLE II: Number of projects involving a given number
of frameworks, over their entire lifetime and in co-
occurrence.

Table II shows vertically the number of projects having
used a given number of distinct frameworks over their
entire history, and horizontally the maximum number of
distinct “co-occurring” frameworks. Almost all values
reside on the diagonal, implying that in the large majority
of all cases (97.5%, i.e., 1213/1273), different database
frameworks used in a project tend to co-occur.

Table III reports the number of projects in which two
database frameworks co-occurred at least once during the
project’s lifetime. Not surprisingly, we observe that JDBC
frequently co-occurs with other frameworks. That lets us
suppose that JDBC is used as a supporting technology
that provides services not offered by the other frameworks.
80.1% of all projects that used Hibernate have also
used JDBC in co-occurrence; 48.4% of all projects that
used JPA have used JDBC in co-occurrence; 41.3% of
all projects that used Spring have used JDBC in co-
occurrence; and 39.6% of all projects that used Vaadin
have used JDBC in co-occurrence.

Spring JPA Vaadin Hibernate
JDBC 645 565 143 192
Spring 558 76 156
JPA 98 105
Vaadin 22

TABLE III: Number of projects in which pairs of database
frameworks co-occur.

Some database frameworks seem to complement one
another. For example, 47.8% of all projects using Spring
also use JPA. Other database frameworks appear to be
in competition. For example, Vaadin co-occurs with
Hibernate in only 22 projects, which makes up 9.2%
of all projects using Hibernate, and only 6.1% of all
projects using Vaadin. To a lesser extent, Vaadin also
co-occurs infrequently together with JPA or Spring.

RQ2: How long do database frameworks “survive” in
the projects in which they occur?

Fig. 3: Survival curves of database framework occurrence
in the considered projects.

Fig. 3 shows the Kaplan-Meier survival curves of
the selected frameworks. After their introduction, all
database frameworks remain present in more than
45% of the projects. Nevertheless, we observe different
trends in framework survivability. For example, in

11.7% of all cases Hibernate is removed 30 days after
its introduction. In the same time interval, Spring is only
removed from 3.7% of the projects. Three years after
its introduction, Hibernate disappears from 27.6% of
all projects, while Spring disappears from 14.5% of all
projects in the same interval.

A → Spring JPA Vaadin Hibernate
↓ B
JDBC < 0.001 [-] 0.001 [-] 0.242 0.010
Spring — 0.030 0.017 < 0.001 [+]
JPA — 0.427 < 0.001 [+]
Vaadin — 0.017

TABLE IV: p-values of tests for difference of survival
rates between two database frameworks.

Table IV shows the p-values of the Mantel-Haenszel
tests to check for a difference in survival rates for each
pair of frameworks. Significant results are shown in
boldface, based on significance level α = 0.05

10 after
Bonferroni correction since we perform 10 comparisons.
Based on visual comparison of the survival curves, we
marked with [+] if framework B has a significantly better
survival rate than framework A, and [-] in the opposite
case. We observe that JPA and Spring have higher
survival rates than JDBC and Hibernate.

RQ3: Does the introduction of a database framework
influence the survivability of another one?

In order to determine if the introduction of a framework
B influences the survival of a framework A already
present in the same project, we computed two survival
curves C1 and C2. C1 is based on all projects in which A
and B co-occurred, while B was introduced in the project
after A. C2 considers all projects that have used A while
B never co-occurred together with A. We performed a
visual comparison of C1 (shown in red dashed lines) and
C2 (shown in black straight lines) on all pairs of database
frameworks.

Fig. 4 compares the survival of Spring and JDBC.
Introducing Spring when JDBC is already present seems
to improve the survival probability of JDBC in the
projects. Conversely, introducing JDBC when Spring
is already present does not seem to affect the survival
probability of Spring. We observed similar results for
other pairs of frameworks. We did not observe any
negative impact of the introduction of a framework on
already present database frameworks. We used Mantel-
Haenszel tests to check for a difference in the survival
rates, but did not find any significant evidence, most
likely because the considered data sets were too small.

0 1000 2000 3000 4000 5000 6000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

C2
C1

A = jdbc
B = spring

0 1000 2000 3000 4000 5000 6000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

C2
C1

A = spring
B = jdbc

Fig. 4: Survival curves C1 and C2 for Spring and JDBC.

VI. THREATS TO VALIDITY

Our results should not be generalized beyond Java
projects, the considered database frameworks, or the used
version control technologies. Our research also suffers
from the same threats as other MSR research relying on
Git and GitHub [13], [14].

By manually inspecting the names of the considered
repositories, we observed that 470 of them appeared to be
implicitly part of 117 projects. Clustering these projects
into logical projects could provide more insight into the
database framework usage analysis.

The detection of frameworks is based on the presence
of specific import statements in Java files and specific
XML-based configuration files in the project directory.
This approach may have lead to false positives, since
classes and interfaces made available with an import
statement may be unused in the source code, and
configuration files may be ignored while running the
applications. A more detailed analysis of the source
code could reveal if these components are actually used.
However, the extra time required by such an analysis
could be prohibitive for a large scale study.

During survival analysis, we assumed the probability
for an event to occur to be the same for all studied projects.
Some external factors may influence this probability, such
as a change in the organisational policy.

VII. CONCLUSIONS

We studied the usage of five popular database frame-
works in a large corpus of GitHub Java projects. We
observed differences in survival rates, that did not seem
to relate to the framework popularity. We observed an
important co-occurrence, especially between JDBC and
the other considered frameworks, but other combinations
of database frameworks also seem to complement or
reinforce one another. Such empirical evidence can
be particularly useful to project developers desiring to
introduce an additional framework, or to replace an
existing framework by another one, as our analysis reveals

which combinations and which replacements are more
successful (in terms of survival) than others.

The research presented in this paper can be extended
in many ways. We could consider projects in other forges
or other programming languages. We could also include
other Java database frameworks, and relate their survival
to their popularity. We also aim to analyze framework
survival at file level. Another extension includes mapping
technologies for weakly structured databases such as
NoSQL. Finally, traditional software metrics could be
combined with more specific metrics reflecting the
involvement of database frameworks in software projects
in order to get a better understanding of the projects
status, and particularly their maintainability.

Acknowledgment. This research is part of FRFC
research project T.0022.13 financed by the F.R.S.-FNRS.

REFERENCES

[1] J. P. Klein and M. L. Moeschberger, Survival Analysis: Techniques
for Censored and Truncated Data. Springer, 2013.

[2] P. M. E.L. Kaplan, “Nonparametric estimation for incomplete
observations,” J. American Statistical Association, vol. 53, no.
282, pp. 457–481, 1958.

[3] N. Mantel, “Evaluation of survival data and two new rank order
statistics arising in its consideration,” Cancer Chemother Rep.,
vol. 50, no. 3, pp. 163–170, 1966.

[4] M. Goeminne, A. Decan, and T. Mens, “Co-evolving code-related
and database-related changes in a data-intensive software system,”
in CSMR-WCRE, 2014, pp. 353–357.

[5] T. Chen, W. Shang, Z. M. Jiang, A. E. Hassan, M. N. Nasser, and
P. Flora, “Detecting performance anti-patterns for applications
developed using object-relational mapping,” in Int’l Conf. Software
Engineering. ACM , 2014, pp. 1001–1012.

[6] A. Maule, W. Emmerich, and D. S. Rosenblum, “Impact analysis
of database schema changes,” in Int’l Conf. Software Engineering,
2008, pp. 451–460.

[7] D. Qiu, B. Li, and Z. Su, “An empirical analysis of the co-
evolution of schema and code in database applications,” in Joint
ESEC/FSE Conf. ACM , 2013.

[8] I. Samoladas, L. Angelis, and I. Stamelos, “Survival analysis on
the duration of open source projects,” Information & Software
Technology, vol. 52, no. 9, pp. 902–922, 2010.

[9] G. Scanniello, “Source code survival with the Kaplan Meier
estimator,” in Int’l Conf. Software Maintenance, 2011, pp. 524–
527.

[10] P. Kyriakakis and A. Chatzigeorgiou, “Maintenance patterns
of large-scale PHP web applications,” in Int’l Conf. Software
Maintenance and Evolution, 2014, pp. 381–390.

[11] M. Claes, T. Mens, R. Di Cosmo, and J. Vouillon, “A historical
analysis of Debian package incompatibilities,” in Int’l Conf.
Mining Software Repositories. IEEE, 2015.

[12] M. Allamanis and C. Sutton, “Mining source code repositories at
massive scale using language modeling,” in Int’l Conf. Mining
Software Repositories. IEEE, 2013, pp. 207–216.

[13] C. Bird, P. C. Rigby, E. T. Barr, D. J. Hamilton, D. M. Germán,
and P. T. Devanbu, “The promises and perils of mining Git,” in
Int’l Conf. Mining Software Repositories, 2009, pp. 1–10.

[14] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M.
Germán, and D. Damian, “The promises and perils of mining
GitHub,” in Int’l Conf. Mining Software Repositories, 2014, pp.
92–101.

