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Abstract

We present arguments for the existence of five-dimensional rotating black holes with equal magnitude angular momenta in Einstein–Gauss–
Bonnet theory with negative cosmological constant. These solutions posses a regular horizon of spherical topology and approach asymptotically
an anti-de Sitter spacetime background. We discuss the general properties of these solutions and, using an adapted counterterm prescription, we
compute their entropy and conserved charges.
© 2008 Elsevier B.V. All rights reserved.
1. Introduction

In five dimensions, the most general theory of gravity lead-
ing to second order field equations for the metric is the so-
called Einstein–Gauss–Bonnet (EGB) theory, which contains
quadratic powers of the curvature. The Gauss–Bonnet term ap-
pears as the first curvature stringy correction to general relativ-
ity [1,2], when assuming that the tension of a string is large as
compared to the energy scale of other variables.

The study of black holes with higher derivative curvature in
anti-de Sitter (AdS) spaces has been considered by many au-
thors in the recent years. Static AdS black hole solutions in
EGB gravity are known in closed form, presenting a number of
interesting features (see e.g. [3,4] and the references therein).
It is of interest to generalize these solutions by including the
effects of rotation. This problem has been considered recently
in [5] within a perturbative approach. The authors of [5] dis-
cussed some properties of a particular set of asymptotically
AdSd (d > 4) rotating solutions in EGB theory with one non-
vanishing angular momentum (where the rotation parameter
appears as a small quantity), the effects of an U(1) field be-
ing also included.
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The main purpose of this work is to present numerical ev-
idence for the existence of a different class of rotating solu-
tions in d = 4 + 1 EGB theory with negative cosmological
constant, approaching asymptotically an AdS spacetime back-
ground. These solutions are found within a nonperturbative
approach, by directly solving the EGB equations with suit-
able boundary conditions. They posses a regular horizon of
spherical topology and have two equal magnitude angular mo-
menta. This leads to a system of coupled nonlinear ordinary
differential equations (ODEs), which are solved numerically.
The same approach has been employed recently to construct
Einstein–Maxwell rotating black hole solutions in higher di-
mensions [6,7].

2. The general formalism

2.1. The action and boundary counterterms

We consider the EGB action with a negative cosmological
constant Λ = −6/�2

(2.1)I = 1

16πG

∫
M

d5x
√−g

(
R − 2Λ + α

4
LGB

)
,

where R is the Ricci scalar and

(2.2)LGB = R2 − 4RμνR
μν + RμνστR

μνστ ,
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is the Gauss–Bonnet term. The variation of the action (2.1) with
respect to the metric tensor results in the equations of the model

(2.3)Rμν − 1

2
Rgμν + Λgμν + α

4
Hμν = 0,

where

Hμν = 2
(
RμσκτRν

σκτ − 2Rμρνσ Rρσ − 2Rμσ Rν
σ + RRμν

)
(2.4)− 1

2
LGBgμν.

For a well-defined variational principle, one has to supplement
the action (2.1) with the Gibbons–Hawking surface term

(2.5)I
(E)
b = − 1

8πG

∫
∂M

d4x
√−γK,

and its counterpart for the Gauss–Bonnet gravity [2]

(2.6)I
(GB)
b = − α

16πG

∫
∂M

d4x
√−γ

(
J − 2GabK

ab
)
,

where γab is the induced metric on the boundary, K is the trace
of the extrinsic curvature of the boundary, Gab is the Einstein
tensor of the metric γab and J is the trace of the tensor

Jab = 1

3

(
2KKacK

c
b + KcdKcdKab

(2.7)− 2KacK
cdKdb − K2Kab

)
.

To compute the conserved charges of the asymptotically
AdS solutions in EGB gravity, we use the approach proposed by
Balasubramanian and Kraus in [8]. This technique was inspired
by AdS/CFT correspondence and consists in adding suitable
counterterms Ict to the action of the theory in order to ensure
the finiteness of the boundary stress tensor Tab = 2√−γ

δI
δγ ab de-

rived by the quasilocal energy definition [9].
Therefore we supplement the general action (which contains

the surface terms for Einstein and Gauss–Bonnet gravity) with
the following boundary counterterm

(2.8)Ict = 1

8πG

∫
∂M

d4x
√−γ

(
c1 − c2

2
R

)
,

where R is the curvature scalar associated with the induced met-
ric γ (see also [10] for previous work on boundary conterterm
technique in EGB gravity, applied to non-rotating solutions).
The consistency of the procedure fixes the expression1 of c1, c2:

c1 = −1 − 2α/�2 + √
1 − 2α/�2

√
α

√
1 − √

1 − 2α/�2
,

(2.9)c2 =
√

α(3 − 2α/�2 − 3
√

1 − 2α/�2)

2(1 − √
1 − 2α/�2)

3/2
.

1 As α → 0, one recovers the known expression in Einstein gravity, c1 →
−3/� + α/4�3 + O(α)2, c2 → �/2 + 3α/8� + O(α)2.
Varying the total action with respect to the boundary metric γab ,
we find the divergence-free boundary stress-tensor

Tab = 1

8πG

(
Kab − Kγab + c1γab + c2Gab

(2.10)+ α

2

(
Qab − 1

3
Qγab

))
,

where [11]

Qab = 2KKacK
c
b − 2KacK

cdKdb + Kab

(
KcdKcd − K2)

(2.11)+ 2KRab + RKab − 2KcdRcadb − 4RacK
c
b,

with Rabcd , Rab denoting the Riemann and Ricci tensors of the
boundary metric.

Provided the boundary geometry has an isometry generated
by a Killing vector ξ i , a conserved charge

(2.12)Qξ =
∮
Σ

d3Si ξ jTij

can be associated with a closed surface Σ [8]. Physically, this
means that a collection of observers on the hypersurface whose
metric is γ all observe the same value of Qξ provided this sur-
face has an isometry generated by ξ .

2.2. The metric ansatz and known limits

While the general EGB rotating black holes would possess
two independent angular momenta and a more general topol-
ogy of the event horizon, we restrict here to configurations with
two equal magnitude angular momenta and a spherical horizon
topology. The suitable metric ansatz2 reads [6]

ds2 = dr2

f (r)
+ g(r) dθ2 + h(r) sin2 θ

(
dϕ − w(r)dt

)2

+ h(r) cos2 θ
(
dψ − w(r)dt

)2

(2.13)

+ (
g(r) − h(r)

)
sin2 θ cos2 θ(dϕ − dψ)2 − b(r) dt2,

where θ ∈ [0,π/2], (ϕ,ψ) ∈ [0,2π], r and t being the radial
and time coordinates. For such solutions, the isometry group
is enhanced from R × U(1)2 to R × U(2), where R denotes
the time translation. This symmetry enhancement allows us to
deal with ODEs (in what follows, we fix the metric gauge by
taking g(r) = r2).

For the metric ansatz (2.13), the EGB field equations (2.3)
present two well known exact solutions. The first one corre-
sponds to the generalization [13] of the static Schwarzschild–

2 EGB rotating topological black hole with zero scalar curvature of the event
horizon are known in closed form (see e.g. [12] and references there). How-
ever, they are found for a different metric ansatz and present rather different
properties.
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AdS solution with a Gauss–Bonnet term3

f (r) = b(r) = 1 + r2

α

(
1 −

√
1 + 2α

(
m

r4
− 1

�2

))
,

(2.14)g(r) = h(r) = r2, w(r) = 0.

The AdS5 generalization [14,15] of the Myers–Perry rotating
black holes [16] with equal magnitude angular momenta is
found for α = 0 (no Gauss–Bonnet term) and has

f (r) = 1 + r2

�2
− 2M̂Ξ

r2
+ 2M̂â2

r4
,

h(r) = r2
(

1 + 2M̂â2

r4

)
, w(r) = 2M̂â

r2h(r)
,

(2.15)g(r) = r2, b(r) = r2f (r)

h(r)
,

where M̂ and â are two constants related to the solution’s mass-
energy and angular momentum, while Ξ = 1 − â2/�2.

3. Black hole properties

We are interested in black hole solutions with an horizon
located at a constant value of the radial coordinate r = rh > 0.
Restricting to nonextremal solutions, the following expansion
holds near the event horizon:

f (r) = f1(r − rh) + O(r − rh)
2,

h(r) = hh + O(r − rh),

b(r) = b1(r − rh) + O(r − rh)
2,

(3.1)w(r) = wh + O(r − rh).

The event horizon parameters rh, f1, b1, wh and hh (with
(f1, b1, hh) > 0) are related in a complicated way to the global
charges of the solutions.

The metric functions have the following asymptotic behav-
iour in terms of the constants4 f2, b2 and w4:

f = 1 + r2

α

(
1 −

√
1 − 2α

�2

)
+ f2

r2
+ O

(
1

r4

)
,

b = 1 + r2 1 − √
1 − 2α/�2

α
+ b2

r2
+ O

(
1

r4

)
,

h = r2 + �2 f2 − b2

2r2

(
1 +

√
1 − 2α

�2

)
+ O

(
1

r6

)
,

(3.2)w(r) = w4

r4
+ O

(
1

r8

)
.

3 Note that the EGB gravity presents two kind of static black hole solutions,
which are classified into the plus and the minus branches, f(±)(r) = b(±)(r) =
1 + r2

α

(
1 ±

√
1 + 2α( m

r4 − 1
�2 )

)
. In this Letter we shall restrict to the minus

branch solutions, which present a well defined Einstein gravity limit.
4 The MPAdS5 solution (2.15) has f2 = 2M̂(â2/�2 − 1), b2 = −2M̂ , w4 =

2M̂â. For the static Schwarzschild–AdS–Gauss–Bonnet solution (2.14) one
finds f2 = b2 = −m/

√
1 − 2α/�2, w4 = 0.
One can see that, similar to the static case, the parameter α

must obey α � �2/2, beyond which the theory is undefined.
For these asymptotics, the effective cosmological constant is
Λeff = Λ(1 + √

1 − 2α/�2)/2.
The Killing vector χ = ∂/∂t + Ωϕ∂/∂ϕ + Ωψ∂/∂ψ is or-

thogonal to and null on the horizon. For the solutions within
the ansatz (2.13), the event horizon’s angular velocities are all
equal, Ωψ = Ωϕ = ωh. The Hawking temperature as found by
computing the surface gravity is

(3.3)TH =
√

b1f1

4π
.

Another quantity of interest is the area AH of the rotating black
hole horizon

(3.4)AH = √
hhr

2
hV3,

where V3 = 2π2 denotes the area of the unit three-dimensional
sphere.

These rotating solutions present also an ergoregion inside of
which the observers cannot remain stationary, and will move in
the direction of rotation. The ergoregion is the region bounded
by the event horizon, located at r = rh and the stationary limit
surface, or the ergosurface. The Killing vector ∂/∂t becomes
null on the ergosurface, i.e. gtt = −b(r) + h(r)w(r)2 = 0. The
ergosurface does not interesect the horizon.

3.1. The global charges and entropy of solutions

The global charges of these solutions are computed by using
the counterterm formalism5 presented in Section 2. The compu-
tation of the boundary stress-tensor Tab is straightforward and
we find the following expression for the components of interest
here

T t
ϕ = 1

8πG

√
α(1 − 2α/�2)

1 − √
1 − 2α/�2

2w4 sin2 θ

r4
+ O

(
1

r6

)
,

T t
ψ = 1

8πG

√
α(1 − 2α/�2)

1 − √
1 − 2α/�2

2w4 cos2 θ

r4
+ O

(
1

r6

)
,

T t
t = − 1

8πG

√
α

8(1 − √
1 − 2α/�2)3/2

×
(

3α
(
−2 + 3

√
1 − 2α/�2

)

+ 4

(
−1 + 2α

�2
+

√
1 − 2α/�2

)
(f2 − 4b2)

)
1

r4

(3.5)+ O

(
1

r6

)
.

The mass-energy E of solutions is the charge associated with
the Killing vector ∂/∂t ,

E = E(0) + E(c),

5 A different computation of the mass and angular momentum of EGB solu-
tions was also reported namely in [17–19].
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where

E(0) = V3

8πG

(f2 − 4b2)

2

√
1 − 2α

�2
,

(3.6)E(c) = V3

8πG

3�2

16

(
1 − 6α

�2
+

√
1 − 2α

�2

)
,

where E(c) represents the Casimir term [8] in EGB gravity, pre-
senting a nontrivial α dependence6 (this term appears also in
the static limit (2.14)). These black holes have also two equal
magnitude angular momenta Jϕ = Jψ = J , with

(3.7)J = V3

8πG
w4

√
1 − 2α

�2
,

representing the charges associated with the Killing vectors
∂/∂ϕ, ∂/∂ψ as computed according to (2.12).

Also, in what follows it is important to use the observation
that one can write

1

sin2 θ

(
Rt

ϕ + α

4
Ht

ϕ

)

= 1

cos2 θ

(
Rt

ψ + α

4
Ht

ψ

)

= 1

2r2

√
f

bh

d

dr

(√
f h

b
hw′

(
−r2 + α

(
f − 4 + 3h

r2

)))
,

Rt
t + α

4
Ht

t

= 1

2r2

√
f

bh

d

dr

(√
f h

b

[
r2(hww′ − b′)

+ α

((
f − 4 + h

r2
+ rf h′

h

)
b′ +

(
4 − 3h

r2
− f

)
hww′

(3.8)+ rf hw′2
)])

.

The gravitational thermodynamics of the EGB black holes can
be formulated via the path integral approach [20,21]. However,
while the static vacuum Lorentzian solutions (2.14) extremize
also the Euclidean action as the analytic continuation in time
has no effect at the level of the equations of motion, this is not
the case of the rotating configurations discussed in this Letter.
In this case it is not possible to find directly real solutions on
the Euclidean section by Wick rotating t → iτ the Lorentzian
configurations.7 In view of this difficulty one has to resort to
an alternative, quasi-Euclidean approach as described in [22].
The idea is to regard the action I used in the computation of
the partition function as a functional over complex metrics that

6 In the small α limit, one finds E(c) = 3π�2/32G − 21απ/64G + O(α)2.
Note that the first order correction to the mass of pure global AdS5 does not
depend on the value of the cosmological constant.

7 Even if one could accompany the Wick rotation with various other analyt-
ical continuations of the parameters describing the solution (e.g. â → iâ for a
MPAdS5 black hole), given the numerical nature of the configurations in this
Letter, there is no assurance that the modified metric functions will also be so-
lutions of the field equations in Euclidean signature. Instead, one has to solve
directly the EGB field equations for a metric ansatz with Euclidean signature.
are obtained from the real, stationary, Lorentzian metrics by us-
ing a transformation that mimics the effect of the Wick rotation
t → iτ . In this approach, the values of the extensive variables
of the complex metric that extremize the path integral are the
same as the values of these variables corresponding to the ini-
tial Lorentzian metric.8

When computing the classical bulk action evaluated on the
equations of motion, one replaces the R − 2Λ + α

4 LGB volume
term with 2(Rt

t + α
4 Ht

t ) and make use of (3.8) to express it as
a difference of two boundary integrals. A straightforward cal-
culation using the asymptotic expansion (3.2) shows that the
divergencies of the boundary integral at infinity, together with
the contributions from I

(E)
b and I

(GB)
b , are regularized by Ict.

As a result, by using also the first set of relations in (3.8), one
finds the finite expression of the classical action

Icl = V3

4G

(
1√
f1b1

[
(f2 − 4b2)

√
1 − 2α

�2

+ 3�2

8

(
1 − 6α

�2
+

√
1 − 2α

�2

)]

− √
hh

(
r2
h + α

(
4 − 4hh

r2
h

))

(3.9)− 4√
f1b1

whw4

√
1 − 2α

�2

)
.

Upon application of the Gibbs–Duhem relation to the partition
function, one finds the entropy S = β(E − 2ωhJ ) − Icl, which
is the sum of one quarter of the event horizon area plus a Gauss–
Bonnet correction

S = S0 + SGB, with S0 = V3

4G
r2
h

√
hh,

(3.10)SGB = α
V3

4G

√
hh

(
4 − hh

r2
h

)
.

In the static limit, the known expression S = V3
4G

(r3
h + 3αrh) is

recovered, while the entropy of the MPAdS5 solutions is S =
V3AH /4G.

4. Numerical results

The EGB equations (2.3) lead to a system of four coupled
second order ODEs for the metric functions9 f (r), b(r), h(r)

and w(r). We are interested in solutions of these equations pre-
senting the asymptotic expansion (3.1), (3.2).

In order to construct numerical solutions, the constants
(α,Λ) have to be fixed. Then the solution is further specified
by the event horizon rh and the angular velocity at the horizon
w(rh) (or equivalently, the angular momentum J through the
parameter w4).

8 Note also that not all closed form solutions with Lorentzian signature
present reasonable Euclidean counterparts, in which case one is forced again
to consider a ‘quasi-Euclidean’ approach. The d = 5 asymptotically flat rotat-
ing black ring solutions provides an interesting example in this sense [23].

9 These equations are extremely complicated (each of them containing
around fifty terms) and we shall not present them here.
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Fig. 1. A typical rotating solution with wh = 1.8 (solid line) is plotted together with a static solution (wh = 0, dashed line) for rh = 0.5, α = 0.5, �2 = 20.

Fig. 2. Two rotating solutions with rh = 0.5, wh = 0.5, �2 = 20 are plotted for α = 0.1 (dashed line) and α = 1 (solid line).
The complete classification of the solutions in the space of
parameters is a considerable task that is not aimed in this Let-
ter. Instead, by taking the arbitrary value �2 = 20, we analyzed
in detail a few particular classes of solutions, which hopefully
would reflect all relevant properties of the general pattern. How-
ever, we have found nontrivial rotating black hole solutions
for other values of the cosmological constant, in particular for
Λ = 0 and for Λ > 0.

Also, since the Gauss–Bonnet term in (2.1) has to be con-
sidered as a correction to the Einstein–Hilbert action, we report
here the results for positive values of α in the interval 0 � α � 1
(however, solutions with �2 = 20 and larger values of α exist as
well).

In the absence of a closed form solution, we relied on a nu-
merical methods to solve the equations. The numerical methods
here are similar to those used in literature to find other numeri-
cal black hole solutions with equal magnitude angular momenta
[6,7]. We take units such that G = 1, and employ a colloca-
tion method for boundary-value ordinary differential equations,
equipped with an adaptive mesh selection procedure [24]. Typ-
ical mesh sizes include 103–104 points. The solutions have a
typical relative accuracy of 10−8.

In constructing rotating EGB–AdS black holes, we make use
of the existence of the closed form solutions (2.14) and (2.15),
and employ them as starting configurations, increasing gradu-
ally wh or α, respectively.

The profiles of the metric functions of a typical EGB–AdS
black hole solution corresponding to α = 0.5, rh = 0.5 are pre-
sented on Fig. 1 for a static (wh = 0) and a rotating solution
with wh = 1.8. One can see that the rotation leads to non-
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(a)

(b)

Fig. 3. The parameters f1, b1, hh at the event horizon are plotted together with the parameters f2, b2, w4 in the asymptotic expansion at infinity, as a function of α

for solutions with rh = 0.5, �2 = 20, wh = 0.5 (a). In (b) we plot the Hawking temperature, the mass-energy E(0) , the Casimir term E(c) , the angular momentum J

and the entropies S0, SGB for these solutions. Here and in Fig. 4(b) E(0) , E(c) and J are plotted in units with V3/8πG = 1, while we set V3/4G = 1 in the
expression of S.
constant values for h(r)/r2 and b(r)/f (r), and is particularly
apparent on the function b(r) and its derivative.

It is also natural to study how the profile of a rotating solu-
tion (e.g. with a given angular velocity wh) is affected by the
Gauss–Bonnet term. This is illustrated on Fig. 2 where the pro-
files corresponding to α = 0.1 (dashed curves)—very close to
the MPAdS5 solution, and α = 1 (solid lines) are superposed
for rh = 0.5, wh = 0.5. One can see there that the r2—terms
start dominating the profile of the metric functions f , b, h very
rapidly, which implies a small difference between different so-
lutions for large enough r . However, the situation is different in
the small-r regime (see also Fig. 1).

We also performed an analysis of the EGB–AdS solutions
when varying the Gauss–Bonnet coupling constant α. In the
limit α = 0, the MPAdS5 black holes (2.15) are recovered.10

The evolution of the parameters f ′(rh), b′(rh), h(rh) and f2, b2,
w4 characterizing the solutions is shown on Fig. 3(a) as func-
tion of α. The corresponding physical quantities, as computed
according to the relations in the previous section, are reported
on Fig. 3(b).

We also varied the event horizon radius rh for a set of given
α,wh and found no evidence of a maximal value of rh where the
solutions could eventually terminate. The evolution of the solu-

10 With the particular values rh = 0.5, wh = 0.5 that we have chosen to per-

form the numerical analysis, the parameters â, M̂ of the MPAdS5 solution
correspond to â = 10/81 and M̂ = 6561/48640.
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(a)

(b)

Fig. 4. The parameters f1, b1, hh at the event horizon are plotted together with the parameters f2, b2, w4 in the asymptotic expansion at infinity, as a function of the
event horizon radius rh for solutions with α = 0.5, �2 = 20, wh = 0.5 (a). In (b) we plot the Hawking temperature, the mass-energy E(0) , the angular momentum J ,
the entropy of the solution in Einstein gravity S0 and the Gauss–Bonnet correction SGB for these solutions.
tion data as a function of the event horizon radius is reported
on Fig. 4(a), the mass-energy, angular momentum, entropy and
Hawking temperature being plotted in Fig. 4(b). For small val-
ues of rh the numerical analysis is quite tedious and it strongly
suggests that the derivatives of w(r) and h(r)/r2 become infi-
nite in the rh → 0 limit.

Finally, although the numerics is more involved in this case,
we constructed solutions with fixed α and rh but varying the
horizon velocity wh. Equivalently, this leads to a family of so-
lution with varying the angular momentum J ∼ w4 since there
is a one–one correspondence between w4 and wh. Similar to the
α = 0 case, for each set of solutions we observe two branches,
extending up to a maximal value of wh, where they merge and
end. The lower branch emerges from the static solution in the
limit wh = 0. The maximal value of wh depends on the hori-
zon radius rh, the cosmological constant Λ, and the coupling
constant α.

5. Further remarks

The main purpose of this Letter was to present arguments
for the existence of rotating black holes in d = 4 + 1 EGB
theory with negative cosmological constant. These configura-
tions posses a regular horizon of spherical topology and have
two equal-magnitude angular momenta, representing general-
izations of a particular class of MPAdS5 black holes. We also
proposed to adapt the boundary counterterm formalism of [8]
to d = 4 + 1 EGB-Λ theory, computing in this way the mass-
energy and angular momenta of solutions. The general relations
in Section 2.1 apply also to other known solutions in EGB
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theory with negative cosmological constant and can easily be
generalised for a positive sign of Λ.

The solutions in this Letter may provide a fertile ground
for further study of rotating configurations in EGB theory. For
example, their generalization to include the effects of an elec-
tromagnetic field is straightforward. Also, in principle, by using
the same techniques, there should be no difficulty to construct
similar solutions in d = 2N + 1 dimensions with N > 2 equal
magnitude angular momenta. An interesting problem here is to
find the boundary counterterm expression in EGB-Λ theory for
other values of d > 5.

In the five-dimensional case, one can also approach the gen-
eral case of a black hole with two distinct angular momenta, by
solving a set of partial differential equations with a dependence
on (r, θ). The formalism proposed in Section 2 to compute the
mass, angular momentum and entropy of AdS solutions should
apply in the general case, too. Rotating topological black holes
in EGB theory with an horizon of negative curvature are also
likely to exist for Λ < 0.

The study of the solutions discussed in this Letter in an
AdS/CFT context is an interesting open question. According to
the AdS/CFT correspondence, the higher derivatives curvature
terms can be viewed as the corrections of large N expansion of
the boundary CFT in the strong coupling limit. For the ansatz
considered here, the boundary metric is not rotating and corre-
sponds to a static Einstein universe in four dimensions. Here it
is interesting to note that, similar to the α = 0 case, the stress-
energy tensor for the dual theory defined in that background, as
computed according to the standard prescription [25], is trace-
less.

A detailed study of the d = 4 + 1 rotating black hole solu-
tions in EGB theory together with a discussion of their asymp-
totically flat limit will be presented elsewhere.

Note added

When this work has been at final stages, the authors of [26] appear to have
succeeded in constructing a Kerr black hole in EGB theory in d = 4 + 1 di-
mensions. However, this result needs an independant confirmation. Afterwards,
it would be interesting to extend the results in Section III of [26] to the case
of black holes with negative cosmological constant and two equal magnitude
angular momenta.
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