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ABSTRACT

This paper is concerned with the extension of the minimal coordinates approach to flexible bodies.

When using minimal coordinates, the number of configuration parameters corresponds exactly to the

number of degrees of freedom and they can be chosen arbitrarily as far as there is a one-to-one re-

lationship between the configuration of the system and the configuration parameters. The equations

of motion are obtained from the description of the translational and rotational motion of a frame at-

tached to each body in terms of the chosen configuration parameters, and from the forces acting on

each body. The extension to the simulation of flexible bodies naturally leads to a description of the

motion of a flexible body from the one of its nodes. However, the relationship between the latter and

the full internal motion of the body is not unique and is the subject of a lot of developments. It was

then decided to systematically treat flexible bodies as superelements, implemented according to the

corotational approach, with a floating corotational frame. This allows to model any flexible body from

its mass and stiffness matrices obtained from any available finite element code. Moreover, it doesn’t

impose any restriction on the kinematics of the nodes which can then be expressed indifferently from

absolute or relative coordinates as usually encountered with minimal coordinates. After a description

of the adopted framework, the paper develops the equations of motion. Some test examples will then be

presented, where the proposed approach will be compared to the ones obtained with the classical body

reference frame approach and results from the literature. In some cases, the influence of the chosen

corotational frame will be analysed.

1 Introduction

Kinematics is an important step of multibody modelling. It consists in expressing the motion of the bodies in

terms of the configuration parameters and their first and second time derivatives. The configuration parameters

themselves can be chosen according to different types of coordinates[1]: relative, absolute, natural, minimal or

nodal coordinates, the choice influencing the principle used to build the equations of motion, the form of the latter

(ODE or DAE, sparse, ...) and consequently the numerical methods expected to deal with these equations. Prof.

Hiller[2] was the main contributor to the approach based on minimal coordinates. In this case, the configuration

parameters are chosen freely as far as they are independent and that their number is equal to the number of degrees

of freedom of the system. This approach is also currently used at the university of Mons, through the frame-

work EasyDyn[3], which was initially developed for teaching purposes but also contributed successfully to several

research projects[4].

In a project launched recently about robotic machining, the need appeared to introduce flexible bodies. The

flexibility of the robot is indeed a key aspect when assessing the stability of the machining process. Although we

could have switched to one of the free tools available on the web (MBDyn, Hotint, . . . ), it also appeared necessary

to keep the scalability and our perfect mastery of EasyDyn as several other particular features must be introduced:

computation of cutting forces[5], updating of the geometry of the machined part, joint compliance, actuators and



controllers modelling. The problem of geometry updating is particularly tricky as it is not reversible and must be

processed explicitly while the equations of motion are integrated by an implicit solver.

The first section of this paper will be devoted to the analysis of the different options to model flexible bodies

and their advantages and shortcomings with respect to the minimal coordinates philosophy. In the next section,

the equations of motion will be constructed for the adopted solution, i.e. the modelling of flexible bodies as

superelements introduced through the corotational approach, with a description of the motion of the flexible body

through the one of its nodes and of the corotational frame, in terms of the chosen configuration parameters. Several

examples will then be presented, where the proposed approach will be compared to the ones obtained with the

classical body reference frame approach and results from the literature. In some cases, the influence of the chosen

corotational frame will be analysed.

2 Flexible bodies with minimal coordinates through the corotational approach

2.1 Minimal coordinates and rigid bodies

The approach based on minimal coordinates[2] assumes that the user develops explicitly the kinematics of all

bodies in function of the chosen configuration parameters. The latter can be chosen freely as far as they are related

to the configuration of the system by a ”one to one” relationship, which namely implies that they are independent.

The solution is not necessarily unique: as shown in figure 1, the motion of a double pendulum can be described by

the 2 parameters θ1 and θ2, but θ2, which is a relative angle, can be replaced by α2, which is an absolute angle. In

the same way, the motion of the slider crank mechanism of figure 1 can be expressed in terms of the only angle α .
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Fig. 1: Examples of sets of minimal coordinates

There are different ways to implement the approach based on minimal coordinates. In EasyDyn [3], which is

a C++ library, the user must write a C++ application where the kinematics is programmed in the specific routine

ComputeMotion. The latter consists of the expressions of the position, orientation and translational and rotational

velocities and accelerations of each body i, in terms of the configuration parameters q and their first and second

time derivatives q̇ and q̈. In parallel, the user describes in another specific routine AddAppliedEfforts all forces

exerted on each body. From this information, the ncp equations of motion of a system owning nB bodies and ncp

configuration parameters can be built in the following form, which derives from the application of the d’Alembert’s

principle

nB

∑
i=1

[

di, j · (Ri −miai)+θi, j · (MGi −ΦGi
ω̇i −ωi ×ΦGi

ωi)
]

= 0 j = 1,ncp (1)

with mi and ΦGi
the mass and the central inertia tensor of body i; Ri and MGi the resultant force and moment, at

the center of mass Gi, of all applied efforts exerted on body i; vi and ai the velocity and acceleration of the center

of gravity of body i; ωi the rotational velocity of body i; and di, j and θi, j the partial contributions of q̇ j in the

translational and rotational velocities of body i respectively

vi =
ncp

∑
j=1

di, j · q̇ j ωi =
ncp

∑
j=1

θi, j · q̇ j (2)
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Fig. 2: Reference frame of a body and its situation with respect to the global reference frame

Practically, the position and orientation of body i are expressed through the homogeneous transformation ma-

trix T0,i giving the situation of the frame attached to the body with respect to the global reference frame 0 (fig 2). A

significant advantage of homogeneous transformation matrices is the possibility to express the motion along a kine-

matic chain as the product of matrices representing the succession of elementary displacements and/or rotations,

as for example

T0,i =Trotz(q1) ·Tdisp(0,L1,0) ·Trotx(q2) ·Tdisp(L2,0,0) (3)

Moreover, to help the users, a symbolic tool called CAGeM (Computer Aided Generation of Motion) generates

the expressions of velocities and accelerations by symbolic differentiation. CAGeM was initially implemented under

MuPAD and a port under Python/sympy is under development.

2.2 Flexible bodies and minimal coordinates

If the motion of a rigid body is naturally described through the one of a coordinate system attached to it, it naturally

appears that the motion of a flexible body should be defined by the one of its nodes. To make it clear, the motion

of a flexible beam (figure 3) would be defined by the one of the two coordinate systems attached to its end nodes.

At that point, it is of interest to note that a major difference between minimal coordinates and relative or Cartesian

coordinates is that the formulation is not related at all to the topology of the mechanical system. Relative coordi-

nates generally exploit kinematic chains, the configuration parameters corresponding to joint variables. Cartesian

coordinates systematically involve absolute configuration parameters and introduce all joints through constraints.

Besides, minimal coordinates can mix relative and absolute coordinates (cf. double pendulum) and it would be

very difficult to define whether α is a relative or absolute coordinate for the rod or the piston of the slider crank

mechanism. So the chosen approach should permit to express the motion of the end nodes of a beam either from

their absolute motion or from the absolute motion of one of the nodes and the relative motion of the second with

respect to the first one.
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Fig. 3: Kinematics of a flexible beam

Two main approaches are generally found to express the motion of a flexible body

• the local body reference frame approach where the motion of the body is the superimposition of a rigid body

(undeformed) motion and a deformation, generally assumed small, with respect to the latter (figure 4);
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• the full finite element approach where the motion of the flexible body is expressed directly from the trans-

lational and rotational motion of its nodes, which assumes a consistent parametrization of the rotations and

shape functions valid for large displacements.
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Fig. 4: Kinematics of a flexible body with the local body reference frame

Taking into account the first paragraph, the approach based on the local body reference frame would not be

natural as it imposes to use relative coordinates for the description of the deformed configuration and would need

to provide information on the component modes used to express the deformation. On the other hand, the full finite

element approach writes equations of motion for specific translation and rotation parameters. The advantage is

that, in this case, the internal motion is precisely defined by the element shape functions. The parametrization

is also imposed but the equations of motion could be reformulated through a kinematic transformation between

finite element parameters and the minimal coordinates. However, it would make the approach inefficient, due to

the ignorance of the topology, and would oblige to implement all types of elements (beams, plates, tetrahaedrons,

bricks, ...).

Taking into account these remarks, the retained approach to introduce flexible bodies in EasyDyn relies on

• the formulation of the dynamics of the flexible bodies through the so-called co-rotational formulation ([6, 7]),

the co-rotating frame being floating[7] and not necessarily attached to one of the nodes;

• a free description of the motion of the nodes and the co-rotating frame, through a homogeneous transforma-

tion matrix, assumingly expressed in terms of the chosen configuration parameters.

2.3 Expression of the kinetic energy with the corotational formulation

The magic idea of the co-rotational approach is to express the kinetic energy of a ”N nodes” flexible body (a

superelement), as

T =
1

2
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(4)

i.e. from the native mass matrix of the finite element model of the flexible body and the translational and rotational

velocities of the N ”nodes” projected in a reference corotational frame * following (rotating with) the flexible

body1. Initially[6], the corotational frame was attached to one of the nodes. More recently[7], Cardona proposed

to use instead a floating corotational frame obtained by averaging the translational and rotational parameters of the

body nodes.

1While v denotes a vector characterized by a magnitude, a direction and a sense, {v}∗ denotes the 3x1 matrix gathering the coordinates

of vector v in coordinate system *
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The main advantage of the approach is that any kind of flexible body can be modelled, as soon as its finite

element model is available, from which the mass and stiffness properties can be retrieved. The only condition

on the finite element model is that each node involves the 3 displacements and the 3 rotations of each node. The

approach is not fully consistent as equation 4 corresponds to an interpolation of the velocity field through the shape

functions of the superelement, also used at displacement level. As soon as the shape functions are able to span

the rigid body modes, the expression is exact when the body is undeformed. However, the discrepancy increases

with the magnitude of the deformation and the rotational velocity of the body. As a conclusion, the corotational

approach is suitable when deformations and rotation speeds are small, which is the case of our application. The

results are also better if the corotational frame is located near the center of mass of the deformed body[7].

Let us note that the rigid body can be considered as a ”one node” element, for which the submatrices would

take the following form if the node is located at the center of mass

MT1,T 1 = mI MT1,R1 =MR1,T 1 = 0 MR1,R1 =ΦG (5)

3 Contribution of a flexible body to the equations of motion

The purpose of this section is to develop the equations of motion of a multibody system comprising flexible bodies,

in a shape as close as possible to equation 1 related to rigid bodies.

3.1 Contribution of the inertia forces in the equations of motion

The contribution of the inertia forces in the equations of motion will be obtained from the Lagrange’s theorem,

stipulating that the generalized inertia force relative to configuration parameter ql can be obtained from the kinetic

energy by

Ql(−m~a) =−
d

dt
(

∂T

∂ q̇l

)−
∂T

∂ql

(6)

Let us first reformulate the expression of the kinetic energy given in equation 4 as

T =
1

2

N

∑
i=1

N

∑
j=1

(

vi ·MTi,Tj
v j +vi ·MTi,R j

ω j +ωi ·MTi,R j
ω j +ωi ·MRi,R j

ω j

)

(7)

in which MTi,Tj
, MTi,R j

, MRi,Tj
and MRi,R j

can be considered as tensors, which are constant in the corotational

frame.

Like for the rigid bodies, the velocities vi and ωi of each node i of the flexible body, as well as the velocities

v∗ and ω∗ of the corotational frame, can be expressed from the partial velocities di,l , θi,l , d∗,l and θ∗,l , and the

time derivatives of the ncp configuration parameters

vi =
ncp

∑
i=1

di,l q̇l ωi =
ncp

∑
i=1

θi,l q̇l v∗ =
ncp

∑
i=1

d∗,l q̇l ω∗ =
ncp

∑
i=1

θ∗,l q̇l (8)

As for the rigid bodies, the velocities, partial velocities and accelerations can be obtained by symbolic differentia-

tion of the homogeneous transformation matrices T0,i giving the situation of each node i with respect to the global

reference frame.

The application of the Lagrange’s theorem leads to the following contribution of the inertia forces:

Ql(−ma) =
N

∑
i=1

(Ri(−ma) ·di,l +Mi(−ma) ·θi,l)+M∗(−ma) ·θ∗,l (9)
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where Ri(−ma) and Mi(−ma) represent the equivalent force respectively torque exerted on node i (or corotational

frame *) by the inertia reactions, computed as

Ri(−ma) =−
N

∑
j=1

[

MTi,Tj
(a j −ω∗×v j)+MTi,R j

(ω̇ j −ω∗×ω j)+ω∗× (MTi,Tj
v j +MTi,R j

ω j)
]

(10)

Mi(−ma) =−
N

∑
j=1

[

MRi,Tj
(a j −ω∗×v j)+MRi,R j

(ω̇ j −ω∗×ω j)+ (ω∗−ωi)× (MRi,Tj
v j +MRi,R j

ω j)
]

(11)

In the same way, the inertia forces bring a contribution equivalent to a torque M∗(−ma) exerted on the coro-

tational frame ∗ given by

M∗(−ma) =−
N

∑
i=1

N

∑
j=1

[

vi × (MTi,Tj
v j)+ωi × (MRi,R j

ω j)+ωi × (MRi,Tj
v j)+vi × (MTi,R j

ω j)
]

(12)

The previous terms are calculated from their projection in the corotational frame, as the mass matrices are

expected to rotate with this frame.

3.2 Contribution of gravity

Contribution of gravity is naturally included in the equations of motion through the inertia terms by replacing in

equations 10 to 11 the acceleration a j by a j −g. The equivalent force and moment on node i then correspond to

Ri(g) =

(

N

∑
j=1

MTi,Tj

)

g (13)

Mi(g) =

(

N

∑
j=1

MRi,Tj

)

g (14)

and the resulting generalized force associated with ql reads

Q
gravity
l =

N

∑
i=1

(Ri(g) ·di,l +Mi(g) ·θi,l) (15)

3.3 Contribution of elastic forces

Assuming small deformations, the elastic forces are computed from the finite element stiffness matrix of the

superelement, considered in the axes of the corotational frame. The elastic force Re,i and moment Me,i applied on

node i, projected in the corotational frame *, are then given by

{Re,i}∗ = −
N

∑
j

(

[KTi,T j]∗{u j}∗+[KTi,R j]∗{β j}∗
)

(16)

{Me,i}∗ = −
N

∑
j

(

[KRi,T j]∗{u j}∗+[KRi,R j]∗{β j}∗
)

(17)

where the elastic displacements u j and rotations β j are computed from the difference between the actual position

of node j and its position on the undeformed body attached to the corotational frame *. For the sake of simplicity,

the computation of the elastic rotations is performed from angles between axes, assuming small relative rotations.

The corresponding generalized force on configuration parameter ql can be written

Qelastic
l =

N

∑
i=1

(Re,i ·di,l +Me,i ·θi,l) (18)

6



3.4 Contribution of external forces

If we denote by Ri and Mi the total force respectively torque applied on node i of the flexible body, their contri-

bution in the generalized force related to configuration parameter ql is given by

Qext
l =

N

∑
i=1

(Ri ·di,l +Mi ·θi,l) (19)

3.5 Summary

To define a flexible body, the user will have to provide

• the mass and stiffness matrices (assumed projected in the corotational frame) of the flexible body/superelement;

• the homogeneous transformation matrices giving the situation of each node with respect to the corotational

frame in the undeformed configuration;

• the expression of the homogeneous transformation matrices giving the situation of each of the N nodes of

the flexible body, and the one of the corotational frame, in terms of the chosen configuration paremeters;

velocities and accelerations directly derive from these matrices;

• the external forces acting on each node of the flexible body.

The total contribution of the flexible body in the equation of motion related to configuration parameter ql can

then be expressed by

Qtot
l =

N

∑
i=1

{(Ri(−ma)+Ri(g)+Re,i +Ri) ·di,l +(Mi(−ma)+Mi(g)+Me,i +Mi) ·θi,l}

+M∗(−ma) ·θ∗,l (20)

4 Example 1: simple pendulum

The first studied system consists of a flexible simple pendulum subjected to gravity forces. This planar flexible

pendulum is attached to the reference frame (x0, y0) through a revolute joint. It is dropped in the gravity field

from an horizontal undeformed configuration. The flexible beam characteristics[7] are provided in table 1. In this

example and subsequent ones, the stiffness and mass matrices correspond to standard Euler-Bernouilli beams.

Density ρ : 7.8E-3 kg/m3 Length L: 141.42 m

Young’s modulus E: 2.1 E6 N/m2 Section A: 9.0 m2

Poisson’s ratio ν : 0.3 Moments of inertia Iy and Iz: 6.75 m4

Tab. 1: Flexible beam characteristics from [7]

The flexible beam involves 3 frames: one at each end and the corotational frame (figure 5)

• the first frame is at the basis of the beam; its motion is defined through the homogeneous transformation

matrix T0,1 and depends only on q0 which is the rotation about the z axis

T0,1 =Trotz(q0)

• the second frame of the flexible beam is located at the end of the beam and involves 6 more DOF corre-

sponding to the 3 translational (q1, q2, q3) and the 3 rotational (q4, q5, q6) deformation displacements of

the tip of the beam, with respect to the undeformed configuration

T0,2 =T0,1 ∗Tdisp(L+q1,q2,q3)∗Trotx(q4)∗Troty(q5)∗Trotz(q6)

7
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T0,1=T*

T0,2

g

Fig. 5: Flexible simple pendulum

• the corotational frame is coincident with the first frame

T∗ =T0,1

Figure 6 shows the time history of the angular velocity (q̇0) at the origin and the transversal tip displacement

(q2) of the beam. A very good correspondence is observed between the vibrations retrieved from the EasyDyn

library and those from the AMR software. The latter is another in-house software based on relative coordinates,

the flexible bodies being implemented according to the local floating frame approach[8], with stiffening effect for

beams with respect to longitudinal forces. As the rotation velocity and the deformation of the body are small, the

curves perfectly match.
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Fig. 6: Simulation results related to the flexible pendulum

5 Example 2: Hinge beam

5.1 Description of the system

The hinge beam illustrated in figure 7 was used as a benchmark in reference [7]: the flexible beam is subjected to

a varying torque around the z-axis from a static initial position. The flexible beam characteristics are those already

presented in table 1.

5.2 Absolute vs relative coordinates

The beam is modelled with the same frames as in the previous section. However, we also investigate the results ob-

tained when the motion of the tip frame is defined directly with respect to the ground. In this case, the configuration

parameters correspond to absolute nodal coordinates and the transformation matrix is given by

T0,2 =Tdisp(q1,q2,q3)∗Trotx(q4)∗Troty(q5)∗Trotz(q6)
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Fig. 7: Cardona’s hinge beam: illustration and applied torque

Moreover, consistent initial conditions must be given for an initial undeformed configuration. For example

q0
0=θ q0

1=Lcos θ q0
2=Lsin θ q0

6=θ

θ being equal to 0 in our case.
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Fig. 8: Cardona’s hinge beam: time history of basis rotation speed

Some simulation results are depicted in figure 8 in which the angular velocity at the origin of the beam is

plotted. Despite a totally different conditioning for the transformation homogeneous matrix T0,2, the two curves

perfectly overlap. However, the results obtained from EasyDyn do not agree with the ones of AMR: the curves

perfectly match at the beginning of the simulation and progressively depart from each other when the angular

velocity increases. Let us note that the magnitude of the oscillation after 10 seconds is not a significant indicator

as it just depends on the state of the system when the torque is released. The discrepancy can namely be explained

by the unability of the corotational formulation to perfectly represent the inertia effects when the rotation velocity

increases. However, as we will see, the model under AMR also needs some refinement to comply with the results of

Cardona which is actually more detailed as the model of the beam also involves 4 internal component modes.

5.3 Modelling of the beam with 5 nodes

In order to improve the interpolation of the corotational formulation, the beam is now modelled by 5 equally

spaced frames (nodes), as illustrated in figure 9. Only the planar motion is retained and the 4 remaining config-

uration parameters correspond to the hinge angle (q0), the longitudinal and lateral displacements (q1=U , q2=V )

and the rotation of the tip (q3=Θ) respectively. For a consistent comparison, the motion of the internal frames is

interpolated according to the beam shape functions. For example, the shape functions in the XY plane, represented

on figure 9 with dashed lines (u, v, θ ) allow to calculate the displacements in terms of the relative longitudinal

position ξ = x
L
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Fig. 9: Hinge beam with 5 nodes and 3 shape functions

1. longitudinal displacement u due to the longitudinal tip diplacement U : u = ξ U

2. lateral displacement v due to the lateral tip displacement V : v = (3ξ 2 −2ξ 3)V

3. lateral displacement v due to tip rotation Θ: v = L(ξ 3 −ξ 2)Θ

while local rotations can be determined from the slopes of the shape functions.

Each homogeneous transformation matrix is then written in translation and in rotation in function of the relative

tip displacements, according to the shape functions and their slopes. For example, the contribution of the second

frame is stated as follows:

T0,2 =T0,1 ·Tdisp(
L+q1

4
,

5

32
q2 −

3L

64
q3,0) ·Trotz(

9

8L
q2 −

5

16
q3) (21)

The tracked quantity is still the angular velocity at the basis of the beam compared to the one retrieved from

the AMR software in which one beam element composed of 2 frames is simulated (figure 10). No improvement can

be observed, leading to the hypothesis that the discrepancy could be due to the geometric stiffening of the beam.
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Fig. 10: Comparison EasyDyn vs. AMR

5.4 Modelling of the beam with 4 successive elements

In order to verify this hypothesis, the beam is modelled as the succession of 4 beam elements of a length L/4 (figure

11), the first nodal frame of an element corresponding to the second frame of the previous one. The corresponding

kinematics allows to represent large displacements although the deformations remain small inside each element.

As depicted in figure 11, the corotational frame T∗ of each element corresponds to the first nodal frame. The

model ends up with 12 transformation homogeneous matrices (but actually only 5 different ones) and 25 DOF: 6

DOF for the deformations of each beam element and 1 DOF for the hinge.
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Fig. 11: Hinge beam built with 4 successive elements

Fig. 12: Cardona’s non-linear beam vs. AMR 4 successive elements

Figure 12 presents a comparison between the angular velocity for a hinge beam composed of 4 successive

elements from AMR and the reference results obtained by Cardona in [9] and [7], which is a beam constituted

by five equally-spaced nonlinear beam finite elements. Cardona’s curve was extracted and post-treated from his

original article and then superimposed to the AMR result. A very good agreement is now observed. Figure 13

compares the angular velocity obtained from the model with 4 successive beams by on one hand EasyDyn and the

corotational approach and on the other hand AMR. The correlation is now nearly perfect although the frequency of

oscillations proves to be a bit different.
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Fig. 13: EasyDyn 4 successive elements vs. AMR 4 successive elements
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6 Example 3: slider-crank mechanism

The last considered system concerns a flexible slider-crank mechanism (figure 14) which is a closed-loop system.

It is subjected to a torque M whose evolution is also displayed in figure 14. The material properties for the crank

and the rod are the same as presented earlier for the hinge beam. Their lengths are respectively L1 = 10 m and L2

= 20 m.

x0

y0

T0,1

T0,2

T*

T1,2

T1,1=T*

T2

1

2

L2

L1

L2=�� �

L1=�� �

M

Fig. 14: Slider-crank mechanism

The slider is made of a rigid body with a mass m of 5 kg. The whole mechanism gathers a total of 7 DOF, from

which the homogeneous transformation matrices are defined, giving in the same time their interpretation

T0,1 = Trotz(q0)

T0,2 = T0,1 ·Tdisp(L1 +q1,q2,0) ·Trotz(q3)

T1,1 = T0,2 ·Trotz(q5)

T1,2 = T2 ·Trotz(q6)

T2 = Tdisp(q4,0,0)

It turns out that the motion of the crank is defined in terms of the hinge angle q0 and the tip deformations q1, q2

and q3. On the contrary, frame 1.1 of the rod is defined by a relative rotation q5 with respect to frame 0.2, while

the motion of frame 2.2 is defined as a relative rotation q6 with respect to the center of mass of the slider. The

motion of the slider is defined from the only configuration parameter q4 i.e; its X coordinate.

In the case of a closed loop system like the spring-damper, introducing flexible bodies becomes an advantage:

thanks to the elastic properties of bodies which act somehow like springs, the loops do not have to be specifically

solved. Due to the possibility to use relative or absolute coordinates, configuration parameters can be found, which

can describe the kinematics without having to solve for intermediary parameters from loops conditions[2]. In the

finite element community, the same effect can be obtained by assembly: common node displacements are merged

in a single parameter.

Again, the results will be compared to AMR and, for the purpose of illustration, two different options will be

tested with respect to the position of the corotational frame: at the origin of the crank (frame 0.1) or as an average

position of frames 0.1 and 0.2, as

T∗ = Trotz(q0) ·Tdisp(
L1 +q1

2
,
q2

2
,0) ·Trotz(

q3

2
)

Figure 15 shows the rotation velocity of the origin of the crank (q̇0) for both options. Generally speaking, the

results obtained with the corotational frame at the center of the crank show a better agreement with AMR. This

is consistent with Cardona’s paper [7] which states that the more the corotational frame is close to the center of

gravity, the less the kinetic energy is degraded and the more the results are accurate.

It also appears that the system undergos larger vibrations with the corotational approach implemented under

EasyDyn, as confirmed by figure 16 which depicts the time history of the elastic displacement and rotation of the
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Fig. 15: Slider crank simulation with corotational frame at the origin (left) or at the middle (right) of the crank
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Fig. 16: Deformation of the crank: comparison between AMR and EasyDyn with the corotational frame at the middle of the crank

tip of the crank. This can be due to the integration method. Some numerical damping has to be introduced in AMR

due to the presence of constraints.

7 Conclusions

This paper presented the extension of the framework EasyDyn to the simulation of flexible bodies. This work was

motivated by a new project about stability of robotic machining where the contribution of the flexibility of the

robot members cannot be ignored.

The kinetics of flexible bodies is introduced through the so-called co-rotational approach, which is based on an

expression of the kinetic energy from the mass matrix of the finite element model of the considered body, and the

nodal velocities expressed in a frame rotating with the body. Although it is not the most consistent formulation, it

was found to be naturally adapted to the philosophy of minimal coordinates, minimizing the implementation effort.

It is also convenient for the application, where deformations and rotation speeds are small. Only superlements are

considered, the stiffness and mass matrices being potentially retrieved from any finite element software.

The paper presented the construction of the equations of motion, whose form presents several similarities with

the ones related to rigid bodies. Thanks to some examples, the implementation was validated by comparison with

literature and another in-house software based on relative coordinates. Some modelling issues were addressed in

parallel, like the influence of the number of elements or the location of the corotational frame. As expected, the

limitations of the corotational approach appear when the deformations or the rotation velocities increase.
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[2] M. Hiller and A. Kecskeméthy, “Dynamics of multibody systems with minimal coodinates,” in Computer-

Aided Analysis of Rigid and Flexible Mechanical Systems (M.F.O. Seabra Pereira and J.A.C. Ambrosio, eds.),

vol. 268 of NATO ASI, pp. 61–100, Dordrecht, the Netherlands: Kluwer Academic Publishers, 1994.
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