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The Lane-Emden problem

AU — -2y i
{Au lulP=2u in Q, (PDE)

u=20, on 9.

where Q is an open bounded setin RN and 2 <p < 2*.
In this talk, we will especially focus on

Solutions to (PDE) are critical points of
& HY(Q) = R:u~— %JQWu(x)lz dx — %Lw(x)w dx.

C. Troestler (UMONS)
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Ground state solution

Epu) = 3 f Vu(x)1? dx — % J lu(x)IP dx
Q Q
has the property that

t=0

Nehari manifold
Np = {u e Hy(@)\ {0} | €/ (u)[u] = 0}

Variational principle

minimize 0 #£ u — sup&p(tu)
t=0

C. Troestler (UMONS)

, minimize & (u),
ie.,
s.t. ueN,.
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Least-energy nodal solutions (l.e.n.s.)

Nodal Nehari set
Mp :={ueHyQ)|u" €Ny and
uT € Np}

where u*(x) := max{£u(x), 0}
(sou=ut—u").

Variational principle

o . minimize &,(u),

minimize 0 #£u— sup &(tut—su™) e, p(U)
t,s>0 s.t. ue Mp.

A. Castro, J. Cossio, .M. Neuberger. A sign-changing solution for a superlinear Dirichlet problem. Rocky Mountain
J. Math. 27 (1997), no. 4, 1041-1053.
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Qualitative properties of l.e.n.s.

Theorem (Bartsch, Weth, 2003)

L.e.n.s. have precisely two nodal domains and have Morse
index 2.

Theorem (Aftalion, Pacella, 2004)

If Q is a ball or an annulus in RN, any radial sign changing
solution has Morse index = N + 1.

T. Bartsch, T. Weth, A note on additional properties of sign changing solutions to superlinear elliptic equations,
Topol. Methods Nonlinear Anal. 22 (1) (2003) 1-14.

A. Aftalion, F. Pacella. Qualitative properties of nodal solutions of semilinear elliptic equations in radially
symmetric domains, C. R. Math. Acad. Sci. Paris 339 (5) (2004) 339-344.

C. Troestler (UMONS)
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Symmetry results for l.e.n.s.

Theorem (Aftalion, Pacella, 2004)

IfQ is a ball or an annulus in RV, l.e.n.s. are not radial.
Moreover if Q is a ball or, N =2 and Q is an annulus, the zero
set {x e Q| u(x)=0} intersects the boundary.

Theorem (Bartsch, Weth, Willem, 2005)

If Q is a ball, l.e.n.s. are foliated Schwarz symmetric i.e.,
u(x) = (x|, e+ x), for some e € SN=1, and (r, -) is
nondecreasing for every r > 0.

A. Aftalion, F. Pacella. Qualitative properties of nodal solutions of semilinear elliptic equations in radially
symmetric domains, C. R. Math. Acad. Sci. Paris 339 (5) (2004) 339-344.

T. Bartsch, T. Weth, M. Willem. Partial symmetry of least energy nodal solutions to some variational problems. J.
Anal. Math. 96 (2005), 1-18.

C. Troestler (UMONS)
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Numerical computation of |.e.n.s.

—Au = |ulP~%u inQ,
u=20, on 99.

Q=B(0,1) Q =10, 1]2

C. Troestler (UMONS)
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Asymptotic problem p — 2 (1/2)
Let (up)p>2 is a family of least-energy nodal solutions to

—Au=|ulP2u inQ,

(PDE)p {u =0 on 9.

For the family to be bounded and to say away from 0, we
need to renormalize it:

~ _\"V(p=2)
Up :=A, Up.

The family (Up)p>2 are solutions to
—Au=XulP~2u inQ,
P
( p){u:o, on a9.

From now on, we will denote uy, := Up, since they have the
same symmetries.

C. Troestler (UMONS)
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Asymptotic problem p — 2 (2/2)

Let (up)p>2 is a family of least-energy nodal solutions to

(7o) —Au=XulP~2u inQ
PRrlu=0, on 99Q.

Then, up to a subsequence,

ol
upmuuéo in Hy(Q),

C. Troestler (UMONS)
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Asymptotic problem p — 2 (2/2)

Let (up)p>2 is a family of least-energy nodal solutions to

(7o) —Au=XulP~2u inQ
PRrlu=0, on 99Q.

Then, up to a subsequence,

ol
upmuuéo in Hy(Q),

where u4 is a solution to

—Au=Xu inqQ, .
(L){ 2 i.e. Ux €E

u=20, on 99,

i.e. Ux is a second eigenfunction of —A on Q with DBC.

C. Troestler (UMONS)
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Theorem (D. Bonheure, V. Bouchez, C. Grumiau, J. Van Schaftingen, ’08)

For every p > 0, there exists p > 2 such that, for any solution
up to

{—Au =X [ulP2u inQ,

u=0, on a9.
with p < p, such that o := Pg,up, satisfies
m aekE;\B(0,p); m T(Ez)=Ez;
mTa=aqa; | T(Eﬁ) = Ef;

m Yu € HY(Q), &(Tu) = &p(u);
for an isomorphism T : H(Q) — H3(Q), then Tup, =up .

D. Bonheure, V. Bouchez, C. Grumiau, J. Van Schaftingen, Asymptotics and symmetries of least energy nodal

solutions of Lane-Emden problems with slow growth, Communications in Contemporary Mathematics 10 (2008),
no. 04, 609-631.

C. Troestler (UMONS)
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The second eigenspace E, on the ball
Ey ={u:Q->R|-Au=XuinQ, u=0onaQ}

When Q=B(0,1) C RV,

E; =span{wy,...,wy} where,
in spherical coordinates

(r, 8) := (Ix], x/1x1),

wi(re) =~ Jna(VA2r) Sie), L

where J,, are the Bessel
functions of the first kind

and S; is the map x — x; restricted to the sphere.

C. Troestler (UMONS)
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The second eigenspace E, on the ball
Ey ={u:Q->R|-Au=XuinQ, u=0onaQ}

When Q=B(0,1) C RV,

E; =span{wi,...,wny} where,
in spherical coordinates

(r, 8) := (Ix], x/1x1),

wi(re) =~ Jna(VA2r) Sie), L

where J,, are the Bessel
functions of the first kind

and S; is the map x — x; restricted to the sphere.

Theorem: For p = 2, up is anti-symmetric w.r.t. a diameter
and symmetric in the N—1 orthogonal directions.

C. Troestler (UMONS)
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The second eigenspace E, on the square (1/2)
When Q =10, 1[?, E> =span{@1, 92} where

®1(x, y) =sin(nmx)sin(2my) and @2(x,y) = sin(2nx)sin(my).

®1 ®2

C. Troestler (UMONS)
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The second eigenspace E, on the square (2/2)

P1— @2 ®1— 20>

0
01
02 g3 T
405 o
07
Y 08 o9

Questions
m What function is ux in E>?
m How are the symmetries of u. and up related?

C. Troestler (UMONS)
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Back to the variational formulation

Let us recall that up, minimize

Ep Hy(Q) = R:u— %J [Vu(x)|? dx — %J lu(x)|P dx
Q Q

sur Mp. Let us remark that £ =0 on E;. Let us perform an
expansion w.r.t. p for u € E;:

Ep(U) = E2(u) +3p&p(U)|,_(P—2) + 0(p—2)
=0
Using this idea and the fact that up is characterized by

minyes, Ep(U), One gets that u« is a solution to the
minimization problem

52}\2 Ex(U) where &4 (U) := apgp(u)|p:2'

D. Bonheure, V. Bouchez, C. Grumiau, J. Van Schaftingen, Asymptotics and symmetries of least energy nodal

solutions of Lane-Emden problems with slow growth, Communications in Contemporary Mathematics 10 (2008),
no. 04, 609-631.

C. Troestler (UMONS)
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The reduced functional

1 1 2 A2
Ep i Hy(Q)—-R:u— —J [Vu(x)|* dx — —f lu(x)|P dx
2 Jo P Ja
Y
1 1
9pép(U) = )\2(—2 J lu(x)|P dx — —J lu(x)|P log|ul? dx)
P Ja 2p Ja
Y
A2
Ex(U) = 3p&p(u)| 2:-——J‘u2—1ﬁlogu2dx.
p= 4 Jq
We drop a factor % which does not change the minimization

problem.

C. Troestler (UMONS)
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Reduced variational formulation (1/3)
Reduced functional
Ex :E2—>IR{:u-—>%J u? — u?log u?
Q

Reduced Nehari manifold

Ny = {u€E>\ {0} | & (u)[u] = 0} N
Criteria: u. is a solution to

minimize 0 # u — sup&x«(tu)

i minimize £« (u)
t20 o

s.t. ue N,

D. Bonheure, V. Bouchez, C. Grumiau, J. Van Schaftingen, Asymptotics and symmetries of least energy nodal

solutions of Lane-Emden problems with slow growth, Communications in Contemporary Mathematics 10 (2008),
no. 04, 609-631.

C. Troestler (UMONS)
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Reduced variational formulation (2/3)

Ee(u) = %J u?—u?logu® & (u)[u] :—J u?logu® =0.
Q Q

Forany u e E; \ {0}, there exists a unique t, > 0 such that
tuu € N«. Since

&’ (tu)[tu] = —2t? J u?(logt + loglul)
Q

[, u?loglul
ty = exp —T .

one gets

and

C. Troestler (UMONS)
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Reduced variational formulation (3/3)

If [,u?=1 (i.e., uis on the unit L2-sphere),

t=0

S«(U) = % Iog(Z supE*(tU)) = —J u? log|u| dx
Q

We want to minimize S, on the L2-unit sphere of E,.
Since

S«(ru) =r’S.(u)—r?logr,

one may as well minimize on the sphere of radius r.

Usx = tyu where u is a minimizer, hence has the same
symmetries.

C. Troestler (UMONS)
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Reduced variational formulation (3/3)

If [,u?=1 (i.e., uis on the unit L2-sphere),

S«(U) = % Iog(Z supE*(tU)) = —J u? log|u| dx
Q

t=0

We want to minimize S, on the L2-unit sphere of E,.
Since

S«(ru) =r’S.(u)—r?logr,
one may as well minimize on the sphere of radius r.
Usx = tyu where u is a minimizer, hence has the same
symmetries.

v Localization
? up has the same symmetries as u«.

C. Troestler (UMONS)
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Lyapunov-Schmidt reduction (1/3)
Theorem (A. Salort, C.T., 2019)

Assume the functional £, defined previously is C?(E2;R). For
any non-degenerate critical point u« € E; of £«, there exists a
neighborhood V« of ux in Hcl)(Q) and a continuous curve

Y:[2,2+ €[ — H3(Q), € >0, such that ¥(2) = u. and
Vpel2,2+¢[, VueVy, u solves (Pp) <= u=7y(p)

where
—Au=XA|ulP2u inQ,
P,
( p){u:o, on of.

C. Troestler (UMONS)
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Lyapunov-Schmidt reduction (1/3)
Theorem (A. Salort, C.T., 2019)

Assume the functional £, defined previously is C?(E2;R). For
any non-degenerate critical point u« € E; of £«, there exists a
neighborhood V« of ux in Hcl)(Q) and a continuous curve

Y:[2,2+ €[ — H3(Q), € >0, such that ¥(2) = u. and

Vpel2,2+¢[, VueVy, u solves (Pp) <= u=7y(p)

where
—Au=XA|ulP2u inQ,
P,
( p){u:o, on of.

Corollary: Let T be a symmetry of ux (Tux = u«). For
p €]2,2 +¢|, up has the same symmetry (Tup, = up).

C. Troestler (UMONS)
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Lyapunov-Schmidt reduction (2/3)

Eé(u)[n]:f Vandx—)\zf lulP~2undx
Q Q

Sketch of the proof.
m Decomposeu=v+w withveE; and w e E%.
m Split the equation:

G(p,v,w):=&(v+w =0,
5,’)(v+w):0 { (P ) p( )|E§

Ep(v+ w)lg, = 0.

m Use the implicit function theorem to prove that, when
p~2andw=0,

Gp,v,w)=0 < w=uw(p, V).

C. Troestler (UMONS)
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Lyapunov-Schmidt reduction (3/3)

m It remains to solve
H(p, V) = Eé(v +aw(p,V))|g, = 0.

One can show #(2,v) =0 for all v € E;.
m For p > 2, this is equivalent to find the roots of

H(p, V)

K(p,v):={ p—2
dpH(2,v) ifp=2.

ifp>2,

m One has 3pH(2,v) = &’ (v) so non-degenerate critical
points of £« (V) give rise to local curves of solutions. O

C. Troestler (UMONS)
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Numerical simulation (1/2)

=» Symmetries and non-degeneracy of u?

Mminjy|,,=r S« (U) where S*(u)=—J u? log|ul dx
Q

92
» For Q =10, 1[%:

Because |@1];2 = r, |@2]|2 = r (with
r=1)and g1 L gy inL?

Ug := COSBO @1 —SinB @2

parameterizes the L?-sphere of E;
of radius r.

C. Troestler (UMONS)
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Numerical simulation (2/2)

0.1 -

0.08

S« (Ug) = Sx(cos(8)p1—sin(8)p2) = —J u? loglue| dx
0

4 /2 m 371/2 o 6

\_____

T

C. Troestler (UMONS)
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Numerical simulation (2/2)

S« (Ug) = S« (cos(8)p1 —sin(8)g2) = —J u? log|ue| dx
Q
0.1+

0.08 +

0 /4 /2 T

Recall that uq/4 = g(m — @3) is anti-
symmetric w.r.t. a diagonal.

w Conjecture

C. Troestler (UMONS)
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Symmetries of S, (up)

S« (Ug) =S« (cos(8)p1 —sin(8)g2) = —J u? log|ue| dx
Q
0.1+

0.08 +

0 Wi m/2 m 31/2 o 6

Because the problem is invariant by rotations of /2 and axial
symmetries and S, is even, one has:

m S, is m/2-periodic;

C. Troestler (UMONS)
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Crash course in interval arithmetic (1/3)

Observation: floating point computations may be inaccurate
due to rounding error.

Example: Let f: R? — R be the function
f(x,y)=333.75y% + x?(11x%y? —y® —121y*—2) +5.5y8

In double precision, evaluating f(77617, 33096) yields
—1.180592 - 102, The correct value is —2.

C. Troestler (UMONS)
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Crash course in interval arithmetic (1/3)

Observation: floating point computations may be inaccurate
due to rounding error.

Example: Let f: R? — R be the function

f(x,y) =333.75y% + x?(11x%y? —y® —121y* —2) + 5.58
In double precision, evaluating f(77617, 33096) yields
—1.180592 - 10%L. The correct value is —2.

Basic idea: Compute an interval [z, Z] containing the true
value:

fx.y)€lz z].

the rounding of each endpoint taking care of rounding errors.
w guaranteed bounds

C. Troestler (UMONS)



The problem Asymptotic problem Interval arithmetic Computer assisted proof Symmetry breaking
o O [=_mana oI [ERmanEmms]

Crash course on interval arithmetic (2/3)
Extend operations to intervals:
(X X]+[y. Y] =X+y,X+Y] S X+ y. X +¥]

[x, X]- [y, ¥]=[min{xy, xy, Xy, Xy}, max{xy, Xy, Xy, Xy} ]
sin, Cos, ...

C. Troestler (UMONS)
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Crash course on interval arithmetic (2/3)
Extend operations to intervals:
X, X1+ [y, Y] =X+y,X+Y] S X+ ¥, X+ ¥]
[x, X]- [y, ¥]=[min{xy, Xy, Xy, Xy}, max{xy, Xy, Xy, Xy}]
sin, Cos, ...

Fundamental property: Let x — f(x) be a function and
I — £(I) an interval extension of f. That means:

VI interval, Vx el, f(x)ef(l)

C. Troestler (UMONS)
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Crash course on interval arithmetic (2/3)
Extend operations to intervals:
X, X]+ (Y. Y]=X+Y.X+Y] S [x+ ¥, X+1Yy]
[x, X]- [y, ¥]=[min{xy, Xy, Xy, Xy}, max{xy, Xy, Xy, Xy}]
sin, Cos, ...

Fundamental property: Let x — f(x) be a function and
I — f(I) an interval extension of f. That means:

VI interval, Vx el, f(x)ef(l)

Dependency problem:
mXX]—[X X]=[Xx—X,x—x] 2 [0, 0] but £ (unless x = Xx).
m ([x X])° € [x, X]-[x X] but in general £.
m etc.
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Crash course on interval arithmetic (3/3)

For our original example:
f(x,y) =333.75y® + x?(11x%y%? —y® —121y*—2) +5.5y8

In double precision interval arithmetic,
f([77617],[33096]) = [-5.902957 - 1021, 4.722367 - 10%1].

w Need to adapt standard algorithms.

C. Troestler (UMONS)
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Evaluation of basic functions

Recall that S« (u) = —J f(u)dx where f(u) := u? log|ul.
Q

1__

0.5+

| 7 1.5

C. Troestler (UMONS)
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Evaluation of basic functions

Recall that S« (u) = —J f(u)dx where f(u) := u? log|ul.
Q

1__

f(u) = u? log|ul E Naive

0.5+

C. Troestler (UMONS)
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Evaluation of basic functions

Recall that S« (u) = —J f(u)dx where f(u) := u? log|ul.
Q

1 £
[_] Naive, refined

f(u) = u?log|u|

0.5+

C. Troestler (UMONS)
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Evaluation of basic functions

Recall that S« (u) = —J f(u)dx where f(u) := u? log|ul.
Q

1__

[ ] Naive
[ ] Tight bounds

f(u) = u?log|u|
0.5t

1.5

C. Troestler (UMONS)
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Evaluation of basic functions

Recall that S« (u) = —J f(u)dx where f(u) := u? log|ul.
Q

1__

[_] Naive, refined
[ ] Tight bounds

f(u) = u?log|u|
0.5t

C. Troestler (UMONS)



The problem Asymptotic problem Interval arithmetic Computer assisted proof Symmetry breaking
oI [EEEEEEEEEEEEEEEEE] OrTmo oo O

Adaptive integration (1/2)

Compute S« (u) = —fQ u? loglu| dx where u = cos 8 @1 — sinf ;.

Basic scheme: partition Q in a union of “small” P and
estimate each integral with

1
ﬁj g(x)dx € g(P) (P=11x1,=g(P)c g(h,I2)).
P

C. Troestler (UMONS)
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Adaptive integration (1/2)

Compute S« (u) = —fQ u? loglu| dx where u = cos 8 @1 — sinf ;.

Basic scheme: partition Q in a union of “small” P and
estimate each integral with

1
WJ g(x)dx € g(P) (P=11x1,=g(P)c g(h,I2)).
P

Higher order schemes: require some regularity (e.g., g € C?).
width
1

1071
102
1073
104
107

100 # eval

C. Troestler (UMONS)
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Adaptive integration (2/2)

1D Simpson’s rule:

L ) dxm L(F(a)+ 4F(a+ L)+ Fa+ ) — — £
EL (%) X—g( (a)+4f(a+35h)+fla+ ))——m (&)

For S« (u) = —fQ f(u(x))dx where f(u) := u? log|ul, the function
x — f(u(x)) is not C? whenever u(x) =

ug with 0 = /4

C. Troestler (UMONS)
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Asymptotic problem on Q =10, 1[?
Determine a small interval I such
that n/4 €/ and

VO € [0, /4]\I, Ex(6)>Ex(T/4)

0.1 -

0.08 -

o
R

C. Troestler (UMONS)
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The problem Asymptotic problem Interval arithmetic Computer assisted proof
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Asymptotic problem on Q =10, 1[?
Determine a small interval I such
that n/4 €/ and

VO € [0, i/4)\ 1, Ex(0) > Ex(1/4)

Problem: the function may look
like

0.1 -

0.08 -

/

o
R

C. Troestler (UMONS)
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Asymptotic problem on Q =10, 1[?
Determine a small interval I such

that n/4 €/ and

VO €0, 1/4]\I, Ex(6)> Ex(/4)

Problem: the function may look
like

0.1 -

/

0.08 -

R

Solution: Show that
Ve el, 35(S«(us))>0.

C. Troestler (UMONS)
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Computing the second derivative

Recall that:
5*(u):—f u? loglul dx
0

Let ug = cosO @1 —sin8 ¢, and ug = dgUg. Taking into account
that [u2 =r? and [(u})? =r?, one computes

32(Sx(ug)) = 2(—r2 —S.(ug)— Jﬂ(ug))2 log|ug| dx).
Thus
95(S«(ug)) >0 & —Jﬂ(ug))2 loglug| dx > r? + S (ug).

Note that the second derivative is singular.



The problem Asymptotic problem I&tér:\éal arithmetic (::é):?puter assisted proof Symmetry breaking
Positiveness test for the second derivative

—f (ug)? logluel dx,
Q

—f (uf)? log|ue| dx
Q
> r? + S, (ug).

If on a subdivision P used to
compute the integral, one has
log|ug(P)| =]—o0, a], then

—f (uf)? loglug| dx = [B, +oo].
Q

i This is fine since we care about
0.29 =~ - @ thelower bound!
z

C. Troestler (UMONS)



The problem Asymptotic problem I&tér:\éal arithmetic (::é):?puter assisted proof Symmetry breaking
Positiveness test for the second derivative

—f (ug)? logluel dx,
Q

—f (uf)? log|ue| dx
Q
> r? + S, (ug).

If on a subdivision P used to
compute the integral, one has
log|ug(P)| =]—o0, a], then

—f (uf)? loglug| dx = [B, +oo].
Q

This is fine since we care about
@ the lower bound!

Ao

C. Troestler (UMONS)
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Neumann boundary conditions

—Au+u=|ulP2u inQ,
ayu =0, on 99.

/’Z‘Z"'
AT A AT >
P o7

AVATAY A e o A
<7 >
LSy AT IS
A A ava

oS
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Symmetry breaking (1/3)

—AU=MAy(€)|0P~20  in R,
u=0 on dRg,
where R; =10, 1[x |0, 1 +&[ and A3(¢€) is the sec-

ond eigenvalue of —A on R with DBC. — 0~- ,
Change of variables u(x, y) = t(x, (1 +€)y): £=0, p—

—Uxx — ﬁu)/y =A2(&) [ulP~2u in Q,
u=0 on 3Q,

where Q =10, 1[%.

We write A2 = A»(0) = 512, the second eigen-
value on the square.

£> 0, p—> 2

C. Troestler (UMONS)
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Symmetry breaking (2/3)

)\l
© 5*,7(u):—J (3yu)? dx——J u?dx
N Q 2 Jo
p *
7 + YA 1f u?(1—logu?)dx
5= —
Q 4 )a

~

1v
:ig* (U)

where A’ = 3:A2(0) = —8m2. Thus

Sx,y(Us) = M2(35iN*0— 2 + Y2 &4 (Us))

C. Troestler (UMONS)
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Symmetry breaking (2/3)

)\l
© 5*,7(u):—J (3yu)? dx——J u?dx
p 74'\ @ 2 Ja
7 + YA 1f u?(1—logu?)dx
5= —
Q 4o
=38+ (u)
where A’ = 3:A2(0) = —8m2. Thus
20 A

Sx,y(Us) = M2(35iN*0— 2 + Y2 &4 (Us))

Ex,y(Up)

C. Troestler (UMONS)
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Symmetry breaking (3/3)

Theorem (A. Salort, C.T., 2019)
There exists ¥ > 0 and € > 0 such that,

for any (g, p) in the triangle defined by NG
€€]0,&land 2 < p <2+Ye, every l.e.n.s. p ,\j‘
to i
Q
—Uxx — (1+£)2 Uyy = A2(€) [ulP~2u in Q, ‘
u=0 on 99, £=0
is symmetric with respect to the longest 20—
: : L 0 = €
median and antisymmetric with respect €

to the shortest one.

C. Troestler (UMONS)
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A “staged” Lyapunov-Schmidt reduction (1/5)

A2(€)
p
As before, when e~ 0, Y € [0, ¥] and v € Br C E3,

1
Eey(U) = EJ AVu -Vudx — J |ulP dx where p =2+ ye
Q Q

£ (v+ W)lE% =0 © w=w(E7Y, V).
It remains to solve
H(e, ¥, V) =€ y(v +W(E Y, V)|, =0  wherevek,.
As H(0,v,v) =0, one can define
H(E, Y, V)/€ if e>0,

C. Troestler (UMONS)
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A “staged” Lyapunov-Schmidt reduction (2/5)

H(g, v, v)/e ife>0,
e v)= {5; (v)  ife=o0.
where
1 A 1
Exy(V)== | AVv-Wvdx—— | vZdx+yAa— | v(1—logv?)dx
2 Ja 2 Ja 4 Jo

» When y >0 , £« has a mountain pass structure. If u,, is
a non-degenerate critical point of £«,y,, one has

K v, v)=0 & v=o0(g 7).
By compactness, this is valid for
£€[0,€, ye[vo ¥]and [[v—uyll<p

where Yo > 0 is as small as we want.

C. Troestler (UMONS)
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A “staged” Lyapunov-Schmidt reduction (3/5)
» When y =0 , &4,y is quadratic.

1 A/ ,
Exo(V)== | A'Vv-Vvdx—— | vdx 0%
2 Jg 2 Jg _ Uy
0 0 . 'Y T
5; vanishes on Eg C E> (so all its critical
pomts are degenerate).
Yo +
up E

C. Troestler (UMONS)
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A “staged” Lyapunov-Schmidt reduction (3/5)
» When y =0 , &4,y is quadratic.

1 A
Exo(V)==| A'Vv-Vvdx—— | vZdx
2 Ja 2 Ja Y

5; vanishes on Eqg C E, (so all its critical
pomts are degenerate).

A second Lyapunov-Schmidt reduction is
performed on E,: the solutions for v = 0
are driven by £;|EO. We require ug to be a
non-degenerate critical point of £«|g,. Then

KE v, v)=0 & v=o0(g )

_ uo E2
when e€[0,&], y€]0,v0], llv—uoll<p

C. Troestler (UMONS)
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A “staged” Lyapunov-Schmidt reduction (4/5)

Theorem (A. Salort, C.T., 2019)

Assume that R — C(Q, Symy) : € — Ag and € — A3 () are
differentiable in a neighborhood of 0 and that there is ¥y > 0
and a continuous map

[0, ¥] = E2\ {0} : v — uy
such that, for all 'y €0, ¥], uy is a non-degenerate critical

point of Ex,y : Ez = R with A’ = (3¢A¢)|e—0 and A’ = 3:A2(0). Let
Eo:={uekE;|¢& olu) = 0} and assume further that

for all € > 0 small, Eg C ker(u— —div(A:Vu)—Az2(e)u) (1)
and ug € Eg is a non-degenerate critical point of Ex|g,.

C. Troestler (UMONS)
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A “staged” Lyapunov-Schmidt reduction (5/5)

Theorem (cont’d)

Then there exists € > 0, p > 0, and a continuous function
0:[0,& x [0, Y] = Hy(Q) : (¢, ¥) = 0(&, v) such that

for all y € 10, 7], 0(0, v) = uy,

for all e €0, €], o(g, 0) = uo,

foralle€]0,€], ye€]0,y]and ue Hé(Q) such that
llu—uyll < p, one has

u is a critical point of &, < u=0(¢, ).

C. Troestler (UMONS)
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Thank you for your attention!

C. Troestler (UMONS)



Thanks to the conference organizers !
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The 3D case

Oon Q=1-1,1[3, E; =span{@1, ¥2, 93} where
: T m
01(X, Yy, 2) :=sin(mx) cos(Ey) cos(iz)
T T
P2(x,y,2) = cos(ix)sin(ny) cos(Ez)
T m N .
P3(x,y,2) = cos(ix) cos(zy)sm(nz)

Let ug,q := (COS O@1 + SinB@;)sina + Cos aQs.

C. Troestler (UMONS)



The 3D case: minimizers

ST}

Ug,a := (COSO @1 +SInB @7)sina
+Ccosa @3

C. Troestler (UMONS)



The 3D case: minimizers

ST}

Ug,a := (COSO @1 +SInB @7)sina
+cosa@s

/4 The minimum seems to be
atan ﬁ) achieved for

(8, a) = (g, atan \/E)

i.e., for

Q1+ @2+ Q3.

N

C. Troestler (UMONS)



The 3D case: minimizers

The zero set of ¢1 + @2 + @3 is pictured below.

C. Troestler (UMONS
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