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The Lane-Emden problem

¨

−∆u = |u|p−2u in Ω,

u = 0, on ∂Ω.
(PDE)

where Ω is an open bounded set in RN and 2 < p < 2∗.
In this talk, we will especially focus on

Ω = ]0,1[2

Solutions to (PDE) are critical points of

Ep : H1
0(Ω)→ R : u 7→ 1

2

∫

Ω

|∇u(x)|2 dx− 1
p

∫

Ω

|u(x)|p dx.
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Ground state solution

utuu∈

Np

0

Ep(u) = 1
2

∫

Ω

|∇u(x)|2 dx− 1
p

∫

Ω

|u(x)|p dx

has the property that

∀u 6= 0, ∃!tu > 0, Ep(tuu) = sup
t¾0

Ep(tu)

Nehari manifold

Np :=
�

u ∈ H1
0(Ω) \ {0}

�

� E ′
p

(u)[u] = 0
	

Variational principle

minimize 0 6= u 7→ sup
t¾0

Ep(tu) i.e.,

¨

minimize Ep(u),

s.t. u ∈ Np.
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Least-energy nodal solutions (l.e.n.s.)

Np

u ¶ 0

u ¾ 0

uneg
upos

Mp

Nodal Nehari set

Mp :=
�

u ∈ H1
0(Ω)

�

� u+ ∈ Np and

u− ∈ Np

	

where u±(x) := max{±u(x),0}
(so u = u+ − u−).

Variational principle

minimize 0 6= u 7→ sup
t,s¾0

Ep(tu+ − su−) i.e.,

¨

minimize Ep(u),

s.t. u ∈Mp.

A. Castro, J. Cossio, J.M. Neuberger. A sign-changing solution for a superlinear Dirichlet problem. Rocky Mountain
J. Math. 27 (1997), no. 4, 1041–1053.
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Qualitative properties of l.e.n.s.

Theorem (Bartsch, Weth, 2003)

L.e.n.s. have precisely two nodal domains and have Morse
index 2.

Theorem (Aftalion, Pacella, 2004)

If Ω is a ball or an annulus in RN, any radial sign changing
solution has Morse index ¾ N + 1.

T. Bartsch, T. Weth, A note on additional properties of sign changing solutions to superlinear elliptic equations,
Topol. Methods Nonlinear Anal. 22 (1) (2003) 1–14.
A. Aftalion, F. Pacella. Qualitative properties of nodal solutions of semilinear elliptic equations in radially
symmetric domains, C. R. Math. Acad. Sci. Paris 339 (5) (2004) 339–344.
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Symmetry results for l.e.n.s.

Theorem (Aftalion, Pacella, 2004)

If Ω is a ball or an annulus in RN, l.e.n.s. are not radial.
Moreover if Ω is a ball or, N = 2 and Ω is an annulus, the zero
set {x ∈ Ω | u(x) = 0} intersects the boundary.

Theorem (Bartsch, Weth, Willem, 2005)

If Ω is a ball, l.e.n.s. are foliated Schwarz symmetric i.e.,
u(x) = ũ(|x|,e · x), for some e ∈ SN−1, and ũ(r, ·) is
nondecreasing for every r > 0.

A. Aftalion, F. Pacella. Qualitative properties of nodal solutions of semilinear elliptic equations in radially
symmetric domains, C. R. Math. Acad. Sci. Paris 339 (5) (2004) 339–344.
T. Bartsch, T. Weth, M. Willem. Partial symmetry of least energy nodal solutions to some variational problems. J.
Anal. Math. 96 (2005), 1–18.
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Numerical computation of l.e.n.s.

Ω = B(0,1) Ω = ]0,1[2

¨

−∆u = |u|p−2u in Ω,

u = 0, on ∂Ω.
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Asymptotic problem p→ 2 (1/2)

Let (up)p>2 is a family of least-energy nodal solutions to

(PDE)p

¨

−∆u = |u|p−2u in Ω,

u = 0, on ∂Ω.

For the family to be bounded and to say away from 0, we
need to renormalize it:

eup := λ
−1/(p−2)

2 up.

The family (eup)p>2 are solutions to

(Pp)

¨

−∆u = λ2|u|p−2u in Ω,

u = 0, on ∂Ω.

From now on, we will denote up := eup since they have the
same symmetries.
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Asymptotic problem p→ 2 (2/2)

Let (up)p>2 is a family of least-energy nodal solutions to

(Pp)

¨

−∆u = λ2|u|p−2u in Ω,

u = 0, on ∂Ω.

Then, up to a subsequence,

up −−→
p→2

u∗ 6= 0 in H1
0(Ω),

where u∗ is a solution to

(L)

¨

−∆u = λ2u in Ω,

u = 0, on ∂Ω,
i.e. u∗ ∈ E2

i.e. u∗ is a second eigenfunction of −∆ on Ω with DBC.
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Abstract symmetry (p ≈ 2)

Theorem (D. Bonheure, V. Bouchez, C. Grumiau, J. Van Schaftingen, ’08)

For every ρ > 0, there exists p̄ > 2 such that, for any solution
up to

¨

−∆u = λ2|u|p−2u in Ω,

u = 0, on ∂Ω.

with p < p̄, such that α := PE2up satisfies

α ∈ E2 \ B(0, ρ);

Tα = α;

T(E2) = E2;

T(E⊥2 ) = E⊥2 ;

∀u ∈ H1
0(Ω), Ep(Tu) = Ep(u);

for an isomorphism T : H1
0(Ω)→ H1

0(Ω), then Tup = up .

D. Bonheure, V. Bouchez, C. Grumiau, J. Van Schaftingen, Asymptotics and symmetries of least energy nodal
solutions of Lane-Emden problems with slow growth, Communications in Contemporary Mathematics 10 (2008),
no. 04, 609–631.
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The second eigenspace E2 on the ball

w1

E2 :=
�

u : Ω→ R
�

� −∆u = λ2u in Ω, u = 0 on ∂Ω
	

When Ω = B(0,1) ⊆ RN,
E2 = span{w1, . . . ,wN} where,
in spherical coordinates
(r, θ) := (|x|,x/ |x|),

wi(rθ) = r−
N−2

2 JN/2(
p

λ2r) Si(θ),

where Jν are the Bessel
functions of the first kind
and Si is the map x 7→ xi restricted to the sphere.

Theorem: For p ≈ 2, up is anti-symmetric w.r.t. a diameter
and symmetric in the N− 1 orthogonal directions.
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The second eigenspace E2 on the square (1/2)

When Ω = ]0,1[2, E2 = span{φ1, φ2} where

φ1(x,y) = sin(πx)sin(2πy) and φ2(x,y) = sin(2πx)sin(πy).

φ1 φ2
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The second eigenspace E2 on the square (2/2)

φ1 − φ2 φ1 − 2φ2

Questions
What function is u∗ in E2?
How are the symmetries of u∗ and up related?
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Back to the variational formulation

Let us recall that up minimize

Ep : H1
0(Ω)→ R : u 7→ 1

2

∫

Ω

|∇u(x)|2 dx− λ2
p

∫

Ω

|u(x)|p dx

sur Mp. Let us remark that E2 = 0 on E2. Let us perform an
expansion w.r.t. p for u ∈ E2:

Ep(u) = E2(u)
︸ ︷︷ ︸

=0

+∂pEp(u)
�

�

p=2(p− 2) + o(p− 2)

Using this idea and the fact that up is characterized by
minu∈Mp Ep(u), one gets that u∗ is a solution to the
minimization problem

min
u∈N∗

E∗(u) where E∗(u) := ∂pEp(u)
�

�

p=2.

D. Bonheure, V. Bouchez, C. Grumiau, J. Van Schaftingen, Asymptotics and symmetries of least energy nodal
solutions of Lane-Emden problems with slow growth, Communications in Contemporary Mathematics 10 (2008),
no. 04, 609–631.
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The reduced functional

Ep : H1
0(Ω)→ R : u 7→

1

2

∫

Ω

|∇u(x)|2 dx−
λ2

p

∫

Ω

|u(x)|p dx

⇓

∂pEp(u) = λ2

� 1

p2

∫

Ω

|u(x)|p dx−
1

2p

∫

Ω

|u(x)|p log|u|2 dx
�

⇓

E∗(u) = ∂pEp(u)
�

�

p=2 =
λ2

4

∫

Ω

u2 − u2 log u2 dx.

We drop a factor λ2
2 which does not change the minimization

problem.
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Reduced variational formulation (1/3)

utuu∈

N∗

0

Reduced functional

E∗ : E2→ R : u 7→ 1
2

∫

Ω

u2 − u2 log u2

Reduced Nehari manifold

N∗ :=
�

u ∈ E2 \ {0}
�

� E ′∗(u)[u] = 0
	

Criteria: u∗ is a solution to

minimize 0 6= u 7→ sup
t¾0

E∗(tu) i.e.,

¨

minimize E∗(u)

s.t. u ∈ N∗

D. Bonheure, V. Bouchez, C. Grumiau, J. Van Schaftingen, Asymptotics and symmetries of least energy nodal
solutions of Lane-Emden problems with slow growth, Communications in Contemporary Mathematics 10 (2008),
no. 04, 609–631.
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Reduced variational formulation (2/3)

E∗(u) = 1
2

∫

Ω

u2 − u2 log u2 E ′∗(u)[u] = −
∫

Ω

u2 log u2 = 0.

For any u ∈ E2 \ {0}, there exists a unique tu > 0 such that
tuu ∈ N∗. Since

E ′∗(tu)[tu] = −2t2
∫

Ω

u2(log t + log|u|)

one gets

tu = exp

�

−

∫

Ω
u2 log|u|
∫

Ω
u2

�

.

and

E∗(tuu) = 1
2

∫

Ω

(tuu)2 = 1
2 exp

�

−2

∫

Ω
u2 log|u|
∫

Ω
u2

�

∫

Ω

u2
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Reduced variational formulation (3/3)

If
∫

Ω
u2 = 1 (i.e., u is on the unit L2-sphere),

S∗(u) := 1
2 log

�

2 sup
t¾0

E∗(tu)

�

= −
∫

Ω

u2 log|u|dx

We want to minimize S∗ on the L2-unit sphere of E2.
Since

S∗(ru) = r2S∗(u)− r2 log r,

one may as well minimize on the sphere of radius r.

u∗ = tuu where u is a minimizer, hence has the same
symmetries.

4 Localization
? up has the same symmetries as u∗.
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Lyapunov–Schmidt reduction (1/3)

Theorem (A. Salort, C.T., 2019)

Assume the functional E∗ defined previously is C2(E2;R). For
any non-degenerate critical point u∗ ∈ E2 of E∗, there exists a
neighborhood V∗ of u∗ in H1

0(Ω) and a continuous curve

γ : [2,2 + ϵ[→ H1
0(Ω), ϵ > 0, such that γ(2) = u∗ and

∀p ∈ ]2,2 + ϵ[, ∀u ∈ V∗, u solves (Pp) ⇐⇒ u = γ(p)

where

(Pp)

¨

−∆u = λ2|u|p−2u in Ω,

u = 0, on ∂Ω.

Corollary: Let T be a symmetry of u∗ (Tu∗ = u∗). For
p ∈ ]2,2 + ϵ[, up has the same symmetry (Tup = up).
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Lyapunov–Schmidt reduction (2/3)

E ′
p

(u)[η] =

∫

Ω

∇u∇ηdx− λ2

∫

Ω

|u|p−2uηdx

Sketch of the proof.
Decompose u = v + w with v ∈ E2 and w ∈ E⊥2 .
Split the equation:

E ′
p

(v + w) = 0 ⇔

(

G(p,v,w) := E ′
p

(v + w)
�

�

E⊥2
= 0,

E ′
p

(v + w)
�

�

E2
= 0.

Use the implicit function theorem to prove that, when
p ≈ 2 and w ≈ 0,

G(p,v,w) = 0 ⇔ w = ω(p,v).
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Lyapunov–Schmidt reduction (3/3)

It remains to solve

H(p,v) := E ′
p

�

v +ω(p,v)
��

�

E2
= 0.

One can show H(2,v) = 0 for all v ∈ E2.
For p > 2, this is equivalent to find the roots of

K(p,v) :=











H(p,v)

p− 2
if p > 2,

∂pH(2,v) if p = 2.

One has ∂pH(2,v) = E ′∗(v) so non-degenerate critical
points of E∗(v) give rise to local curves of solutions.
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Numerical simulation (1/2)

è Symmetries and non-degeneracy of u∗?

min|u|L2 =r S∗(u) where S∗(u) = −
∫

Ω

u2 log|u|dx

è For Ω = ]0,1[2:
Because |φ1|L2 = r, |φ2|L2 = r (with
r = 1

2) and φ1 ⊥ φ2 in L2,

uθ := cosθφ1 − sinθφ2

parameterizes the L2-sphere of E2
of radius r.

φ1

φ2

θ

uθ

C. Troestler (UMONS) A computer assisted proof... June 2019 23 / 44



The problem Asymptotic problem Interval arithmetic Computer assisted proof Symmetry breaking

Numerical simulation (2/2)

θ0 π/4 π/2 π 3π/2 2π

0.08

0.1

S∗(uθ) = S∗
�

cos(θ)φ1 − sin(θ)φ2
�

= −
∫

Ω

u2
θ

log|uθ|dx

Recall that uπ/4 =
p

2
2 (φ1 − φ2) is anti-

symmetric w.r.t. a diagonal.

à Conjecture
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Symmetries of S∗(uθ)

θ0 π/4 π/2 π 3π/2 2π

0.08

0.1

S∗(uθ) = S∗
�

cos(θ)φ1 − sin(θ)φ2
�

= −
∫

Ω

u2
θ

log|uθ|dx

Because the problem is invariant by rotations of π/2 and axial
symmetries and S∗ is even, one has:

S∗ is π/2-periodic;
S∗(π4 − θ) = S∗(π4 + θ).
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Crash course in interval arithmetic (1/3)

Observation: floating point computations may be inaccurate
due to rounding error.

Example: Let f : R2→ R be the function

f (x,y) = 333.75y6 + x2(11x2y2 − y6 − 121y4 − 2) + 5.5y8

In double precision, evaluating f (77617,33096) yields
−1.180592 · 1021. The correct value is −2.

Basic idea: Compute an interval [ z, z ] containing the true
value:

f (x,y) ∈ [ z, z ],

the rounding of each endpoint taking care of rounding errors.
à guaranteed bounds
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Crash course on interval arithmetic (2/3)

Extend operations to intervals:

[ x,x ] + [ y,y ] = [x + y,x + y ] ⊆ [x +↓ y,x +↑ y ]

[ x,x ] · [ y,y ] =
�

min{xy,xy,xy,xy},max{xy,xy,xy,xy}
�

sin ,cos, ...

Fundamental property: Let x 7→ f (x) be a function and
I 7→ f(I) an interval extension of f . That means:

∀I interval, ∀x ∈ I, f (x) ∈ f(I)

Dependency problem:
[ x,x ]− [ x,x ] = [x− x,x− x] ⊇ [0,0] but 6= (unless x = x).
�

[ x,x ]
�2 ⊆ [ x,x ] · [ x,x ] but in general 6=.

etc.
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Crash course on interval arithmetic (3/3)

For our original example:

f (x,y) = 333.75y6 + x2(11x2y2 − y6 − 121y4 − 2) + 5.5y8

In double precision interval arithmetic,
f([77617], [33096]) = [−5.902957 · 1021,4.722367 · 1021].

à Need to adapt standard algorithms.

C. Troestler (UMONS) A computer assisted proof... June 2019 28 / 44



The problem Asymptotic problem Interval arithmetic Computer assisted proof Symmetry breaking

Evaluation of basic functions

Recall that S∗(u) = −
∫

Ω

f (u) dx where f (u) := u2 log|u|.

−∞

−0.5

1.5

0.5

1

f (u) = u2 log|u|
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Adaptive integration (1/2)

Compute S∗(u) = −
∫

Ω
u2 log|u|dx where u = cosθφ1 − sinθφ2.

Basic scheme: partition Ω in a union of “small” P and
estimate each integral with

1

|P|

∫

P

g(x) dx ∈ g(P)
�

P = I1 × I2⇒ g(P) ⊆ g(I1, I2)
�

.

Higher order schemes: require some regularity (e.g., g ∈ C2).

# eval

width

1 10 102 103 104 105 106 107 108 109

1

10−1

10−2

10−3

10−4

10−5

Basic ruleMidpoint rule

Sim
pson’s

rule
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Adaptive integration (2/2)

1D Simpson’s rule:

1

h

∫ a+h

a

f (x) dx−
1

6

�

f (a) + 4f (a + 1
2h) + f (a + h)

�

= −
1

2880
h4f (4)(ξ)

For S∗(u) = −
∫

Ω
f (u(x)) dx where f (u) := u2 log|u|, the function

x 7→ f (u(x)) is not C2 whenever u(x) = 0.

uθ with θ = π/4
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Asymptotic problem on Ω = ]0,1[2

S∗(uθ)

θ0 π
4

0.08

0.1

Determine a small interval I such
that π/4 ∈ I and

∀θ ∈ [0, π/4] \ I, E∗(θ) > E∗(π/4)

Problem: the function may look
like

π
4

Solution: Show that

∀θ ∈ I, ∂2
θ

�

S∗(uθ)
�

> 0 .
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Computing the second derivative

Recall that:

S∗(u) = −
∫

Ω

u2 log|u|dx

Let uθ = cosθφ1 − sinθφ2 and u′
θ

:= ∂θuθ. Taking into account
that

∫

u2
θ

= r2 and
∫

(u′
θ

)2 = r2, one computes

∂2
θ

�

S∗(uθ)
�

= 2
�

−r2 − S∗(uθ)−
∫

Ω

(u′
θ

)2 log|uθ|dx
�

.

Thus

∂2
θ

�

S∗(uθ)
�

> 0 ⇔ −
∫

Ω

(u′
θ

)2 log|uθ|dx > r2 + S∗(uθ).

Note that the second derivative is singular.
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Positiveness test for the second derivative

r2 + S∗(uθ)

−
∫

Ω

(u′
θ

)2 log|uθ|dx

θπ
4

0.29

0.31

0.33

0.35

0.37

0.39
−
∫

Ω

(u′
θ

)2 log|uθ|dx

> r2 + S∗(uθ).

If on a subdivision P used to
compute the integral, one has
log|uθ(P)| = ]−∞, α], then

−
∫

Ω

(u′
θ

)2 log|uθ|dx = [β,+∞[.

This is fine since we care about
the lower bound!
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Neumann boundary conditions

¨

−∆u + u = |u|p−2u in Ω,

∂νu = 0, on ∂Ω.
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Symmetry breaking (1/3)
¨

−∆ũ = λ2(ϵ) |ũ|p−2ũ in Rϵ,

ũ = 0 on ∂Rϵ,

where Rϵ = ]0,1[× ]0,1 + ϵ[ and λ2(ϵ) is the sec-
ond eigenvalue of −∆ on Rϵ with DBC.
Change of variables u(x,y) = ũ

�

x, (1 + ϵ)y
�

:

¨

−uxx − 1
(1+ϵ)2 uyy = λ2(ϵ) |u|p−2u in Ω,

u = 0 on ∂Ω,

where Ω = ]0,1[2.

We write λ2 = λ2(0) = 5π2, the second eigen-
value on the square.

ϵ = 0, p→ 2

ϵ > 0, p→ 2
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Symmetry breaking (2/3)
p

=
2

+
γ
ϵ

0 ϵ2

p
E∗,γ(u) = −

∫

Ω

(∂yu)2 dx−
λ′

2

∫

Ω

u2 dx

+ γλ2
1

4

∫

Ω

u2(1− log u2) dx

︸ ︷︷ ︸

= 1
2E∗(u)

where λ′ = ∂ϵλ2(0) = −8π2. Thus

S∗,γ(uθ) = π2
�3

2sin2θ − 2 + γ5
2E∗(uθ)

�

E∗,γ(uθ)

θ0 π
4

π
2
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Symmetry breaking (3/3)

Theorem (A. Salort, C.T., 2019)

There exists γ̄ > 0 and ϵ̄ > 0 such that,
for any (ϵ,p) in the triangle defined by
ϵ ∈ ]0, ϵ̄] and 2 < p ¶ 2 + γ̄ϵ, every l.e.n.s.
to
¨

−uxx − 1
(1+ϵ)2 uyy = λ2(ϵ) |u|p−2u in Ω,

u = 0 on ∂Ω,

is symmetric with respect to the longest
median and antisymmetric with respect
to the shortest one.

p
=

2
+
γ̄
ϵ

ϵ̄0 ϵ2

p

ϵ=0
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A “staged” Lyapunov–Schmidt reduction (1/5)

Eϵ,γ(u) =
1

2

∫

Ω

Aϵ∇u · ∇udx−
λ2(ϵ)

p

∫

Ω

|u|p dx where p = 2 + γϵ

As before, when ϵ ≈ 0, γ ∈ [0, γ̄] and v ∈ B̄R ⊆ E2,

E ′
ϵ,γ

(v + w)
�

�

E⊥2
= 0 ⇔ w = ω(ϵ, γ,v).

It remains to solve

H(ϵ, γ,v) := E ′
ϵ,γ

�

v +ω(ϵ, γ,v)
��

�

E2
= 0 where v ∈ E2.

As H(0, γ,v) = 0, one can define

K(ϵ, γ,v) :=

(

H(ϵ, γ,v)/ϵ if ϵ > 0,
∂ϵH(0, γ,v) = E ′∗,γ(v) if ϵ = 0.
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A “staged” Lyapunov–Schmidt reduction (2/5)

K(ϵ, γ,v) :=

¨

H(ϵ, γ,v)/ϵ if ϵ > 0,
E ′∗,γ(v) if ϵ = 0.

where

E∗,γ(v) =
1

2

∫

Ω

A′∇v·∇v dx−
λ′

2

∫

Ω

v2 dx+γλ2
1

4

∫

Ω

v2(1− log v2) dx

è When γ > 0 , E∗,γ has a mountain pass structure. If uγ∗ is
a non-degenerate critical point of E∗,γ∗ , one has

K(ϵ, γ,v) = 0 ⇔ v = σ(ϵ, γ).

By compactness, this is valid for

ϵ ∈ [0, ϵ̄], γ ∈ [γ0, γ̄] and ‖v − uγ‖ ¶ ρ

where γ0 > 0 is as small as we want.
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A “staged” Lyapunov–Schmidt reduction (3/5)
è When γ = 0 , E∗,γ is quadratic.

E∗,0(v) =
1

2

∫

Ω

A′∇v · ∇v dx−
λ′

2

∫

Ω

v2 dx

E ′∗,0 vanishes on E0 ⊂ E2 (so all its critical
points are degenerate).

A second Lyapunov–Schmidt reduction is
performed on E2: the solutions for γ ≈ 0
are driven by E ′∗|E0. We require u0 to be a
non-degenerate critical point of E∗|E0. Then

K(ϵ, γ,v) = 0 ⇔ v = σ(ϵ, γ)

when ϵ ∈ [0, ϵ̄], γ ∈ ]0, γ0], ‖v − u0‖ ¶ ρ.

E2

γ

γ̄

γ0

uγ

u0
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A “staged” Lyapunov–Schmidt reduction (4/5)

Theorem (A. Salort, C.T., 2019)

Assume that R→ C(Ω,SymN) : ϵ 7→ Aϵ and ϵ 7→ λ2(ϵ) are
differentiable in a neighborhood of 0 and that there is γ̄ > 0
and a continuous map

[0, γ̄]→ E2 \ {0} : γ 7→ uγ

such that, for all γ ∈ ]0, γ̄], uγ is a non-degenerate critical
point of E∗,γ : E2→ R with A′ = (∂ϵAϵ)|ϵ=0 and λ′ = ∂ϵλ2(0). Let
E0 := {u ∈ E2 | E ′∗,0(u) = 0} and assume further that

for all ϵ > 0 small, E0 ⊆ ker
�

u 7→ − div(Aϵ∇u)− λ2(ϵ)u
�

(1)

and u0 ∈ E0 is a non-degenerate critical point of E∗|E0.

C. Troestler (UMONS) A computer assisted proof... June 2019 42 / 44



The problem Asymptotic problem Interval arithmetic Computer assisted proof Symmetry breaking

A “staged” Lyapunov–Schmidt reduction (5/5)

Theorem (cont’d)

Then there exists ϵ̄ > 0, ρ > 0, and a continuous function
σ : [0, ϵ̄]× [0, γ̄]→ H1

0(Ω) : (ϵ, γ) 7→ σ(ϵ, γ) such that

1 for all γ ∈ [0, γ̄], σ(0, γ) = uγ,

2 for all ϵ ∈ [0, ϵ̄], σ(ϵ,0) = u0,

3 for all ϵ ∈ ]0, ϵ̄], γ ∈ ]0, γ̄] and u ∈ H1
0(Ω) such that

‖u− uγ‖ ¶ ρ, one has

u is a critical point of Eϵ,γ ⇔ u = σ(ϵ, γ).
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Thank you for your attention!

`
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Thanks to the conference organizers !
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The 3D case

On Ω = ]−1,1[3, E2 = span{φ1, φ2, φ3} where

φ1(x,y, z) := sin(πx) cos
�π

2
y
�

cos
�π

2
z
�

φ2(x,y, z) := cos
�π

2
x
�

sin(πy) cos
�π

2
z
�

φ3(x,y, z) := cos
�π

2
x
�

cos
�π

2
y
�

sin(πz)

Let uθ,α := (cosθφ1 + sinθφ2)sinα + cosαφ3.
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The 3D case: minimizers

θ

α

π
4

π
2

�

π/4
atan
p

2

�

uθ,α := (cosθφ1 + sinθφ2)sinα

+ cosαφ3

The minimum seems to be
achieved for

(θ,α) =
�π

4
, atan

p

2
�

i.e., for

φ1 + φ2 + φ3.
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The 3D case: minimizers
The zero set of φ1 + φ2 + φ3 is pictured below.
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