A computer assisted proof of the symmetries of least energy nodal solutions on squares

Christophe Troestler (joint work with Ariel Salort)

Département de Mathématique Université de Mons

<u>U</u>MONS

Second Days Of Nonlinear Elliptic PDE in Hauts-de-France, June 24–27, 2019

Outline

- 1 Problem & known results
- 2 Asymptotic problem
- 3 Crash course in Interval arithmetic
- 4 Computer assisted proof
- 5 Symmetry breaking

The Lane-Emden problem

The problem

$$\begin{cases} -\Delta u = |u|^{p-2}u & \text{in } \Omega, \\ u = 0, & \text{on } \partial\Omega. \end{cases}$$
 (PDE)

where Ω is an open bounded set in \mathbb{R}^N and 2 .In this talk, we will especially focus on

Solutions to (PDE) are critical points of

$$\mathcal{E}_p: H^1_0(\Omega) \to \mathbb{R}: u \mapsto \frac{1}{2} \int_{\Omega} |\nabla u(x)|^2 dx - \frac{1}{p} \int_{\Omega} |u(x)|^p dx.$$

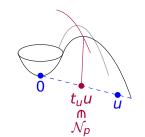
Ground state solution

$$\mathcal{E}_p(u) = \frac{1}{2} \int_{\Omega} |\nabla u(x)|^2 dx - \frac{1}{p} \int_{\Omega} |u(x)|^p dx$$

has the property that

The problem

$$\forall u \neq 0, \exists ! t_u > 0, \quad \mathcal{E}_p(t_u u) = \sup_{t \geqslant 0} \mathcal{E}_p(tu)$$



Nehari manifold

$$\mathcal{N}_p := \left\{ u \in H^1_0(\Omega) \setminus \{0\} \mid \mathcal{E}_p'(u)[u] = 0 \right\}$$

Variational principle

minimize
$$0 \neq u \mapsto \sup_{t \geqslant 0} \mathcal{E}_p(tu)$$

$$\begin{cases} \text{minimize } \mathcal{E}_p(u), \\ \text{s.t. } u \in \mathcal{N}_p. \end{cases}$$

Least-energy nodal solutions (l.e.n.s.)

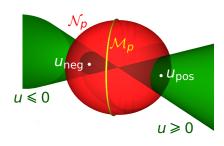
Nodal Nehari set

The problem

$$\mathcal{M}_p := \left\{ u \in H^1_0(\Omega) \mid u^+ \in \mathcal{N}_p \text{ and } u^- \in \mathcal{N}_p \right\}$$

where
$$u^{\pm}(x) := \max\{\pm u(x), 0\}$$

(so $u = u^{+} - u^{-}$).



Variational principle

minimize
$$0 \neq u \mapsto \sup_{t,s\geqslant 0} \mathcal{E}_p(tu^+ - su^-)$$
 i.e.,
$$\begin{cases} \text{minimize } \mathcal{E}_p(u), \\ \text{s.t. } u \in \mathcal{M}_p. \end{cases}$$

A. Castro, J. Cossio, J.M. Neuberger. A sign-changing solution for a superlinear Dirichlet problem. Rocky Mountain J. Math. 27 (1997), no. 4, 1041–1053.

◆ロト 4回ト 4 重ト 4 重ト 重日 900 で

Qualitative properties of l.e.n.s.

Theorem (Bartsch, Weth, 2003)

L.e.n.s. have precisely two nodal domains and have Morse index 2.

Theorem (Aftalion, Pacella, 2004)

If Ω is a ball or an annulus in \mathbb{R}^N , any radial sign changing solution has Morse index $\geq N+1$.

T. Bartsch, T. Weth, A note on additional properties of sign changing solutions to superlinear elliptic equations, Topol. Methods Nonlinear Anal. 22 (1) (2003) 1–14.

A. Aftalion, F. Pacella. Qualitative properties of nodal solutions of semilinear elliptic equations in radially symmetric domains, C. R. Math. Acad. Sci. Paris 339 (5) (2004) 339–344.

Symmetry results for l.e.n.s.

Theorem (Aftalion, Pacella, 2004)

If Ω is a ball or an annulus in \mathbb{R}^N , l.e.n.s. are not radial. Moreover if Ω is a ball or, N=2 and Ω is an annulus, the zero set $\{x \in \Omega \mid u(x)=0\}$ intersects the boundary.

Theorem (Bartsch, Weth, Willem, 2005)

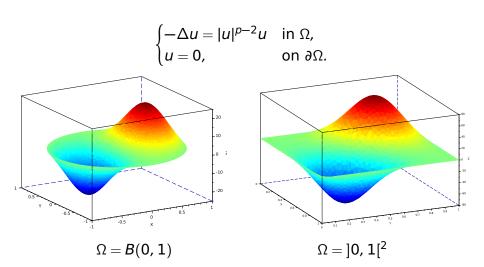
If Ω is a ball, l.e.n.s. are foliated Schwarz symmetric i.e., $u(x) = \tilde{u}(|x|, e \cdot x)$, for some $e \in \mathbb{S}^{N-1}$, and $\tilde{u}(r, \cdot)$ is nondecreasing for every r > 0.

A. Aftalion, F. Pacella. Qualitative properties of nodal solutions of semilinear elliptic equations in radially symmetric domains, C. R. Math. Acad. Sci. Paris 339 (5) (2004) 339–344.

T. Bartsch, T. Weth, M. Willem. Partial symmetry of least energy nodal solutions to some variational problems. J. Anal. Math. 96 (2005), 1–18.

- 4 ロ ト 4 御 ト 4 速 ト 4 速 ト 速 1 ± り 9 (で

Numerical computation of l.e.n.s.



The problem

Let $(u_p)_{p>2}$ is a family of least-energy nodal solutions to

$$(\mathsf{PDE})_p egin{cases} -\Delta u = |u|^{p-2}u & \text{in } \Omega, \ u = 0, & \text{on } \partial \Omega. \end{cases}$$

For the family to be bounded and to say away from 0, we need to renormalize it:

$$\widetilde{u}_p := \lambda_2^{-1/(p-2)} u_p.$$

The family $(\tilde{u}_p)_{p>2}$ are solutions to

$$(\mathcal{P}_p) \begin{cases} -\Delta u = \lambda_2 |u|^{p-2} u & \text{in } \Omega, \\ u = 0, & \text{on } \partial \Omega. \end{cases}$$

From now on, we will denote $u_p := \tilde{u}_p$ since they have the same symmetries.

Asymptotic problem $p \rightarrow 2$ (2/2)

Let $(u_n)_{n>2}$ is a family of least-energy nodal solutions to

$$(\mathcal{P}_p) \begin{cases} -\Delta u = \lambda_2 |u|^{p-2} u & \text{in } \Omega, \\ u = 0, & \text{on } \partial \Omega. \end{cases}$$

Then, up to a subsequence,

$$u_p \xrightarrow[p \to 2]{} u_* \neq 0$$
 in $H_0^1(\Omega)$,

Computer assisted proof

Asymptotic problem $p \rightarrow 2$ (2/2)

Let $(u_p)_{p>2}$ is a family of least-energy nodal solutions to

$$(\mathcal{P}_p) \begin{cases} -\Delta u = \frac{\lambda_2}{|u|^{p-2}} u & \text{in } \Omega, \\ u = 0, & \text{on } \partial\Omega. \end{cases}$$

Then, up to a subsequence,

Asymptotic problem

$$u_p \xrightarrow[p \to 2]{} u_* \neq 0 \quad \text{in } H_0^1(\Omega),$$

where u_* is a solution to

(L)
$$\begin{cases} -\Delta u = \lambda_2 u & \text{in } \Omega, \\ u = 0, & \text{on } \partial \Omega, \end{cases}$$
 i.e. $u_* \in E_2$

i.e. u_* is a second eigenfunction of $-\Delta$ on Ω with DBC.

Abstract symmetry ($p \approx 2$)

Theorem (D. Bonheure, V. Bouchez, C. Grumiau, J. Van Schaftingen, '08)

For every $\rho > 0$, there exists $\bar{p} > 2$ such that, for any solution u_p to

$$\begin{cases} -\Delta u = \lambda_2 |u|^{p-2} u & \text{in } \Omega, \\ u = 0, & \text{on } \partial \Omega. \end{cases}$$

with $p < \bar{p}$, such that $\alpha := P_{E_2} u_p$ satisfies

$$\alpha \in E_2 \setminus B(0, \rho);$$

$$T(E_2) = E_2;$$

$$T\alpha = \alpha$$
;

$$T(E_2^{\perp})=E_2^{\perp};$$

■
$$\forall u \in H_0^1(\Omega), \ \mathcal{E}_p(Tu) = \mathcal{E}_p(u);$$

for an isomorphism $T: H^1_0(\Omega) \to H^1_0(\Omega)$, then $Tu_p = u_p$.

D. Bonheure, V. Bouchez, C. Grumiau, J. Van Schaftingen, Asymptotics and symmetries of least energy nodal solutions of Lane-Emden problems with slow growth, Communications in Contemporary Mathematics 10 (2008), no. 04, 609–631.

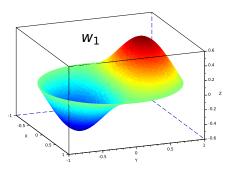
The second eigenspace E_2 on the ball

$$E_2 := \{ u : \Omega \to \mathbb{R} \mid -\Delta u = \lambda_2 u \text{ in } \Omega, u = 0 \text{ on } \partial\Omega \}$$

When $\Omega = B(0, 1) \subseteq \mathbb{R}^N$, $E_2 = \text{span}\{w_1, \dots, w_N\}$ where, in spherical coordinates $(r, \theta) := (|x|, x/|x|)$,

$$\mathbf{w}_{i}(r\theta) = r^{-\frac{N-2}{2}} J_{N/2}(\sqrt{\lambda_{2}}r) S_{i}(\theta),$$

where J_{ν} are the Bessel functions of the first kind



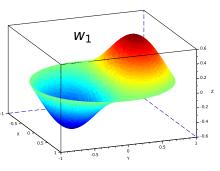
and S_i is the map $x \mapsto x_i$ restricted to the sphere.

$$E_2 := \{ u : \Omega \to \mathbb{R} \mid -\Delta u = \lambda_2 u \text{ in } \Omega, u = 0 \text{ on } \partial\Omega \}$$

When
$$\Omega = B(0, 1) \subseteq \mathbb{R}^N$$
, $E_2 = \text{span}\{w_1, \dots, w_N\}$ where, in spherical coordinates $(r, \theta) := (|x|, x/|x|)$,

$$\mathbf{W}_{i}(r\theta) = r^{-\frac{N-2}{2}} J_{N/2}(\sqrt{\lambda_{2}}r) S_{i}(\theta),$$

where I_{ν} are the Bessel functions of the first kind



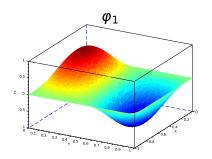
and S_i is the map $x \mapsto x_i$ restricted to the sphere.

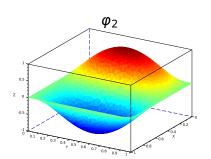
Theorem: For $p \approx 2$, u_p is anti-symmetric w.r.t. a diameter and symmetric in the N-1 orthogonal directions.

The second eigenspace E_2 on the square (1/2)

When
$$\Omega =]0, 1[^2, \frac{E_2 = \text{span}\{\varphi_1, \varphi_2\}}{}$$
 where

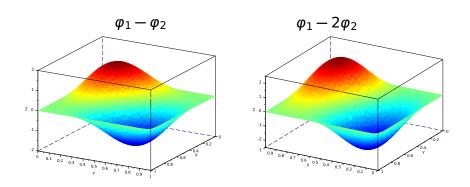
$$\varphi_1(x,y) = \sin(\pi x)\sin(2\pi y)$$
 and $\varphi_2(x,y) = \sin(2\pi x)\sin(\pi y)$.





Asymptotic problem Interval arithmetic Computer assisted proof Symmetry breaking

The second eigenspace E_2 on the square (2/2)



Questions

The problem

- What function is u_* in E_2 ?
- How are the symmetries of u_* and u_p related?

◆□▶◆圖▶◆意▶◆意▶ 重性 かくぐ

The problem

Back to the variational formulation

Let us recall that u_p minimize

$$\mathcal{E}_p: H^1_0(\Omega) \to \mathbb{R}: u \mapsto \frac{1}{2} \int_{\Omega} |\nabla u(x)|^2 dx - \frac{\lambda_2}{p} \int_{\Omega} |u(x)|^p dx$$

sur \mathcal{M}_p . Let us remark that $\mathcal{E}_2 = 0$ on E_2 . Let us perform an expansion w.r.t. p for $u \in E_2$:

$$\mathcal{E}_{p}(u) = \underbrace{\mathcal{E}_{2}(u)}_{=0} + \partial_{p}\mathcal{E}_{p}(u)\big|_{p=2}(p-2) + o(p-2)$$

Using this idea and the fact that u_p is characterized by $\min_{u \in \mathcal{M}_p} \mathcal{E}_p(u)$, one gets that u_* is a solution to the minimization problem

$$\min_{u \in \mathcal{N}_*} \mathcal{E}_*(u)$$
 where $\mathcal{E}_*(u) := \partial_p \mathcal{E}_p(u) \big|_{p=2}$.

D. Bonheure, V. Bouchez, C. Grumiau, I. Van Schaftingen, Asymptotics and symmetries of least energy nodal solutions of Lane-Emden problems with slow growth. Communications in Contemporary Mathematics 10 (2008). no. 04, 609-631. ◆□ → ◆御 → ◆ 重 → ◆ 重 | 重 → り Q (*) The problem

$$\mathcal{E}_{p}: H_{0}^{1}(\Omega) \to \mathbb{R}: u \mapsto \frac{1}{2} \int_{\Omega} |\nabla u(x)|^{2} dx - \frac{\lambda_{2}}{p} \int_{\Omega} |u(x)|^{p} dx$$

$$\downarrow \downarrow$$

$$\partial_{p} \mathcal{E}_{p}(u) = \lambda_{2} \left(\frac{1}{p^{2}} \int_{\Omega} |u(x)|^{p} dx - \frac{1}{2p} \int_{\Omega} |u(x)|^{p} \log|u|^{2} dx \right)$$

$$\downarrow \downarrow$$

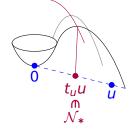
$$\mathcal{E}_{*}(u) = \partial_{p} \mathcal{E}_{p}(u) \Big|_{p=2} = \frac{\lambda_{2}}{4} \int_{\Omega} u^{2} - u^{2} \log u^{2} dx.$$

We drop a factor $\frac{\lambda_2}{2}$ which does not change the minimization problem.

Reduced variational formulation (1/3)

Reduced functional

$$\mathcal{E}_*: E_2 \to \mathbb{R}: u \mapsto \frac{1}{2} \int_{\Omega} u^2 - u^2 \log u^2$$



Reduced Nehari manifold

$$\mathcal{N}_* := \left\{ u \in \mathbf{E_2} \setminus \{0\} \mid \mathcal{E}'_*(u)[u] = 0 \right\}$$

Criteria: u_* is a solution to

minimize
$$0 \neq u \mapsto \sup_{t \geqslant 0} \mathcal{E}_*(tu)$$
 i.e.,
$$\begin{cases} \text{minimize } \mathcal{E}_*(u) \\ \text{s.t. } u \in \mathcal{N}_* \end{cases}$$

D. Bonheure, V. Bouchez, C. Grumiau, J. Van Schaftingen, Asymptotics and symmetries of least energy nodal solutions of Lane-Emden problems with slow growth, Communications in Contemporary Mathematics 10 (2008), no. 04, 609–631.

Reduced variational formulation (2/3)

$$\mathcal{E}_*(u) = \frac{1}{2} \int_{\Omega} u^2 - u^2 \log u^2$$
 $\mathcal{E}'_*(u)[u] = -\int_{\Omega} u^2 \log u^2 = 0.$

For any $u \in E_2 \setminus \{0\}$, there exists a unique $t_u > 0$ such that $t_u u \in \mathcal{N}_*$. Since

$$\mathcal{E}'_*(tu)[tu] = -2t^2 \int_{\Omega} u^2(\log t + \log|u|)$$

one gets

$$t_u = \exp\left(-\frac{\int_{\Omega} u^2 \log|u|}{\int_{\Omega} u^2}\right).$$

and

$$\mathcal{E}_*(t_u u) = \frac{1}{2} \int_{\Omega} (t_u u)^2 = \frac{1}{2} \exp\left(-2 \frac{\int_{\Omega} u^2 \log |u|}{\int_{\Omega} u^2}\right) \int_{\Omega} u^2$$

Reduced variational formulation (3/3)

If $\int_{\Omega} u^2 = 1$ (i.e., u is on the unit L^2 -sphere),

$$|S_*(u)| := \frac{1}{2} \log \left(2 \sup_{t \ge 0} \mathcal{E}_*(tu) \right) = - \int_{\Omega} u^2 \log |u| \, \mathrm{d}x$$

We want to minimize S_* on the L^2 -unit sphere of E_2 . Since

$$S_*(ru) = r^2 S_*(u) - r^2 \log r$$

one may as well minimize on the sphere of radius r.

 $u_* = t_u u$ where u is a minimizer, hence has the same symmetries.

Reduced variational formulation (3/3)

If $\int_{\Omega} u^2 = 1$ (i.e., u is on the unit L^2 -sphere),

$$S_*(u) := \frac{1}{2} \log \left(2 \sup_{t \ge 0} \mathcal{E}_*(tu) \right) = - \int_{\Omega} u^2 \log |u| \, \mathrm{d}x$$

We want to minimize S_* on the L^2 -unit sphere of E_2 . Since

$$S_*(ru) = r^2 S_*(u) - r^2 \log r$$

one may as well minimize on the sphere of radius r.

- $u_* = t_u u$ where u is a minimizer, hence has the same symmetries.
- ✔ Localization
- ? u_p has the same symmetries as u_* .

4□ > 4ⓓ > 4≧ > 4≧ > ½| = ♥9

Theorem (A. Salort, C.T., 2019)

Assume the functional \mathcal{E}_* defined previously is $C^2(E_2;\mathbb{R})$. For any non-degenerate critical point $u_* \in E_2$ of \mathcal{E}_* , there exists a neighborhood V_* of u_* in $H^1_{\Omega}(\Omega)$ and a continuous curve $\gamma: [2, 2+\varepsilon] \to H^1_0(\Omega), \ \varepsilon > 0$, such that $\gamma(2) = u_*$ and

$$\forall p \in]2, 2 + \varepsilon[, \forall u \in V_*, \quad u \text{ solves } (\mathcal{P}_p) \iff u = \gamma(p)$$

where

$$(\mathcal{P}_p) \begin{cases} -\Delta u = \lambda_2 |u|^{p-2} u & \text{in } \Omega, \\ u = 0, & \text{on } \partial \Omega. \end{cases}$$

Lyapunov–Schmidt reduction (1/3)

Theorem (A. Salort, C.T., 2019)

Assume the functional \mathcal{E}_* defined previously is $C^2(E_2;\mathbb{R})$. For any non-degenerate critical point $u_* \in E_2$ of \mathcal{E}_* , there exists a neighborhood V_* of u_* in $H^1_{\Omega}(\Omega)$ and a continuous curve $\gamma: [2, 2+\varepsilon] \to H^1_0(\Omega), \ \varepsilon > 0$, such that $\gamma(2) = u_*$ and

$$\forall p \in]2, 2 + \varepsilon[, \forall u \in V_*, \quad u \text{ solves } (\mathcal{P}_p) \iff u = \gamma(p)$$

where

The problem

$$(\mathcal{P}_p) \begin{cases} -\Delta u = \lambda_2 |u|^{p-2} u & \text{in } \Omega, \\ u = 0, & \text{on } \partial \Omega. \end{cases}$$

Corollary: Let T be a symmetry of u_* ($Tu_* = u_*$). For $p \in]2, 2 + \varepsilon[, u_p \text{ has the same symmetry } (Tu_p = u_p).$

The problem

Lyapunov–Schmidt reduction (2/3)

$$\mathcal{E}'_{p}(u)[\eta] = \int_{\Omega} \nabla u \nabla \eta \, dx - \lambda_{2} \int_{\Omega} |u|^{p-2} u \eta \, dx$$

Sketch of the proof.

- Decompose u = v + w with $v \in E_2$ and $w \in E_2^{\perp}$.
- Split the equation:

$$\mathcal{E}_{p}'(v+w)=0 \quad \Leftrightarrow \quad \begin{cases} \mathcal{G}(p,v,w) := \mathcal{E}_{p}'(v+w)\big|_{E_{2}^{\perp}}=0, \\ \mathcal{E}_{p}'(v+w)\big|_{E_{2}}=0. \end{cases}$$

Use the implicit function theorem to prove that, when $p \approx 2$ and $w \approx 0$,

$$G(p, v, w) = 0 \iff w = \omega(p, v).$$

Lyapunov–Schmidt reduction (3/3)

It remains to solve

The problem

$$\mathcal{H}(p, v) := \mathcal{E}'_p(v + \omega(p, v))|_{E_2} = 0.$$

One can show $\mathcal{H}(2, v) = 0$ for all $v \in E_2$.

For p > 2, this is equivalent to find the roots of

$$\mathcal{K}(p, v) := \begin{cases} \frac{\mathcal{H}(p, v)}{p - 2} & \text{if } p > 2, \\ \partial_p \mathcal{H}(2, v) & \text{if } p = 2. \end{cases}$$

• One has $\partial_p \mathcal{H}(\mathbf{2}, \mathbf{v}) = \mathcal{E}'_*(\mathbf{v})$ so non-degenerate critical points of $\mathcal{E}_*(\mathbf{v})$ give rise to local curves of solutions.

4 D > 4 A > 4 B > 4 B > B = 900

Symmetry breaking

The problem

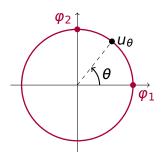
Symmetries and non-degeneracy of u_∗?

$$\frac{\min_{|u|_{L^2}=r} S_*(u)}{\text{where } S_*(u) = -\int_{\Omega} u^2 \log|u| \, dx$$

► For Ω =]0, 1[²: Because $|\varphi_1|_{L^2} = r$, $|\varphi_2|_{L^2} = r$ (with $r = \frac{1}{2}$) and $\varphi_1 \perp \varphi_2$ in L^2 ,

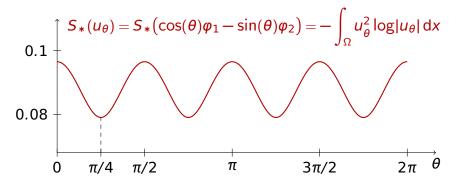
$$u_{\theta} := \cos \theta \, \varphi_1 - \sin \theta \, \varphi_2$$

parameterizes the L^2 -sphere of E_2 of radius r.

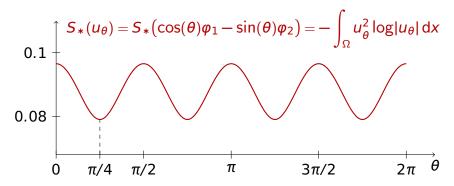


- 4 ロ ト 4 個 ト 4 差 ト 4 差 ト 差 1 年 か Q (C)

Numerical simulation (2/2)

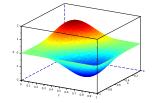


Numerical simulation (2/2)



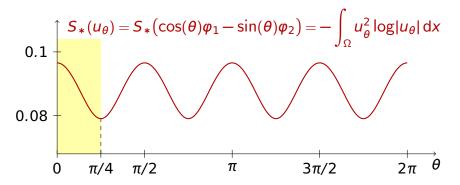
Recall that $u_{\pi/4} = \frac{\sqrt{2}}{2}(\varphi_1 - \varphi_2)$ is antisymmetric w.r.t. a diagonal.

Conjecture



Symmetries of $S_*(u_\theta)$

The problem



Because the problem is invariant by rotations of $\pi/2$ and axial symmetries and S_* is even, one has:

- S_* is $\pi/2$ -periodic;
- $S_*(\frac{\pi}{4}-\theta)=S_*(\frac{\pi}{4}+\theta).$

Crash course in interval arithmetic (1/3)

Observation: floating point computations may be inaccurate due to rounding error.

Example: Let $f: \mathbb{R}^2 \to \mathbb{R}$ be the function

$$f(x,y) = 333.75 y^6 + x^2 (11x^2y^2 - y^6 - 121y^4 - 2) + 5.5 y^8$$

In double precision, evaluating f(77617, 33096) yields $-1.180592 \cdot 10^{21}$. The correct value is -2.

Crash course in interval arithmetic (1/3)

Observation: floating point computations may be inaccurate due to rounding error.

Example: Let $f: \mathbb{R}^2 \to \mathbb{R}$ be the function

$$f(x,y) = 333.75 y^6 + x^2 (11x^2y^2 - y^6 - 121y^4 - 2) + 5.5 y^8$$

In double precision, evaluating f(77617, 33096) yields $-1.180592 \cdot 10^{21}$. The correct value is -2.

Basic idea: Compute an interval $[z, \overline{z}]$ containing the true value:

$$f(x,y) \in [\underline{z},\overline{z}],$$

the rounding of each endpoint taking care of rounding errors.

quaranteed bounds

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ めの○

Extend operations to intervals:

Crash course on interval arithmetic (2/3)

Extend operations to intervals:

$$[\underline{x}, \overline{x}] + [\underline{y}, \overline{y}] = [\underline{x} + \underline{y}, \overline{x} + \overline{y}] \subseteq [\underline{x} + \underline{y}, \overline{x} + \uparrow \overline{y}]$$

$$[\underline{x}, \overline{x}] \cdot [\underline{y}, \overline{y}] = [\min{\{\underline{x}\underline{y}, \underline{x}\overline{y}, \overline{x}\underline{y}, \overline{x}\overline{y}\}}, \max{\{\underline{x}\underline{y}, \underline{x}\overline{y}, \overline{x}\underline{y}, \overline{x}\overline{y}\}}]$$

$$\sin_{x} \cos_{x} \cos$$

Fundamental property: Let $x \mapsto f(x)$ be a function and $I \mapsto \mathbf{f}(I)$ an interval extension of f. That means:

$$\forall I \text{ interval,} \quad \forall x \in I, \ f(x) \in \mathbf{f}(I)$$

Crash course on interval arithmetic (2/3)

Extend operations to intervals:

Fundamental property: Let $x \mapsto f(x)$ be a function and $I \mapsto \mathbf{f}(I)$ an interval extension of f. That means:

$$\forall I \text{ interval,} \quad \forall x \in I, \ f(x) \in \mathbf{f}(I)$$

Dependency problem:

- $[\underline{x}, \overline{x}] [\underline{x}, \overline{x}] = [\underline{x} \overline{x}, \overline{x} \underline{x}] \supseteq [0, 0] \text{ but } \neq (\text{unless } \underline{x} = \overline{x}).$
- $([\underline{x}, \overline{x}])^2 \subseteq [\underline{x}, \overline{x}] \cdot [\underline{x}, \overline{x}] \text{ but in general } \neq.$
- etc.

Crash course on interval arithmetic (3/3)

For our original example:

The problem

$$f(x,y) = 333.75y^6 + x^2(11x^2y^2 - y^6 - 121y^4 - 2) + 5.5y^8$$

In double precision interval arithmetic, $\mathbf{f}([77617],[33096]) = [-5.902957 \cdot 10^{21},4.722367 \cdot 10^{21}].$

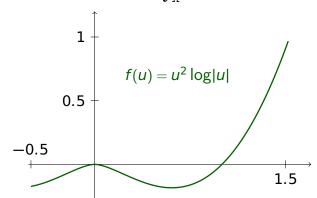
■ Need to adapt standard algorithms.

Symmetry breaking

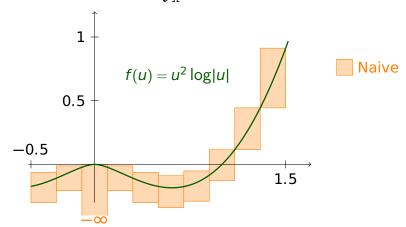
The problem

Evaluation of basic functions

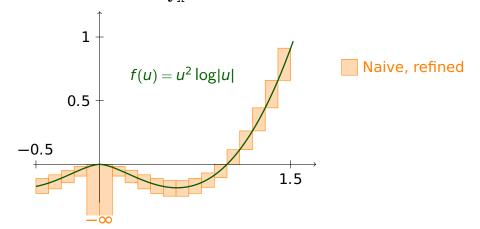
Recall that $S_*(u) = -\int_{\Omega} f(u) dx$ where $f(u) := u^2 \log |u|$.



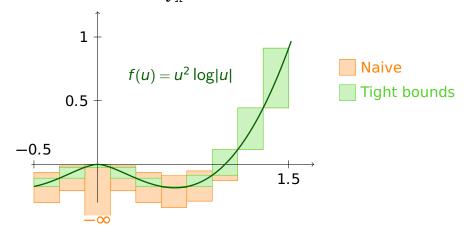
Recall that
$$S_*(u) = -\int_{\Omega} f(u) dx$$
 where $f(u) := u^2 \log |u|$.



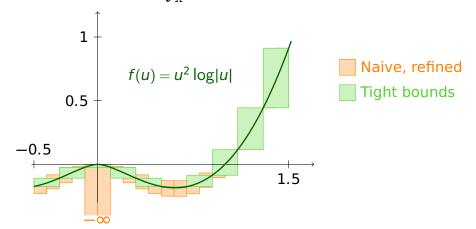
Recall that
$$S_*(u) = -\int_{\Omega} f(u) dx$$
 where $f(u) := u^2 \log |u|$.



Recall that
$$S_*(u) = -\int_{\Omega} f(u) dx$$
 where $f(u) := u^2 \log |u|$.



Recall that
$$S_*(u) = -\int_{\Omega} f(u) dx$$
 where $f(u) := u^2 \log |u|$.



The problem

Symmetry breaking

Adaptive integration (1/2)

Compute $S_*(u) = -\int_{\Omega} u^2 \log |u| dx$ where $u = \cos \theta \varphi_1 - \sin \theta \varphi_2$.

Basic scheme: partition Ω in a union of "small" P and estimate each integral with

$$\frac{1}{|P|} \int_P g(x) \, \mathrm{d}x \in \underline{g(P)} \qquad \big(P = I_1 \times I_2 \Rightarrow g(P) \subseteq \underline{g}(I_1, I_2)\big).$$

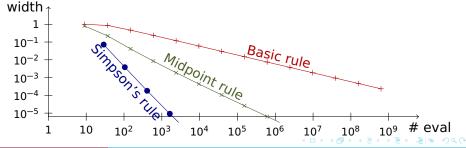
Adaptive integration (1/2)

Compute $S_*(u) = -\int_{\Omega} u^2 \log |u| dx$ where $u = \cos \theta \varphi_1 - \sin \theta \varphi_2$.

Basic scheme: partition Ω in a union of "small" P and estimate each integral with

$$\frac{1}{|P|} \int_P g(x) \, \mathrm{d}x \in g(P) \qquad \big(P = I_1 \times I_2 \Rightarrow g(P) \subseteq \mathbf{g}(I_1, I_2)\big).$$

Higher order schemes: require some regularity (e.g., $g \in C^2$).

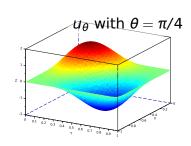


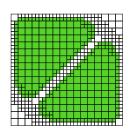
1D Simpson's rule:

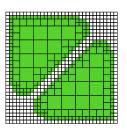
The problem

$$\frac{1}{h} \int_{a}^{a+h} f(x) \, \mathrm{d}x - \frac{1}{6} \left(f(a) + 4f(a + \frac{1}{2}h) + f(a+h) \right) = -\frac{1}{2880} h^4 f^{(4)}(\xi)$$

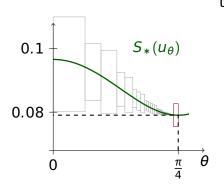
For $S_*(u) = -\int_{\Omega} f(u(x)) dx$ where $f(u) := u^2 \log |u|$, the function $x \mapsto f(u(x))$ is not C^2 whenever u(x) = 0.







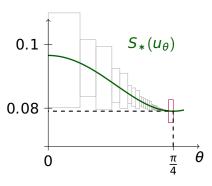
Asymptotic problem on $\Omega =]0, 1[^2]$



Determine a small interval $\frac{1}{l}$ such that $\pi/4 \in I$ and

$$\forall \theta \in [0, \pi/4] \setminus I, \quad \mathcal{E}_*(\theta) > \mathcal{E}_*(\pi/4)$$

Asymptotic problem on $\Omega =]0, 1[^2]$



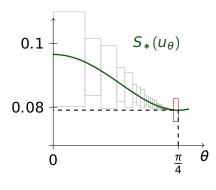
Determine a small interval $\frac{1}{l}$ such that $\pi/4 \in I$ and

$$\forall \theta \in [0, \pi/4] \setminus I, \quad \mathcal{E}_*(\theta) > \mathcal{E}_*(\pi/4)$$

Problem: the function may look like

$$\frac{\bullet}{\frac{\pi}{4}}$$

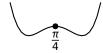
Asymptotic problem on $\Omega =]0, 1[^2]$



Determine a small interval $\frac{1}{2}$ such that $\pi/4 \in I$ and

$$\forall \theta \in [0, \pi/4] \setminus I, \quad \mathcal{E}_*(\theta) > \mathcal{E}_*(\pi/4)$$

Problem: the function may look like



Solution: Show that

$$\forall \theta \in I, \quad \frac{\partial_{\theta}^{2}(S_{*}(u_{\theta})) > 0}{2}.$$

4□▶ 4□▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 9 Q ○

Computing the second derivative

Recall that:

The problem

$$S_*(u) = -\int_{\Omega} u^2 \log|u| \,\mathrm{d}x$$

Let $u_{\theta} = \cos \theta \, \varphi_1 - \sin \theta \, \varphi_2$ and $u'_{\theta} := \partial_{\theta} u_{\theta}$. Taking into account that $\int u_{\rho}^2 = r^2$ and $\int (u_{\rho}')^2 = r^2$, one computes

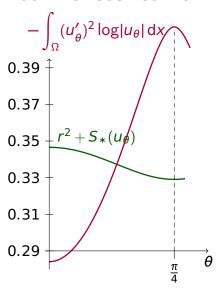
$$\frac{\partial_{\theta}^{2}(S_{*}(u_{\theta}))}{\partial_{\theta}^{2}(S_{*}(u_{\theta}))} = 2\left(-r^{2} - S_{*}(u_{\theta}) - \int_{\Omega} (u_{\theta}')^{2} \log|u_{\theta}| dx\right).$$

Thus

$$\partial_{\theta}^{2}(S_{*}(u_{\theta})) > 0 \quad \Leftrightarrow \quad -\int_{\Omega}(u_{\theta}')^{2}\log|u_{\theta}|\,\mathrm{d}x > r^{2} + S_{*}(u_{\theta}).$$

Note that the second derivative is singular.

Positiveness test for the second derivative



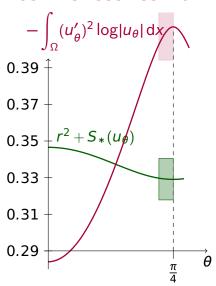
$$-\int_{\Omega} (u_{\theta}')^2 \log|u_{\theta}| dx$$
> $r^2 + S_*(u_{\theta})$.

If on a subdivision P used to compute the integral, one has $\log |u_{\theta}(P)| =]-\infty, \overline{\alpha}]$, then

$$-\int_{\Omega} (u_{\theta}')^2 \log |u_{\theta}| dx = [\underline{\beta}, +\infty[.$$

This is fine since we care about the lower bound!

Positiveness test for the second derivative



$$-\int_{\Omega} (u_{\theta}')^2 \log|u_{\theta}| dx$$
> $r^2 + S_*(u_{\theta})$.

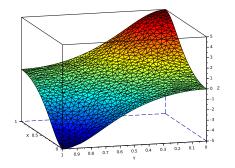
If on a subdivision P used to compute the integral, one has $\log |u_{\theta}(P)| =]-\infty, \overline{\alpha}]$, then

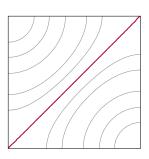
$$-\int_{\Omega} (u_{\theta}')^2 \log |u_{\theta}| dx = [\underline{\beta}, +\infty[.$$

This is fine since we care about the lower bound!

Neumann boundary conditions

$$\begin{cases} -\Delta u + u = |u|^{p-2}u & \text{in } \Omega, \\ \partial_{\nu}u = 0, & \text{on } \partial\Omega. \end{cases}$$





The problem

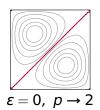
$$\begin{cases} -\Delta \tilde{u} = \lambda_2(\varepsilon) |\tilde{u}|^{p-2} \tilde{u} & \text{in } R_{\varepsilon}, \\ \tilde{u} = 0 & \text{on } \partial R_{\varepsilon}, \end{cases}$$

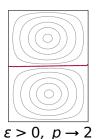
where $R_{\varepsilon} =]0, 1[\times]0, 1+\varepsilon[$ and $\lambda_2(\varepsilon)$ is the second eigenvalue of $-\Delta$ on R_{ε} with DBC. Change of variables $u(x,y) = \tilde{u}(x,(1+\varepsilon)y)$:

$$\begin{cases} -u_{xx} - \frac{1}{(1+\varepsilon)^2} u_{yy} = \lambda_2(\varepsilon) |u|^{p-2} u & \text{in } \Omega, \\ u = 0 & \text{on } \partial\Omega, \end{cases}$$

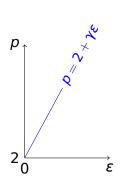
where
$$\Omega =]0, 1[^2.$$

We write $\lambda_2 = \lambda_2(0) = 5\pi^2$, the second eigenvalue on the square.





◆□ > ◆□ > ◆豆 > ◆豆 > 豆目 * 夕♀○

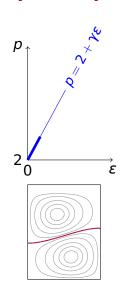


$$\mathcal{E}_{*,\gamma}(u) = -\int_{\Omega} (\partial_{y}u)^{2} dx - \frac{\lambda'}{2} \int_{\Omega} u^{2} dx + \frac{\gamma}{2} \lambda_{2} \underbrace{\frac{1}{4} \int_{\Omega} u^{2} (1 - \log u^{2}) dx}_{=\frac{1}{2}\mathcal{E}_{*}(u)}$$

where
$$\lambda' = \partial_{\varepsilon} \lambda_2(0) = -8\pi^2$$
. Thus

$$\mathcal{S}_{*,\gamma}(u_{\theta}) = \pi^2 \left(\frac{3}{2} \sin^2 \theta - 2 + \frac{\gamma}{2} \frac{5}{2} \mathcal{E}_*(u_{\theta}) \right)$$

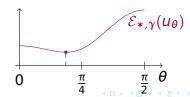
Symmetry breaking (2/3)



$$\mathcal{E}_{*,\gamma}(u) = -\int_{\Omega} (\partial_{y}u)^{2} dx - \frac{\lambda'}{2} \int_{\Omega} u^{2} dx + \gamma \lambda_{2} \underbrace{\frac{1}{4} \int_{\Omega} u^{2} (1 - \log u^{2}) dx}_{=\frac{1}{2} \mathcal{E}_{*}(u)}$$

where
$$\lambda' = \partial_{\varepsilon} \lambda_2(0) = -8\pi^2$$
. Thus

$$S_{*,\gamma}(u_{\theta}) = \pi^2 \left(\frac{3}{2} \sin^2 \theta - 2 + \frac{5}{2} \mathcal{E}_*(u_{\theta})\right)$$



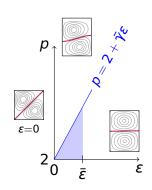
Symmetry breaking (3/3)

Theorem (A. Salort, C.T., 2019)

There exists $\bar{\gamma} > 0$ and $\bar{\epsilon} > 0$ such that, for any (ϵ, p) in the triangle defined by $\epsilon \in]0, \bar{\epsilon}]$ and 2 , every l.e.n.s. to

$$\begin{cases} -u_{xx} - \frac{1}{(1+\varepsilon)^2} u_{yy} = \lambda_2(\varepsilon) \, |u|^{p-2} u & \text{in } \Omega, \\ u = 0 & \text{on } \partial \Omega, \end{cases}$$

is symmetric with respect to the longest median and antisymmetric with respect to the shortest one.



- ◀ □ ▶ ◀큠 ▶ ◀ 볼 ▶ 토/도 쒼오@

A "staged" Lyapunov-Schmidt reduction (1/5)

$$\mathcal{E}_{\varepsilon,\gamma}(u) = rac{1}{2} \int_{\Omega} A_{\varepsilon} \nabla u \cdot \nabla u \, \mathrm{d}x - rac{\lambda_{2}(\varepsilon)}{p} \int_{\Omega} |u|^{p} \, \mathrm{d}x \qquad ext{where } p = 2 + \gamma arepsilon$$

As before, when $\varepsilon \approx 0$, $\gamma \in [0, \bar{\gamma}]$ and $v \in \bar{B}_R \subseteq E_2$,

$$\mathcal{E}'_{\varepsilon,\gamma}(v+w)\big|_{E_2^\perp}=0\quad\Longleftrightarrow\quad w=\omega(\varepsilon,\gamma,v).$$

It remains to solve

$$\mathcal{H}(\varepsilon, \gamma, v) := \mathcal{E}'_{\varepsilon, \gamma}(v + \omega(\varepsilon, \gamma, v))\big|_{E_2} = 0$$
 where $v \in E_2$.

As $\mathcal{H}(0, \gamma, \nu) = 0$, one can define

$$\mathcal{K}(\varepsilon,\gamma,v) := \begin{cases} \mathcal{H}(\varepsilon,\gamma,v)/\varepsilon & \text{if } \varepsilon > 0, \\ \partial_{\varepsilon}\mathcal{H}(0,\gamma,v) = \frac{\mathcal{E}'_{*,\gamma}(v)}{} & \text{if } \varepsilon = 0. \end{cases}$$

◆□▶ ◆圖▶ ◆夏▶ ◆夏★ 割当 かへで

$$\mathcal{K}(\varepsilon,\gamma,v) := \begin{cases} \mathcal{H}(\varepsilon,\gamma,v)/\varepsilon & \text{if } \varepsilon > 0, \\ \mathcal{E}'_{*,\gamma}(v) & \text{if } \varepsilon = 0. \end{cases}$$

where

The problem

$$\mathcal{E}_{*,\gamma}(v) = \frac{1}{2} \int_{\Omega} A' \nabla v \cdot \nabla v \, dx - \frac{\lambda'}{2} \int_{\Omega} v^2 \, dx + \gamma \lambda_2 \frac{1}{4} \int_{\Omega} v^2 (1 - \log v^2) \, dx$$

ightharpoonup When $\gamma > 0$, $\mathcal{E}_{*,\gamma}$ has a mountain pass structure. If u_{γ_*} is a non-degenerate critical point of $\mathcal{E}_{*,\gamma_{*}}$, one has

$$\mathcal{K}(\varepsilon, \gamma, v) = 0 \iff v = \sigma(\varepsilon, \gamma).$$

By compactness, this is valid for

$$\varepsilon \in [0, \bar{\varepsilon}], \ \gamma \in [\gamma_0, \bar{\gamma}] \text{ and } \|v - u_\gamma\| \le \rho$$

where $\gamma_0 > 0$ is as small as we want.

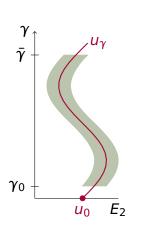
◆ロ → ◆御 → ◆ 恵 → ◆ 恵 ⊨ め ぬ (や)

A "staged" Lyapunov–Schmidt reduction (3/5)

⇒ When $\gamma = 0$, $\mathcal{E}_{*,\gamma}$ is quadratic.

$$\mathcal{E}_{*,0}(v) = \frac{1}{2} \int_{\Omega} A' \nabla v \cdot \nabla v \, dx - \frac{\lambda'}{2} \int_{\Omega} v^2 \, dx$$

 $\mathcal{E}'_{*,0}$ vanishes on $E_0 \subset E_2$ (so all its critical points are degenerate).



A "staged" Lyapunov-Schmidt reduction (3/5)

→ When $\gamma = 0$, $\mathcal{E}_{*,\gamma}$ is quadratic.

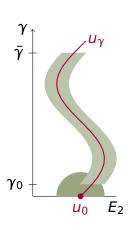
$$\mathcal{E}_{*,0}(v) = \frac{1}{2} \int_{\Omega} A' \nabla v \cdot \nabla v \, dx - \frac{\lambda'}{2} \int_{\Omega} v^2 \, dx$$

 $\mathcal{E}'_{*,0}$ vanishes on $E_0 \subset E_2$ (so all its critical points are degenerate).

A second Lyapunov–Schmidt reduction is performed on E_2 : the solutions for $\gamma \approx 0$ are driven by $\mathcal{E}'_*|_{E_0}$. We require u_0 to be a non-degenerate critical point of $\mathcal{E}_*|_{E_0}$. Then

$$\mathcal{K}(\varepsilon, \gamma, v) = 0 \iff v = \sigma(\varepsilon, \gamma)$$

when $\varepsilon \in [0, \bar{\varepsilon}], \ \gamma \in]0, \gamma_0], \ \|v - u_0\| \le \rho$.



A "staged" Lyapunov–Schmidt reduction (4/5)

Theorem (A. Salort, C.T., 2019)

Assume that $\mathbb{R} \to C(\Omega, \operatorname{Sym}_N) : \varepsilon \mapsto A_\varepsilon$ and $\varepsilon \mapsto \lambda_2(\varepsilon)$ are differentiable in a neighborhood of 0 and that there is $\bar{\gamma} > 0$ and a continuous map

$$[0, \bar{\gamma}] \rightarrow E_2 \setminus \{0\} : \gamma \mapsto u_{\gamma}$$

such that, for all $\gamma \in]0, \bar{\gamma}]$, u_{γ} is a non-degenerate critical point of $\mathcal{E}_{*,\gamma}: E_2 \to \mathbb{R}$ with $A' = (\partial_{\varepsilon}A_{\varepsilon})|_{\varepsilon=0}$ and $\lambda' = \partial_{\varepsilon}\lambda_2(0)$. Let $E_0 := \{u \in E_2 \mid \mathcal{E}'_{*,0}(u) = 0\}$ and assume further that

for all
$$\varepsilon > 0$$
 small, $E_0 \subseteq \ker(u \mapsto -\operatorname{div}(A_{\varepsilon} \nabla u) - \lambda_2(\varepsilon)u)$ (1)

and $u_0 \in E_0$ is a non-degenerate critical point of $\mathcal{E}_*|_{E_0}$.

A "staged" Lyapunov–Schmidt reduction (5/5)

Theorem (cont'd)

The problem

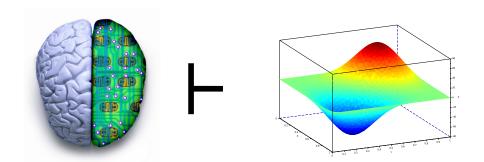
Then there exists $\bar{\varepsilon} > 0$, $\rho > 0$, and a continuous function $\sigma:[0,\bar{\varepsilon}]\times[0,\bar{\gamma}]\to H^1_0(\Omega):(\varepsilon,\gamma)\mapsto\sigma(\varepsilon,\gamma)$ such that

- 1 for all $\gamma \in [0, \bar{\gamma}], \ \sigma(0, \gamma) = u_{\gamma}$,
- 2 for all $\varepsilon \in [0, \bar{\varepsilon}], \ \sigma(\varepsilon, 0) = u_0$
- **3** for all $\varepsilon \in]0, \overline{\varepsilon}], \gamma \in]0, \overline{\gamma}]$ and $u \in H^1_0(\Omega)$ such that $||u-u_{\gamma}|| \leq \rho$, one has

$$u$$
 is a critical point of $\mathcal{E}_{\varepsilon,\gamma} \iff u = \sigma(\varepsilon,\gamma)$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ のQで

Thank you for your attention!



Thanks to the conference organizers!

The 3D case

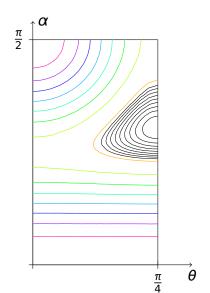
On
$$\Omega =]-1$$
, $1[^3$, $E_2 = \operatorname{span}\{\varphi_1, \varphi_2, \varphi_3\}$ where
$$\varphi_1(x,y,z) := \sin(\pi x) \cos\left(\frac{\pi}{2}y\right) \cos\left(\frac{\pi}{2}z\right)$$

$$\varphi_2(x,y,z) := \cos\left(\frac{\pi}{2}x\right) \sin(\pi y) \cos\left(\frac{\pi}{2}z\right)$$

$$\varphi_3(x,y,z) := \cos\left(\frac{\pi}{2}x\right) \cos\left(\frac{\pi}{2}y\right) \sin(\pi z)$$

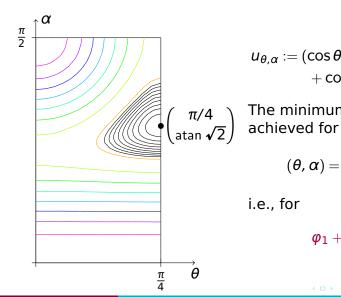
Let $u_{\theta,\alpha} := (\cos \theta \varphi_1 + \sin \theta \varphi_2) \sin \alpha + \cos \alpha \varphi_3$.

The 3D case: minimizers



$$u_{\theta,\alpha} := (\cos\theta \, \varphi_1 + \sin\theta \, \varphi_2) \sin\alpha + \cos\alpha \, \varphi_3$$

The 3D case: minimizers



$$u_{\theta,\alpha} := (\cos\theta \, \varphi_1 + \sin\theta \, \varphi_2) \sin\alpha + \cos\alpha \, \varphi_3$$

The minimum seems to be

$$(heta,lpha)=ig(rac{\pi}{4},lpha$$
 at an $\sqrt{2}ig)$

i.e., for

$$\varphi_1 + \varphi_2 + \varphi_3$$
.

The 3D case: minimizers

The zero set of $\varphi_1 + \varphi_2 + \varphi_3$ is pictured below.

