
Automatic Risk Adjustment for Profit Maximization in

Renewable Dominated Short-Term Electricity Markets

Bottieau, J.a,∗, Bruninx, K.b,c, Sanjab, A.c,d, De Grève, Z.a, Vallée, F.a, Toubeau, J-F.a
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Abstract

State-of-the-art trading strategies in short-term electricity markets employ risk awareness for reducing, inter alia, their
exposure to the volatility of electricity prices. To ensure an optimal balance between risk and profit, risk-aversion
parameters are traditionally fine-tuned via an offline out-of-sample analysis. Such a computationally-intensive analysis
is typically run once, which yields time-invariant risk policies. Instead, this paper proposes the use of machine learning
to select, in an online fashion, optimal risk-aversion parameters. This novel automatic risk-tuning approach offers the
benefit of continuously adjusting the risk policy based on the dynamically changing market operating conditions. Our
approach is tested on two risk-aversion parameters, i.e., the confidence level of the conditional value-at-risk and the
budget of uncertainty, respectively considering scenario-based and robust optimization frameworks. A set of performed
case studies – focusing on the very short-term dispatch of a market actor participating in electricity markets – using real-
world market data from the Belgian power system demonstrate the ability of the proposed methodology to outperform
traditional offline risk policies.
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1. Introduction

While competing in liberalized electricity markets, ac-
tors adapt their short-term dispatch decisions based on
their expectations of future market outcomes to maximize
their profit [1]. These decisions are made while facing mar-
ket uncertainties stemming from, e.g., the prevailing mar-
ket prices, which expose the actor to financial risks [2],
where financial risk is defined as the possibility that an
actor’s financial outcome deviates adversely from its ex-
pectation [3]. In this context, stochastic decision support
tools, including financial risk management, allow improved
scheduling decisions in short-term electricity markets, giv-
ing the possibility for actors to control the risks associated
with their positions [4].

Two distinct methodologies can be considered for trad-
ing strategies: i) performance satisfying methods, such as
information-gap theory decision [5, 6], which ensure a min-
imum acceptable profit, and ii) performance maximization
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methods, which, in contrast, maximize the expected profit
of the market actor given its representation of the un-
certainty space. Examples of performance maximization
methods include stochastic programming [7–9], robust op-
timization [10, 11] and chance constrained programming
[12, 13]. In performance maximization methods, the mar-
ket actors take two successive decisions when employing
risk awareness: i) the selection of their risk attitude, i.e.,
the setting of their financial risk management (e.g., their
own risk averseness level), which determines their risk pol-
icy, and ii) their scheduling/dispatch decision, which max-
imizes their expected profit given their risk policy.

Risk awareness in performance maximization methods
has attracted a high-level of interest within the power
systems community, including several studies on conven-
tional electricity generation [14–16], energy storage sys-
tems [17, 18], weather-dependent generation [7, 8, 19, 20],
demand-response [12, 21, 22], and hybrid power plants [9–
11, 23–26]. Overall, following a scenario-based stochas-
tic optimization framework, most authors incorporate risk
measures, e.g., the conditional value-at-risk (CVaR), in
the objective function to assign higher weights to the sce-
narios with lowest profits [27]. On the other hand, robust
optimisation-based approaches allow the ability to adjust
the conservativeness of the decisions by varying the budget
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of uncertainty, i.e., the size and shape of the uncertainty
set [11].

Currently, existing research efforts in performance
maximization methods focus on evaluating the optimal
risk policy through an offline process. This process entails
varying the risk-aversion parameters – e.g., the confidence
level of the CVaR metric or the budget of uncertainty –
on extensive out-of-sample evaluations to select the op-
timal risk attitude – see e.g., [12, 22, 26, 28]. Such a
computationally-intensive analysis is typically run once,
which does not allow capturing the dependency of the
optimal risk policy on the dynamically changing market
operating conditions. In this sense, in all the aforemen-
tioned approaches, there is, to the best of the authors’
knowledge, no systematic way to autonomously and dy-
namically adjust the selection of the risk-aversion param-
eters. Indeed, the out-of-sample analysis typically yields
only time-invariant risk policies, even though the real-time
power system conditions, and, as a result, the financial risk
and the optimal risk policy, may significantly vary over
time.

This paper aims at addressing this fundamental limita-
tion by leveraging Machine Learning (ML) techniques to
adjust, at each decision step, the risk policy of an actor
based on the current state of its expected market out-
comes. Practically, an ML-based module is designed to
estimate the time-specific out-of-sample economic perfor-
mance of different risk attitudes based on past trading ses-
sions, allowing to determine autonomously the most opti-
mal online risk attitude. In addition, our approach offers
two further benefits: i) it can be applied for any risk-
aware performance maximization methods– e.g., we con-
sider both CVaR-based stochastic and robust optimization
frameworks, and ii) it can be incorporated in all types of
regular decision procedures of market participants, e.g.,
bidding strategies in the real-time markets [29].

In this paper, we apply our innovative automatic risk
adjustment tool, considering a specific, high-risk market
environment, i.e., the very-short term dispatch of a strate-
gic market participant that exploits opportunities in the
single price imbalance settlement mechanism (see Section
2.1). The risk policy is crucial in this application since
the system conditions are highly volatile and difficult to
predict. In addition, actors are exposed to significant fi-
nancial penalties in case of sub-optimal decisions. In this
regard, we extend our bi-level framework considering of-
fline risk policies [30] to an online risk-adjusted framework,
which considers both CVaR-based stochastic and robust
optimization frameworks.

The contribution of our proposed automatic risk ad-
justment tool applied within the single price imbalance
framework is, hence, threefold:

1. We leverage the self-learning abilities of ML techniques
to dynamically and preemptively adjust the risk policy
of an actor based on the current state of its expected
market outcomes. The risk policy is progressively up-

dated and improved based on past trading sessions. We
illustrate the effectiveness of this approach in a detailed
case study using data from a real-life power system. We
focus on short-term electricity markets, for CVaR-based
stochastic and robust optimization problems, combined
with offline and online risk-policy based strategies.

2. We establish an extensive benchmark of competitive
ML-based techniques (neural networks, ensemble trees
and K-nearest neighbours) for the online selection of an
optimal risk policy based on a realistic case study.

3. The implementation of our theoretical models on actual
electricity market settings corroborate the key goal of
the single price imbalance settlement mechanism, by re-
ducing the system imbalance, and consequently limiting
corrective actions at the real-time balancing stage. In-
deed, the obtained results show that the actor increases
its operating profit, while the imbalance of the power
system is reduced.

Our results show that the online risk policies supported
by ML tend to exhibit better performance than the opti-
mal offline choice, especially in the context of robust op-
timization problems. Moreover, the k -nearest neighbours
method emerges from the ML benchmark as a suited can-
didate for selecting the risk policy, balancing simplicity
and profitability.

The rest of the paper is organized as follows. Sec-
tion 2 explains the participation of a market actor in
the European single price imbalance settlement and de-
scribes the proposed automatic risk adjustment tool within
its decision-making process. This automatic risk adjust-
ment tool is further detailed in Section 3. Then, Section
4 provides the mathematical formulations of the subse-
quent risk-aware performance maximization methods. We
present and compare the different offline and online risk
policies in Section 5. Finally, conclusions are presented in
Section 6.

2. Market and Decision-Making Frameworks

In Section 2.1, we present our electricity market appli-
cation, which is the near real-time decision problem faced
by a market player that has the ability to deviate from its
position in day-ahead electricity markets to support the
real-time system balancing within a single imbalance pric-
ing scheme. These intentional deviations allow providing
balancing services not defined in the standard balancing
products. Then, Section 2.2 introduces the associated risk-
aware decision-making process of the market player, with
an emphasis on the role of the proposed automatic risk
adjustment tool.

2.1. Market Application

Recent European directives have increasingly encour-
aged the harmonization towards a single pricing rule across
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Figure 1: Impact of the imbalance position of a market actor on the
single imbalance pricing mechanism in case of generation shortage.

Europe, in which all positive and negative imbalances of
market actors are settled at a unique price [31]. This mech-
anism provides near real-time financial incentives for im-
balances of market actors that restore the system balance,
while penalizing those that enforce the imbalance of the
system. In fact, as part of the imbalance settlement pro-
cess, each agent with an unbalanced portfolio is charged
with an imbalance fee, which depends on the actual grid
balancing costs for restoring the system balance. It al-
lows the Transmission System Operator (TSO) to recover
the costs from the activation of balancing reserves, while
transferring the financial risk to the market actors.

We define the system imbalance (SI) by the aggregated
(net) imbalance position of all other market actors. A neg-
ative system imbalance defines a generation shortage in
the system, while a positive system imbalance reflects a
generation surplus. The TSO restores the system imbal-
ance by activating pre-allocated operating reserve capacity
and remunerates actors providing that capacity through
the balancing market. The imbalance price (λSI) of each
imbalance period, typically 15 minutes, is based on the
marginal price associated with the most expensive acti-
vated upward reserve provider or least expensive activated
downward reserve provider.

In case of generation shortage (SI<0), the TSO acti-
vates upward balancing reserves, which drives the imbal-
ance price towards a high price regime (typically exceeding
the day-ahead market prices). In contrast, if the system
is in generation surplus (SI>0), downward balancing re-
serves are activated, thereby lowering the imbalance price
regime (typically leading to an imbalance price below the
day-ahead market prices). Depending on the system im-
balance and the market participant’s own imbalance po-
sition, a market actor faces a financial payoff or penalty.
This is illustrated in Fig. 1 in case of generation short-
age. A short position of the agent aggravates the shortage
of the system. Hence, the market actor in this position
would have to pay an expensive price to the TSO for the
additional activation of upward balancing reserves. If the
agent has a long position, its imbalance decreases the over-

all balancing needs. In that case, the actor would receive
an attractive price for each ‘excess’ MWh. Similarly, when
the system experiences a generation surplus (SI>0), this
mechanism incentivizes market actors to adopt a short po-
sition.

The imbalance position of the market participant may
also imply a regime-switching behaviour of the imbalance
price. Indeed, under the system conditions in Fig. 1, a too
long position of the market actor could change the sign
of the SI. By adopting such an excessive long position,
the market actor would be remunerated at a very low,
even negative, imbalance price for its surplus of energy.
These imbalance price regime switching effects, which neg-
atively impact the participation of the market actor, can
be hedged using a bi-level approach, which allows captur-
ing the impact of the market actor’s actions on the price
formation of the imbalance settlement market.

The publication of transparent real time market data
is crucial for reaching the full benefit of this single pric-
ing scheme. For example, in this regard, the Belgian TSO
provides day-ahead information with near real-time up-
dates on the available balancing offers (capacity and acti-
vation costs) and the system imbalance position for each
15-min period [32]. Hence, different levels of balancing
prices (Λr+,−) corresponding to the activation of the bal-
ancing blocks (Sr+,−) can be retrieved from these pub-
lished data to reconstruct the imbalance pricing mecha-
nism (as showcased in Fig. 1), and, thus, the associated
imbalance price [33, 34].
2.2. Decision-Making Process

When optimizing its imbalance position, the market
player can make use of a risk-aware stochastic decision sup-
port tool in its quarter-hourly routine; see Fig. 2. Indeed,
its use is motivated by the significant variability and un-
certainty exhibited by the system imbalance, arising from,
e.g., renewable-based or load forecasting errors. Hence,
based on a risk attitude ε, the decision support tool aims
at providing an optimal imbalance position for the market
player, while indicating the associated in-sample objec-
tive outcome f IS

ε for the next market period. As shown in
Fig. 2, we further support the market player in its decision-
making process by adding our automatic risk adjustment
tool. This tool relies on a ML-based approach to adjust
the risk attitude of the market player; see more details
in Section 3. The selected risk attitude is then used in
the subsequent risk-aware stochastic optimization tool to
calculate its optimal position in the imbalance settlement
market.

Once the imbalances of all market players are settled,
an out-of-sample objective outcome fOS

ε can be generated
in an ex-post analysis by confronting the optimised imbal-
ance position of the market actor at a given risk attitude ε
with the actual realization of the system imbalance. This
computation can stem from real-life market outcomes or
complex market simulators. The latter option is used in
this paper (as shown in Fig. 2).
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Figure 2: The integration of the proposed automatic risk adjustment tool within the decision-making process of an actor participating in the
single price imbalance settlement. The decision support tool is run sequentially (96 times a day) at the start of each 15 minutes imbalance
settlement period.

3. Automatic Risk Adjustment Tool

There exists inevitably a gap between an in-sample ob-
jective outcome (f IS

ε ) provided by a model, i.e., the opti-
mal objective value of a risk-aware stochastic optimization
tool at a risk-aversion parameter ε, and the correspond-
ing out-of-sample objective outcome (fOS

ε ) obtained when
the actual realization of the uncertainty is revealed. The
gap between in-sample and out-of-sample objective out-
comes can arise from either a misrepresentation of the un-
certainty [35] or a simplified representation of the market
environment. Indeed, a risk-aware stochastic optimization
tool is generally composed of two stages (respectively de-
scribed in Sections 4.1 and 4.2 for our application): (i) an
uncertainty model, which allows identifying a probabilistic
representation of the future possible realizations of ran-
dom variables, and (ii) a risk-aware stochastic optimiza-
tion model, which mathematically expresses the market
environment in which the actor operates, and generates
optimal decision outcomes at a pre-defined risk attitude,
based on the prior representation of uncertainties.

Hence, the in-sample objective value, provided by the
risk-aware stochastic optimization tool, channels the un-
derstanding of both the uncertainty and risk-aware opti-
mization models at a given risk-aversion parameter and
at a specific decision stage. The purpose of our proposed
ML-based module is to add an additional learning stage
on top of the in-sample objective value to provide an early
estimate of the out-of-sample objective value. Practically,
the module is designed as an ML-based regression model,
which predicts online approximations of the out-of-sample
objective outcomes, based on which the most suited risk-
aversion parameter and, thus, the optimal risk-aware de-
cision variables are computed.

3.1. Training Procedure

To capture the misspecification of the uncertainty and
risk-aware optimization models, the ML-based module
must be firstly trained on a database D that maps the in-
sample objective outcomes with the actual ones. As shown
in Fig. 3, this necessary learning stage is represented by

Step (A) which generates a database D, i.e., the inputs
F IS
n = {f IS

ε,n, ∀ε ∈ E} and outputs FOS
n = {fOS

ε,n , ∀ε ∈ E},
on the n = 1, ..., ND anterior time steps, whose relation-
ship must be learnt for different risk-aversion parameters
ε ∈ E . The out-of-sample objective outcomes FOS

n can
be generated in an ex-post analysis for each risk-aversion
level ε. Then, in Step (B), the objective is to optimize the
parameters θ of the ML model gθ such that we accurately
map the outputs FOS

n to the given inputs F IS
n :

θ∗ = arg min
θ

ND∑
n=1

L(gθ(F IS
n ),FOS

n ), (1)

where L(., .) is a user-defined loss function that quantifies
how well the model fits the data.

3.2. Online Risk Attitude Selection

In the online stage (after the model has been trained),
the ML-based module is used to predict approxima-
tions of the out-of-sample objective outcomes F̂OS

new ={
f̂OS
ε,new, ∀ε ∈ E

}
for different risk-aversion parameters ε ∈

Ex-post analysis (generated for all risk attitudes           ) 

Optimal decision variables 

at a risk attitude

Actual realization

of the uncertainty
Computation of the 

out-of-sample

objective outcome

D

D

Computation of the in-sample objective outcome

provided by the optimization tool for all risk attitudes

A. Construction of database D  (                               previous time steps)

B. Training of the ML module (ML parameters 𝜃 updated on a daily basis)

Figure 3: The training procedure of the ML-based module within a
supervised framework.
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the online phase, when a new decision stage is performed, the trained
ML-based module estimates the out-of-sample objective outcomes
F̂OS

new based on the new in-sample objective values F IS
new, provided

by the risk-aware optimization tool for different risk attitudes ε ∈ E.
Then, the optimal risk attitude ε∗ is selected based on the maximum
value of F̂OS

new.

E on a new instance F IS
new =

{
f IS
ε,new, ∀ε ∈ E

}
. Then,

the most suited risk-aversion parameter, and consequently
the most optimal risk-aware decision variables, can be se-
lected based on the maximum value of the estimated out-
of-sample objective outcomes. This process is showcased
in Fig. 4.

3.3. Machine-Learning Models

In this paper, five ML models are assessed and com-
pared, including a linear model (LR), a shallow multi-
layer perceptron (1-MLP), random forest (RF), gradient
boosted decision trees (GBDT) and the k -nearest neigh-
bours (k -NN), for the E = |E| risk attitudes, where |E|
stands for the cardinality of the set E . The first four mod-
els, i.e., LR, 1-MLP, RF and GBDT, represent a snapshot
of well-established ML techniques, as exemplified by their
common use in contests such as the Global Energy Fore-
casting Competition [36]. The k -NN method provides an-
other simple and yet competitive ML alternative, which
differs from the four other methods by the fact that no
model parameters θ need to be trained. In complement,
the five ML models have already shown a high accuracy
for approximating the objective outcomes of real-time op-
eration processes [37, 38].

The LR model gθ is simply expressed as AF IS
new + b,

where the model parameters θ (to be optimized) are the
slopes A(E×E) and intercepts b(E×1). The loss function
L(., .) is based on the least-squares criterion.

The 1-MLP model is the traditional architecture of
neural networks, where the input information F IS

new is prop-
agated through a hidden layer containing H processing
units (neurons). Each neuron consists of the application
of a non-linear activation function kh(.), e.g., the rectified
linear unit (ReLU) function, on the weighted sum of the

inputs:

yh = kh

(∑
ε∈E

win
hεf

IS
ε,new

)
∀h ∈ H. (2)

Then, the output vector F̂OS
new is given by the appli-

cation of the linear function ko(.) on the hidden units y.:

f̂OS
ε,new = ko

(
H∑
h=1

wout
εh yh

)
∀ε ∈ E . (3)

Using the mean square error as loss function L(., .),
the backpropagation algorithm can be used to optimize

the network weights w
{in,out}
· .

RF and GBDT are ensemble methods based on decision
trees. A decision tree T is a hierarchical model combin-
ing a sequence of simple logical tests, e.g., the comparison
between a numeric input and a threshold value, that re-
cursively splits the paired dataset D into distinct (smaller)
subsets. Hence, the parameter θm of a binary decision tree
at a node m is the split sm that yields locally the sharpest
partition of the subset Dm at the node m into a left and
right nodes, respectively noted ml and mr. The ‘sharp-
ness’ of a split sm at a node m can be measured by the
decrease of an impurity function i(.):

∆i(sm) = i(m)− NDml

NDm
i (ml)−

NDmr

NDm
i (mr) , (4)

where ND{m,ml,mr} are the numbers of instances contained
in D{m,ml,mr}, respectively. In a regression-based frame-
work, i(.) is usually derived from the variance:

i(m) =
1

NDm

∑
fOS
ε,n∈Dm

(
fOS
ε,n − f

OS,Dm
ε

)2

, (5)

where fOS,Dm
ε is the mean value of the outputs at the node

m for a risk-aversion parameter ε. Such a i(.) results, thus,
in assigning, at each terminal node z, the average value of
the corresponding subset of outputs fOS

ε,n ∈ Dz. Hence, the
prediction of a new instance consists in (i) identifying the
terminal node to which it belongs and (ii) retrieving the
forecast value assigned to the corresponding node:

f̂OS
ε,new = Tε

(
Sε,F IS

new

)
∀ε ∈ E . (6)

where Sε define the splits of the decision tree Tε at a risk-
aversion parameter ε.

In RF, an ensemble of NRF decision trees are inde-
pendently grown using the aforementioned approach, with
the particularity that each split of each tree is constructed
based on a random subsample of the data set and a ran-
dom subset of features, allowing the reduction of the vari-
ance of the entire model. A new prediction is obtained by
averaging the outcomes of each decision tree:

f̂OS
ε,new =

1

NRF

NRF∑
i=1

Tε,i
(
Sε,i,F IS

new

)
∀ε ∈ E . (7)
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As for the GBDT method, the trees are not built inde-
pendently but rather in an additive fashion. For the p-th
iteration, the GBDT model gθ is written as:

gpθ (F IS
new) = gp−1

θ (F IS
new) + αT p

(
F IS

new

)
, (8)

where α is the learning rate. At each stage, the additional
tree T p is updated to minimize the residuals of the p − 1
previously generated trees:

T p = arg min
T

ND∑
n=1

L
(
fOS
ε,n , g

p−1
θ

(
F IS
n

)
+ T

(
F IS
n

))
, (9)

where L(., .) is the mean square error function, and ND is
the number of instances contained in the database D. The
overall approach is similar to the gradient descent algo-
rithm in which the added tree T p is optimized to leverage
the prediction errors of its predecessors.

The k -NN algorithm relies on the concept of learning
by analogy: based on the creation of a paired dataset, the
prediction of a new instance is carried out on the average
value of the k nearest neighbours in the dataset where
the closeness condition is determined based on a distance
metric (e.g., the euclidean distance). For a new instance,
the k -NN estimate is given by:

F̂OS
new = g(F IS

new) =
1

k

ND∑
n=1

xnFOS
n , (10)

where xn ∈ {0, 1} depending on whether or not F IS
n is

among the k -nearest neighbours of F IS
new and ND is the

number of instances within the database D.
In practice, new information is continuously revealed

and the training procedure must be updated over time. In
this context, an appealing feature of k -NN is that it seam-
lessly supports online updates [39]. Its prediction perfor-
mance is simply improved by adding new instances to the
dataset, while the other ML models need the additional
Step (B) to calculate their optimal ML parameters θ∗. In
our case study focusing on single price imbalance settle-
ment markets, the parameters θ∗ are updated on a daily
basis resulting in a balance between computational burden
and model precision.

In general, each of the ML models are characterized by
hyper-parameters, which are (task-dependent) parameters
reflecting the complexity of the model, e.g., the number of
hidden units of neural networks, the number of basic trees
in RF or the number of K neighbours. These values are
typically estimated using a grid search approach, which is
embedded within a cross validation scheme [40].

4. Risk-aware Stochastic Optimization Tool

In this section, we present the risk-aware stochastic
optimization tool of our electricity market application.
First, we propose two methods for modeling the uncer-
tainty of the system imbalance: (i) a deterministic and

set-based method, which is used for the robust optimiza-
tion framework, and (ii) a scenario-based method, which is
applied in the CVAR-based stochastic optimization frame-
work. Both methods rely on a probabilistic forecasting
tool for predicting the conditional quantiles of the system
imbalance. Second, we introduce the mathematical formu-
lation of both risk-aware stochastic optimization models,
i.e., the robust optimization and CVaR-based stochastic
frameworks, solved by the market actor. The optimization
model relies on a bi-level approach to endogenously antic-
ipate the imbalance price distribution based on the sys-
tem imbalance uncertainty and the optimized imbalance
position of the market player. This (single time-step) op-
timization framework is run sequentially (96 times a day)
at the start of each 15 minutes imbalance settlement pe-
riod, by exploiting the last measured values of the system
imbalance communicated by the system operator.

4.1. System Imbalance Uncertainty Modeling

We leverage our probabilistic forecasting tool from [30],
which relies on a sequence-to-sequence recurrent neural
network architecture, to forecast the future system imbal-
ance. The uncertainty is endogenously captured by train-
ing the forecaster using the quantile regression method.
The inputs of the forecaster are, among others, lagged
measurements of the system imbalance, electrical load and
power production, day-ahead forecasts of renewable gen-
eration and electrical load, and schedules of conventional
generation (which are publicly available on the Belgian
TSO’s website [32]). On the other hand, the outputs

of the forecaster are the q-quantiles ŜI
(q)

for q ∈ Q =

{0.01, 0.05, 0.25, 0.5, 0.75, 0.95, 0.99}, i.e., P(SI ≤ ŜI
(q)

) =
q. Hence, following [41], for each quarter hour, an empiri-
cal cumulative distribution function (ECDF) is estimated
based on the resulting discrete set of q-quantiles through
cubic spline interpolation.

For the robust optimization framework, we define
an uncertainty set U as a box bounded by a symmetric pair
of q-quantiles from the empirical ECDF. Hence, symmetric

lower and upper bounds
{

ŜI
(q)
, ŜI

(1−q)}
can be selected,

each combination ensuring a certain probabilistic guaran-
tee that the future system imbalance is realized within the
uncertainty set:

U =
{

SI ∈ Rn : ŜI
(q)
≤ SI ≤ ŜI

(1−q)}
, (11)

In this approach, the risk-aversion parameter ε = 1−2q
determines the confidence interval of the uncertainty set.
Hence, a larger ε yields a larger (and more conservative)
uncertainty set, while a smaller value leads to a smaller
uncertainty set.

For the CVaR-based stochastic optimization
framework, following [41], a Monte Carlo approach is
applied to generate scenarios from the ECDF. This ECDF
is derived from the outputs of our state-of-the-art proba-
bilistic forecasting tool. For each optimization period, a
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set Ω of N = 100 scenarios is constructed, each of them as-
sociated with a probability of occurrence p = 1/N . In our
experiments, increasing further the number of scenarios do
not improve the results of the CVaR-based stochastic op-
timization framework. The financial risk associated with
each scenario is then controlled through the CVaR metric
(see Section 4.2).

4.2. Risk-Aware Stochastic Optimization Model

The participation of the actor in the single price im-
balance settlement is modeled in a bi-level optimization
framework in which the market actor anticipates the price
of the imbalance settlement mechanism (λSI) by having at
its disposal (i) a list, typically made available by the TSO
[32], of the submitted balancing offers and the associated
activation prices, and (ii) its own probabilistic description
of the future system imbalance volume. The upper level
(12a)-(12b) aims at defining the optimal imbalance posi-
tion (eimb,+/−) of the market actor and the lower level
(12c)-(12f) performs the single imbalance pricing mecha-
nism. In a deterministic setting, the problem reads as:

max
eimb,+/−
≥0

,λSI
f IS
(
eimb,+/−, λSI

)
(12a)

s.t. eimb,+/− ∈ ΠUL (12b)

min
ΘLL={sr+/−}

C
(
ΘLL

)
=
∑

r+∈R+

Λr+sr+ −
∑

r−∈R−
Λr−sr− (12c)

s.t.
∑

r+∈R+

sr+ −
∑

r−∈R−
sr− =

− (eimb,+ − eimb,−)− ŜI : λSI
(12d)

sr+ ≤ Sr+ : µr+ ∀r+ ∈ R+ (12e)

sr− ≤ Sr− : µr− ∀r− ∈ R− (12f)

− sr+ ≤ 0 : γr+ ∀r+ ∈ R+ (12g)

− sr− ≤ 0 : γr− ∀r− ∈ R− (12h)

where ΘLL = {sr+ , sr−} are the primal variables of the
lower-level problem, while the set {µr+ , µr− , λSI, γr+ , γr−}
are the dual variables. The objective function (12a), max-
imizing the profit of the market actor, is computed as:

f IS
(
eimb,+/−, λSI

)
= (λSI − C+)eimb,+ − (λSI − C−)eimb,−

(13)

where C+ and C− define the cost structure of the asset.
Practically, the market actor is incentivized to adopt a

long position eimb,+ when λSI > C+, and to favor a short
position eimb,− when λSI < C−. Constraint (12b) en-
sures that these decisions comply with the technical mar-
gins ΠUL of the agent.

The lower-level reflects the costs minimization prob-
lem (12c) in which the TSO carries out the merit-order-
based activation of operating reserves (where more eco-
nomic offers are activated first). The offers r+ ∈ R+ and
r− ∈ R− are respectively activated at a price Λr+ and

Λr− to compensate the negative and positive imbalances.
The imbalance price λSI is the price associated with the
last (marginally activated) offer, which is endogenously ob-
tained from the dual variable of the constraint (12d). The
latter guarantees that the activated amount of reserves ex-
actly offsets the anticipated imbalances caused by all other
actors (ŜI), while accounting for the strategic participa-
tion of the market participant (eimb,+/−). Finally, the set
of constraints (12f) ensures that the activated balancing
volumes sr+ and sr− do not violate the energy limits (i.e.,
capacity Sr+ and Sr− offered at an earlier stage).

A robust optimization-based equivalent of problem
(12) reads as:

max
σ,eimb,+/−

≥0
,λSI
v

σ (14a)

s.t. σ ≤ f IS
(
eimb,+/−, λSI

v

)
, ∀v = {V1, V2} ∈ U , (14b)

(12b) − (12f), ∀v = {V1, V2} ∈ U , (14c)

where U is the uncertainty set, which can be tailored to
better reflect the risk behavior of the agent (Section 4.1).
In this robust approach, the objective function (14a) im-
munizes the operation strategy against the worst-case re-
alization of the system imbalance contained in the uncer-
tainty set U . Practically, an auxiliary variable σ is intro-
duced for representing the worst-case profit f IS(.) through
the additional constraint (14b), and, the continuity of the
uncertainty set U is managed by considering only the finite
number of vertices v = {V1, V2} contained in U [30].

An alternative approach is to rely on a scenario-based
framework, in which risk can be incorporated through the
CVaR measure. This allows quantifying the level of trad-
ing risk, and to reduce the volatility of the profit among
the set of scenarios Ω. At the given confidence interval ε ∈
[0, 1] (representing a risk-aversion parameter), the CVaRε

is defined as the expected profit of the (1− ε)×100% worst
scenarios. The CVaR-based stochastic program can
then be defined as:

max
ζ,ηw
≥0
,eimb,+/−

≥0
,λSI
w

ζ − 1

1− β
∑
w∈Ω

πwηw (15a)

ζ − f IS
(
eimb,+/−, λSI

w

)
≤ ηw, ∀w ∈ Ω, (15b)

(12b) − (12f), ∀w ∈ Ω, (15c)

where ζ is the Value-at-Risk (VaR), i.e., the (1-ε)-quantile
of the profit distribution of scenarios. The non-negative
auxiliary variable ηw corresponds to the difference between
the VaR ζ and the market actor profit f IS (.) if it is posi-
tive. A larger risk-aversion parameter ε leads to more con-
servative decisions (as only few worst scenarios are con-
sidered), while a smaller value entails more risk-neutral
decisions (as the set of scenarios is widened). Note that a
trade-off between the expected profit and the CVaR met-
ric, i.e., a weighted average of both in the objective func-
tion, is also doable.
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In order to solve the resulting bi-level problems (14)
and (15) by off-the-shelf optimization solvers, they can be
converted into an equivalent mixed-integer linear program-
ming (MILP) formulation using the following steps [30]:
(i) the convex (linear and continuous) lower-level problem
is replaced by its Karush-Khun-Tucker (KKT) optimality
conditions, (ii) the non-linearities of the complementarity
conditions within the KKT conditions are equivalently ex-
pressed as a set of mixed-integer linear constraints using a
Big-M approach, and (iii) the bilinear term in the objec-
tive function is replaced by the related equivalent linear
expression from the strong duality equation. In step (ii),
the selection of Big-Ms values can be a challenging task,
since improper values may lead to highly suboptimal so-
lutions [42]. Here, Big-Ms values are determined based on
the economic or physical upper bounds of their associated
variables (Appendix A). The resulting MILP formulation
is solved by the traditional branch-and-cut algorithm. If
one encounters computational issues, advanced decompo-
sition techniques could be used to speed up the solution
procedure [43].

5. Case Study

The probabilistic prediction of the system imbalance
is performed at the start of each quarter hour of the test
set, i.e., the year 2018 including 35040 data points, using
the Belgian data published in [44], in accordance with the
methodology in [30]. The forecaster is trained using his-
torical data from 2014 until end of December 2016, and is
stabilized with regularization techniques (e.g., early stop-
ping) using the year 2017 as a validation set to avoid over-
fitting.

All the market data required for the risk-aware opti-
mization tool are also available in [44]. At each time step,
the feasible region of the market actor portfolio ΠUL is
constrained by (upward and downward) 30 MWh energy
limits. The cost parameters C+ and C− are respectively
set to 50 and 30 e/MWh ensuring a consistent imbalance
position regarding the imbalance price [30]. For both risk-
aware optimization methods, we consider 11 risk attitudes
for the actor corresponding to the following ε ∈ {0, 0.1,
0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.98} risk-aversion pa-
rameters. This allows covering the entire range of possible
risk attitudes, from the most risk-seeking (ε = 0) to the
most risk-averse (ε = 0.98) ones.

To emphasize the learning ability of the ML tools sup-
porting the selection of a risk policy, these models are
trained only on the data available during the year 2018,
which are also published in [44]. The first half of January
is used to tune the hyper-parameters of the models using
a grid search embedded within a cross validation scheme,
and the latter are then recalibrated on a daily basis, using
the new information revealed over time. The final configu-
rations of the five ML regression models (along with their
search spaces) are:

• An LR model.

• A 1-MLP model with H = 20 neurons using early stop-
ping, and rectified linear units (ReLU) as activation
functions. The search range of H was {10, 20, 50, 100}.

• An RF model with NRF = 100 and a maximum depth of
5. We have varied the maximum depth between {3, 5, 8}
for the grid search.

• A GBDT model, in which α = 0.05, the maximum
depth is 3, and the number of iterations is determined
by using early stopping. The search range of α was
{0.3, 0.2, 0.1, 0.05}, and we also varied the maximum
depth between {3, 5, 8}

• A k -NN model with k = 1000, where the search range
of k was {1, 100, 500, 1000, 1250}.

Interestingly, it should be noted that the hyperparam-
eter k can be naturally interpreted. If k = 1, the selection
of the risk policy is only based on the ex-post economic
performance of the closest instance within the database
(where the closeness condition is computed based on the
in-sample objective values using the euclidean distance).
On the other hand, if k is set to the number of instances
within the database, the risk policy’s selection of the k-nn
method would coincide with the one obtained using the
traditional offline approach.

The results are computed over the period spanning
from 15 January until the end of December 2018. The
notation RO-Q stands for the robust optimization, while
SP-CVaR denotes the CVaR-based stochastic optimiza-
tion. The time step ∆t is equal to an imbalance settlement
period, i.e., 15 minutes. The performance of the proposed
methodology is principally evaluated through one indica-
tor, which is averaged over all the quarter hours of the
test set: the actual profit fOS(.) = (λSI − C+)eimb,+ −
(λSI −C−)eimb,−, where the imbalance price is computed
via the ex-post single imbalance pricing mechanism. The
ex-post single imbalance pricing mechanism is modelled
using the cost minimization problem (12c) accounting for
the actual system imbalance and the imbalance position
of the market participant (eimb,+/−).

All the experiments have been conducted on an Intel
Core i7-8850H CPU running at 2.60 GHz and with 16.0
GB of RAM, and coded in Python 3.6. The probabilistic
forecasting model and the 5 ML models are implemented
using the Scikit-learn and Keras packages. The MILP for-
mulations for the risk-aware optimization models are writ-
ten using the Pulp package and solved using the Gurobi
8.1.1 solver.

5.1. Automatic Risk Policies

Table 1 shows the evolution of the ex-post profits
achieved by the different ML techniques over several time
periods of the test set for RO-Q and SP-CVaR. These re-
sults are put into perspective with (i) Online: the ideal
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Table 1: Rolling average of the out-of-sample profits fOS(.) over different time periods. The percentage values indicate the variation of the
out-of-sample profit with respect to the Offline strategy.

[€/∆t] Offline LR 1-MLP RF GBDT k -NN Online

RO-Q ε = 0.7

1 day 127.6 107.8
(H15.5%)

51.1
(H60%)

99
(H22.4%)

102.4
(H19.7%)

124.6
(H2.3%)

317.8
(N149%)

1 week 255 247.9
(H2.8%)

271.6
(N6.5%)

282.4
(N10.7%)

255.9
(N0.3%)

234.6
(H8%)

633.6
(N148.5%)

1 month 198.2 205.5
(N3.7%)

202.1
(N2%)

223.1
(N12.6%)

201.8
(N5%)

208
(N5.1%)

528.4
(N166.6%)

3 months 340.5 362.4
(N6.4%)

349.2
(N2.6%)

377
(N10.7%)

367.5
(N7.9%)

360.9
(N6%)

696.4
(N104.5%)

6 months 343.1 343.1
(N0%)

341.5
(H0.5%)

366.5
(N6.8%)

360.4
(N5%)

361.6
(N5.4%)

693.3
(N102.1%)

1 year 281.2 288.3
(N2.5%)

294.1
(N4.6%)

312.9
(N11.3%)

312
(N11%)

315.7
(N12.3%)

622.4
(N121.3%)

SP-CVaR ε = 0.3

1 day 135.2 112.1
(H17%)

131
(H3.1%)

105.3
(H22.1%)

127.6
(H5.6%)

123.12
(H8.9%)

289
(N113.8%)

1 week 323.5 319.2
(H1.3%)

312.4
(H3.4%)

297.1
(H8.1%)

286.6
(H11.4%)

311.7
(H3.7%)

594.1
(N83.6%)

1 month 238.8 242
(N1.3%)

240
(N0.5%)

234.2
(H1.9%)

229
(H4.1%)

245.7
(N2.9%)

496.9
(N108.1%)

3 months 396.5 410.9
(N3.6%)

398.5
(N0.5%)

408.3
(N3%)

396.9
(N0.1%)

416.9
(N5.1%)

672.3
(N69.6%)

6 months 375.1 393.2
(N4.8%)

380
(N1.3%)

392.6
(N4.7%)

382.7
(N2%)

398.8
(N6.3%)

662.1
(N76.5%)

1 year 327 338.1
(N3.4%)

327.9
(N0.3%)

337.3
(N3.1%)

333.3
(N1.9%)

342.7
(N4.8%)

515.7
(N57.7%)

choice of the risk attitude at each quarter hour which is de-
termined ex-post when the actual conditions are revealed
and (ii) Offline: the single choice of a risk-aversion pa-
rameter ε based on the ex-post economic performance of
the different risk-aversion parameters E (from risk-seeking
ε = 0 towards risk-averse ε = 0.98) during the first half
of January. Over the 1-year period, the (omniscient) risk

policies Online for each optimisation methodologies allow
to improve the real revenues by over 121% and 57 % com-
pared to their counterparts Offline, stressing the relevance
of adopting a dynamic risk attitude. As expected, the
optimal risk policy Online for robust approach leads to
greater ex-post profits than the SP-CVaR. This gap can
be explained by the difference in the risk attitude at ε = 0.
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Figure 5: Histograms of the risk-aversion parameters selected over the 1-year period.

9



At this risk-aversion parameter, the robust approach is
purely deterministic and is extremely risk-seeking which
leads to huge rewards in case of perfect information, while
SP-CVaR is only risk-neutral and still takes into account
extreme scenarios in its decision-making, preventing to
fully leverage the added value of a perfect forecast.

Overall, the proposed online selection of the risk at-
titudes (guided by the best ML models) respectively im-
proves the ex-post economic performance by 12.3% and
4.8% for RO-Q and SP-CVaR in comparison with their
counterparts Offline over the 1-year period, which high-
lights the added value of better informing stochastic opti-
mization tools with tailored risk-aversion parameters. In
addition, the ability of ML to dynamically select the opti-
mal risk parameter is analyzed in Fig. 5, by showing the
frequency at which each risk-aversion parameter was cho-
sen over the test set. For clarity, only the two best ML
models are represented, i.e., k -NN and RF for RO-Q, and
k -NN and LR for SP-CVaR.

Regarding RO approaches, the 1 year-based results in
Table 1 show that an online support in the construction
of the uncertainty set is a key element to fully leverage
their potential. Indeed, we see that each ML model al-
lows outperforming the economic gains of the strategy
Offline, emphasizing the importance of the size of the un-
certainty set and its effect on the economic performance
for robust-based optimization formulations. Logically, the
simplest model LR gives less insights about the selection of
the risk-aversion parameter than more advanced ML tech-
niques. In particular, the single parametric models LR and
1-MLP show lower economic performances than the en-
semble methods (RF and GBDT). Interestingly, the k -NN
technique, which is simple and intuitive, shows a high suit-
ability for our application as it outperforms the other ML
techniques over the 1-year period. Additionally, Fig. 5a
demonstrates that both ML techniques (i) select predomi-
nantly (45% and 89% of the time for respectively k -NN and
RF) the optimal risk policies Offline at ε = {0.7, 0.8} and
(ii) timely deviate 16% (k -NN) and 7.5% (RF) of the time
towards riskier strategies at ε = {0, 0.1, 0.2, 0.3}. These
distributions explain the gap in ex-post profit with re-
spect to the optimal (omniscient) strategy Online, which
requires a greedy approach that adopts more than 45% of
the time the most risky strategy.

Concerning SP-CVaR, none of the ML-based strate-
gies provide worse ex-post profit than the offline one over
the period of one year, but their added value in terms
of ex-post profits is lower in comparison with the robust
case. Surprisingly, the simple LR model provides a bet-
ter ex-post performance than the other (more complex)
parametric ML models (1-MLP, RF and GBDT), while
k -NN devises the most optimal online risk strategy. Fig.
5b) gives a first rationale behind such results by showing
the vision of the risk strategies supported by ML: they
adopt regularly the risk-neutral strategy (more than 40%
of the time), while sparsely selecting risk-averse strategies
at ε = {0.5, 0.6}. This kind of risk management, recom-

mended by the optimal one Online, appears to be more
challenging to implement for the more advanced ML mod-
els. Indeed, the latter are inclined to adopt a more con-
servative behaviour, which penalize them more severely in
the SP-CVaR case.

Regarding the evolution over time of the RO-Q and SP-
CVaR ex-post profits, it can be seen that the ML-based
risk strategies have the ability to learn and capture the
adequate risk attitude rapidly, which is reflected by the
positive gains after only a day on the field. In the same
vein, for both optimization tools, the machine learning
approaches exhibit better economic performance than the
offline one after only one month. However, the gap be-
tween ML-based strategies and the approach Offline does
not widen over time after the first month of use. It tends
to show that specific calibration methods for ML models
have to be developed to take full advantage of the new data
that are constantly revealed over time [45]. More particu-
larly, the k -NN method is less affected by the calibration
method. The results of Table 1 indicate that the k-NN
method is emerging over time as the most suited method
for supporting the automatic risk adjustment strategy of
a market player.

The ML-based approach is more computational inten-
sive than Offline strategies as it requires the prior compu-
tations of the in-sample profits F IS = {f IS

ε ,∀ε} as inputs.
In our case study, the averaged computation time of an
in-sample profit f IS

ε is 0.02s for the robust optimization
framework and 1.1s for the CVaR-based stochastic opti-
mization framework with a duality gap of 1% imposed.
Concerning the inference time of the LR, 1-MLP, RF,
GBDT and k -NN methods, their averaged time for out-
putting the most optimal risk attitude are around 0.05ms,
27ms, 112ms, 5ms and 1ms, respectively. Overall, the
prior computations of the in-sample profits F IS are the
most time consuming, however, this issue can be allevi-
ated through parallel computing. There still exists a gap
in computation times between RO-Q and SP-CVaR, e.g.,
RO-Q is 50 times faster than SP-CVaR in our application.
If the computation time is a hard constraint, the RO-Q
approach guided by the k -NN model provides a viable al-
ternative to the Offline SP-CVaR approach. This allows
reducing the ex-post profits differential between RO-Q and
Offline SP-CVaR from 16.3% (Offline RO-Q) to 3.6% (RO-
Q with k -NN model) over the entire year.

Finally, the impact of the imbalances of the agent
on the performance of the TSO balancing dispatch pro-
cedure is studied in Table 2. To that end, the cost
Cos =

∑
r+∈R+

Λr+sr+ +
∑

r−∈R−
Λr−sr− and the activated en-

ergy V act =
∑

r+∈R+

sr+ +
∑

r−∈R−
sr− of each quarter hour

are retrieved from the ex-post analysis and are averaged
over the test set. Results show an average drop of 20%
and 40% for, respectively, the averaged activation of bal-
ancing energy and the costs, thereby reducing the TSO’s
corrective actions at the real-time balancing stage.
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Table 2: TSO Balancing actions and cost for different risk strategies
(the percentage values indicate the variation of the balancing actions
and cost with respect to the non-participation of a market player).

E (V act) [MW/∆t] E(Cos) [€/∆t]
No Participation 24.36 1350.11

RO-Q with k -NN
19.22

(H21.1%)
782.34
(H42%)

SP-CVaR with k -NN
19.39

(H20.4%)
717.83

(H46.8%)

5.2. Offline Risk Policies

Table 3 presents the out-of-sample performance of the
three optimization tools for all possibilities (E = 11) of
offline risk strategies over the entire test set.

Interestingly, the risk approach Offline for the SP-
CVaR case showed in Table 1 has induced a miss-selection
of the risk-aversion parameter in regard to the actual op-
timal offline strategy in Table 3, i.e., ε = 0.3 instead of
ε = 0. It results in a decrease in the ex-post profits by
3.25%. This highlights the difficulty of arbitrary fixing
an offline risk strategy having only a short-term vision on
the out-of-sample economic performance of the risk-aware
optimization tools.

It is also worth mentioning that the SP-CVaR approach
yields the best performance for the risk-neutral strategy,
which stems from two reasons: (i) the forecaster [30] has
been tailored for such an application and it, thus, provides
‘high-quality’ scenarios, and (ii) based on these scenarios,
this framework optimizes the profit in expectation, which
is efficient for decision-making procedure that occur very
regularly in time. In particular, SP-CVaR outperforms the
robust optimization method, with a relative increase of the
actual profits of around 20% on average at their optimal
risk-aversion parameter. It should be stressed that the
SP-CVaR guided by the k -nn model still outperforms the
risk-neutral SP-CVaR.

6. Conclusion

In this paper, an automatic approach, aiming at contin-
uously adjusting the conservativeness of the decisions aris-
ing from risk-aware optimization techniques, is proposed.
This novel approach is applied on the very short-term dis-
patch of a market actor exploiting opportunities in the
European single price imbalance settlement mechanism.

Extensive numerical analyses, using real-world market
data from the Belgian power system over one year, demon-
strates the ability of the proposed approach to achieve ef-
ficient online risk-adjusted strategies for robust-based and

CVaR-based stochastic optimizations. More particularly,
the k -NN technique has been identified as a suited ML can-
didate to support these risk-aware optimization methods
for preemptively devising the risk attitude. More specifi-
cally, both RO-Q and SP-CVaR approaches guided by the
k -nn model have presented promising results as this had
led to a respective increase of 12.3% and 4.8% in the ex-
post profits compared with their offline risk policy-based
counterparts.

The integration of the proposed approach in another
market framework deserves further research efforts. As
an example, the application of this approach in the joint
day-ahead bidding strategy in energy and reserve markets
can bring valuable insights regarding how a market player
adapts its risk strategy over multiple time steps.
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Appendix A. Supplementary Mathematical Ex-
pression

After replacing the lower-level problem (12c) by its
Karush-Kuhn-Tucker conditions and linearising the com-
plementary slackness conditions using the big-M reformu-
lation, an equivalent expression can be obtained with the
following mixed-integer linear constraints:

0 ≤ −sr+ + Sr+ ≤ z1
r+M

1
r+ , ∀r+ ∈ R+, (A.1a)

0 ≤ µr+ ≤ (1− z1
r+)M2

r+ , ∀r+ ∈ R+, (A.1b)

0 ≤ −sr− + Sr− ≤ z1
r−M

1
r− , ∀r− ∈ R−, (A.1c)

0 ≤ µr− ≤ (1− z1
r−)M2

r− , ∀r− ∈ R−, (A.1d)

0 ≤ sr+ ≤ z2
r+M

3
r+ , ∀r+ ∈ R+, (A.1e)

0 ≤ γr+ ≤ (1− z2
r+)M4

r+ , ∀r+ ∈ R+, (A.1f)

0 ≤ sr− ≤ z2
r−M

3
r− , ∀r− ∈ R−, (A.1g)

0 ≤ γr− ≤ (1− z2
r−)M4

r− , ∀r− ∈ R−, (A.1h)∑
r+∈R+

sr+ −
∑

r−∈R−
sr− = −(eimb,+ − eimb,−)− ŜI, (A.1i)

Λr+ − λSI + µr+ = γr+ , ∀r+ ∈ R+, (A.1j)

Table 3: Average of the out-of-sample profits fOSε (.) for the different offline risk strategies over the 1-year period.

Model Type Unit [€/∆t] Risk-aversion parameter (ε)
ε=0 ε=0.1 ε=0.2 ε=0.3 ε=0.4 ε=0.5 ε=0.6 ε=0.7 ε=0.8 ε=0.9 ε=0.98

RO-Q E(fOSε ) 124.1 185.1 227.4 251.8 263.4 270.6 275.4 281.2 280.5 221.2 100.5
SP-CVaR E(fOSε ) 338 335 331,9 327 315 300,1 292,1 283,2 244,2 175,7 129
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M i
j i = {1, 3} i = 2 i = 4

j = r+ Sr+ max
r+∈R+

(Λr+)− Λr+ − min
r−∈R−

(Λr−) + Λr+

j = r− Sr− − min
r−∈R−

(Λr−) + Λr− max
r+∈R+

(Λr+)− Λr−

Table A.1: big-Ms values

− Λr− + λSI + µr− = γr− , ∀r− ∈ R−, (A.1k)

where M1
r+ , M2

r+ ,M3
r+ , M4

r+ , M1
r− , M2

r− , M3
r− , M4

r− are
large positive constants and z1

r+ , z2
r+ , z3

r+ , z4
r+ , z1

r− , z2
r− ,

z3
r− , z4

r− are binary variables.
The big-Ms values used in our case studies are shown

in Table A.1. They are determined based on the eco-
nomic or physical upper bounds of their associated vari-
ables. For instance, the constraints related to the dispatch
of operating reserves sr+ (or sr−), i.e., eq. (A.1a), (A.1c),
(A.1e), (A.1g), are naturally bounded by the energy limits
of blocks Sr+ (or Sr−). Consequently, the associated big-
Ms values M1

r+ and M3
r+ (or M1

r− and M3
r−) are fixed by

the energy limits of block Sr+ (or Sr−). The same logic
can be applied for determining M2

r+ , M4
r+ , M2

r− and M4
r− .
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