Fano Resonances in Hyperbolic metamaterial-based cavities

Fabio Vaianella*, Bjorn Maes

UMONS, Belgium
Micro- and Nanophotonic Materials Group

Overview

> Introduction to hyperbolic metamaterials (HMMs)

Some properties

> Hyperbolic cavities with Fano resonances

Overview

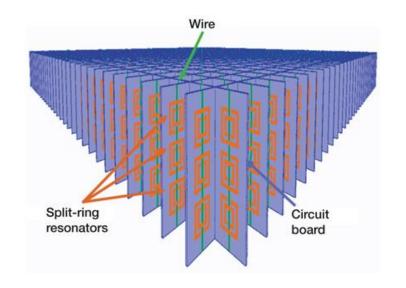
> Introduction to hyperbolic metamaterials (HMMs)

> Some properties

> Hyperbolic cavities with Fano resonances

Metamaterials

Metamaterials: « material engineered to have a property that is not found in nature »

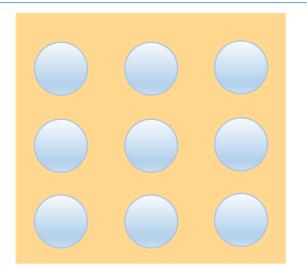


Building blocks : subwavelength « metaatoms »

Optical properties from design rather than base materials

Applications: negative refractive index, invisibility cloak, epsilon-near-zero metamaterials, epsilon-near-pole metamaterials, hyperlens, ...

Hyperbolic metamaterial: anisotropic media



Standard effective medium theory (Bruggeman):

$$ar{ar{arepsilon}} = egin{bmatrix} arepsilon_{\parallel} & 0 & 0 \ 0 & arepsilon_{\parallel} & 0 \ 0 & 0 & arepsilon_{\perp} \end{bmatrix}$$

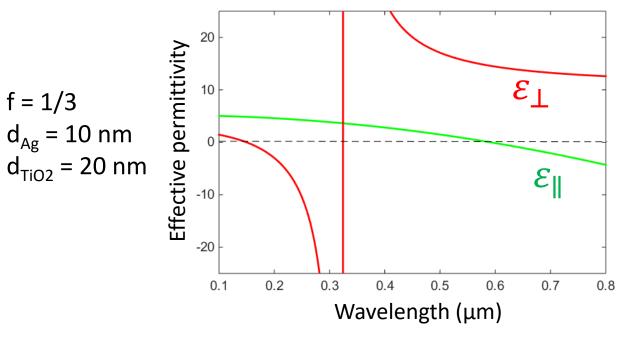
$$\varepsilon_{\parallel} = f \varepsilon_m + (1 - f) \varepsilon_d$$

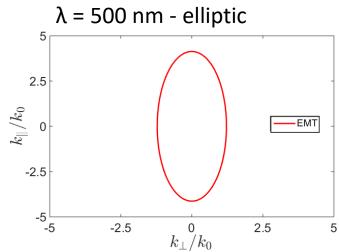
$$\varepsilon_{\perp} = \frac{\varepsilon_m \varepsilon_d}{\varepsilon_m (1 - f) + \varepsilon_d f}$$

$$\frac{k_{\parallel}^2}{\varepsilon_{\perp}} + \frac{k_{\perp}^2}{\varepsilon_{\parallel}} = k_0^2$$

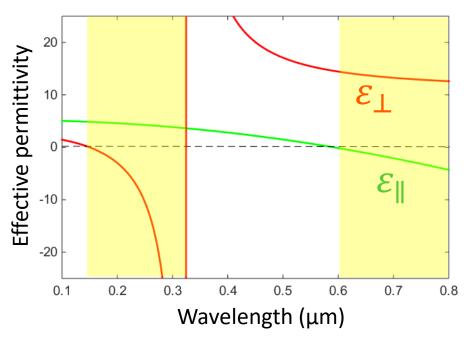
TM or p-polarization

Example with Ag and TiO₂





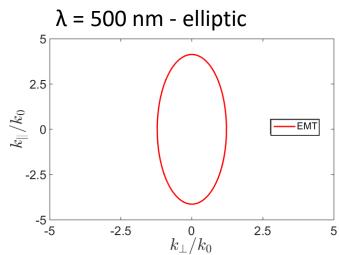
Example with Ag and TiO₂



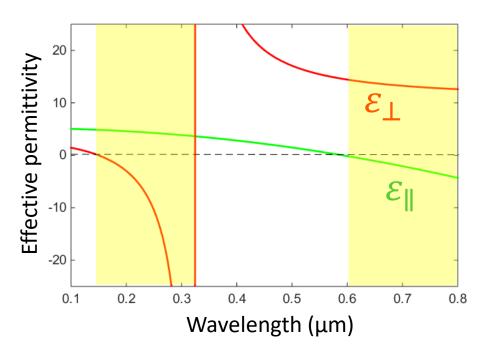
$$\varepsilon_{\parallel}$$
 . $\varepsilon_{\perp} < 0$ possible

$$\frac{k_{\parallel}^2}{\varepsilon_{\perp}} + \frac{k_{\perp}^2}{\varepsilon_{\parallel}} = \frac{\omega^2}{c^2}$$

Hyperbolic isofrequency curve!



Example with Ag and TiO₂

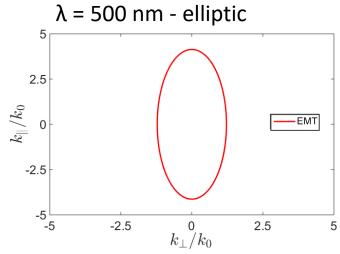


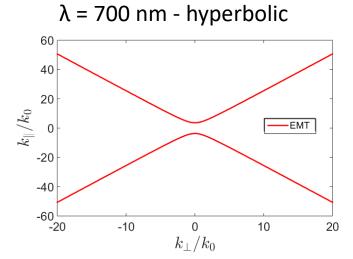
$$\varepsilon_{\parallel}$$
. $\varepsilon_{\perp} < 0$ possible

$$\frac{k_{\parallel}^2}{\varepsilon_{\perp}} + \frac{k_{\perp}^2}{\varepsilon_{\parallel}} = \frac{\omega^2}{c^2}$$

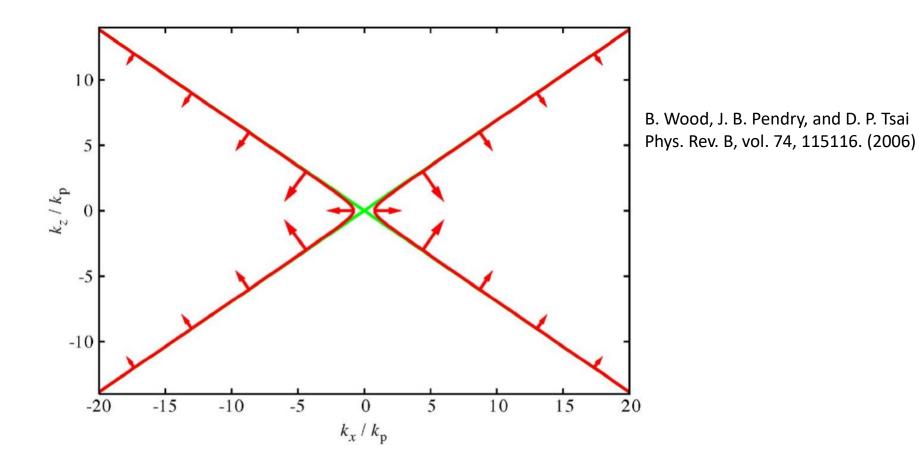
Hyperbolic isofrequency curve!

8





Group velocity

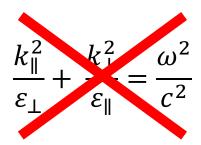


Preferred direction of propagation along a cone!

Limits of EMT

$$\frac{k_{\parallel}^2}{\varepsilon_{\perp}} + \frac{k_{\perp}^2}{\varepsilon_{\parallel}} = \frac{\omega^2}{c^2}$$

Limits of EMT



Origin of hyperbolic properties: plasmonic → Nonlocality

Limits of effective medium theory

$$\cos(k_y D) = \frac{(\kappa_d \varepsilon_m + \kappa_m \varepsilon_d)^2}{4\kappa_d \kappa_m \varepsilon_d \varepsilon_m} \cosh(\kappa_d d_d + \kappa_m d_m) - \frac{(\kappa_d \varepsilon_m - \kappa_m \varepsilon_d)^2}{4\kappa_d \kappa_m \varepsilon_d \varepsilon_m} \cosh(\kappa_d d_d - \kappa_m d_m)$$

$$\kappa_{m,d} = \sqrt{k_x^2 - \varepsilon_{m,d} k_0^2}$$

Limits of effective medium theory

0

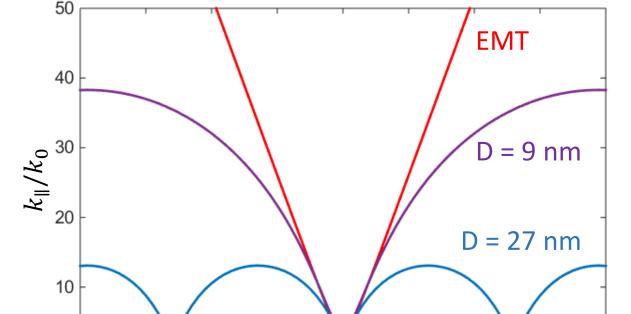
-40

-30

-20

-10

$$\cos(k_y D) = \frac{(\kappa_d \varepsilon_m + \kappa_m \varepsilon_d)^2}{4\kappa_d \kappa_m \varepsilon_d \varepsilon_m} \cosh(\kappa_d d_d + \kappa_m d_m) - \frac{(\kappa_d \varepsilon_m - \kappa_m \varepsilon_d)^2}{4\kappa_d \kappa_m \varepsilon_d \varepsilon_m} \cosh(\kappa_d d_d - \kappa_m d_m)$$



$$\kappa_{m,d} = \sqrt{k_x^2 - \varepsilon_{m,d} k_0^2}$$

Limited inside Brillouin zone:

 $\frac{\pi}{D}$

Standard effective medium approach (EMT) not valid in many case

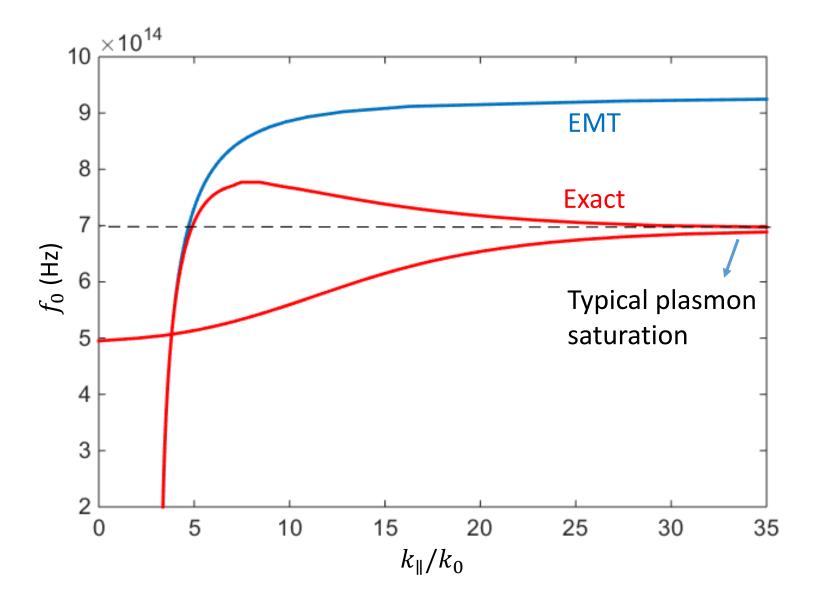
 k_{\perp}/k_0

10

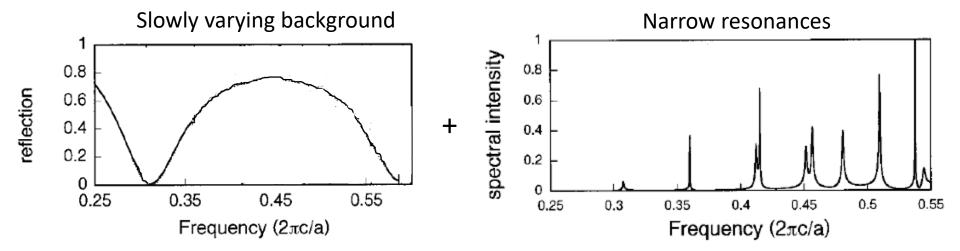
20

30

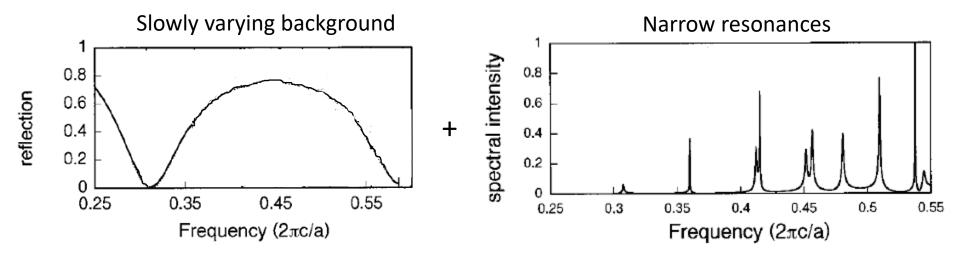
40

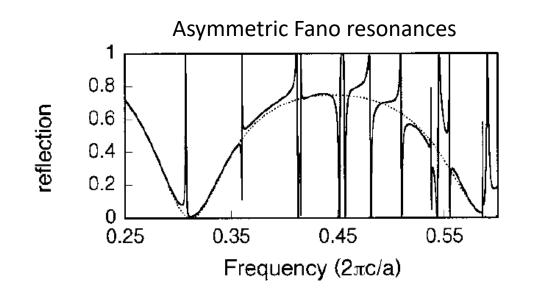


Fano resonances



Fano resonances





S. Fan and J.D. Joannopoulos, Phys. Rev. B, vol. 65, 235112. (2002)

Overview

> Introduction to hyperbolic metamaterials (HMMs)

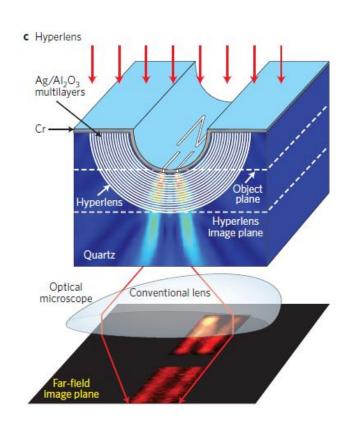
> Some properties

> Hyperbolic cavities with Fano resonances

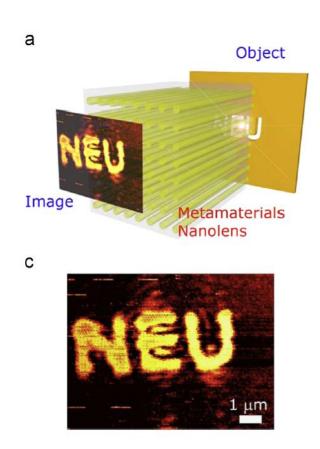
High-k propagating waves

High-k waves can propagates inside HMM \rightarrow Possibility to overcome diffraction limit

Application: hyperlens



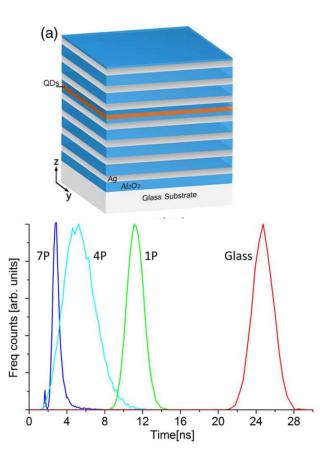
Liu, Z. et al., Science, vol. 315, 1686. (2007)



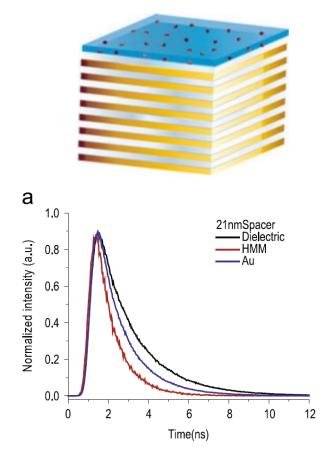
B. D. F. Casse et al., Appl. Phys. Lett., vol. 96, 023114 (2010)

Extremely high PDOS

Nonresonant phenomena → Broadband extremely high PDOS Spontaneous emission engineering possible

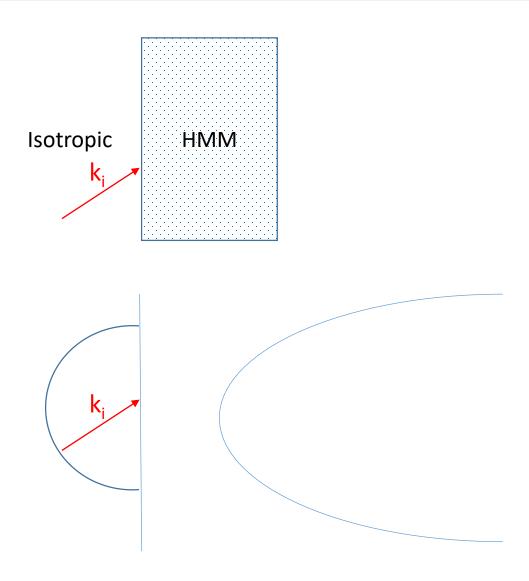


Galfsky, T. et al., Optica, vol. 2, 62-65. (2015)

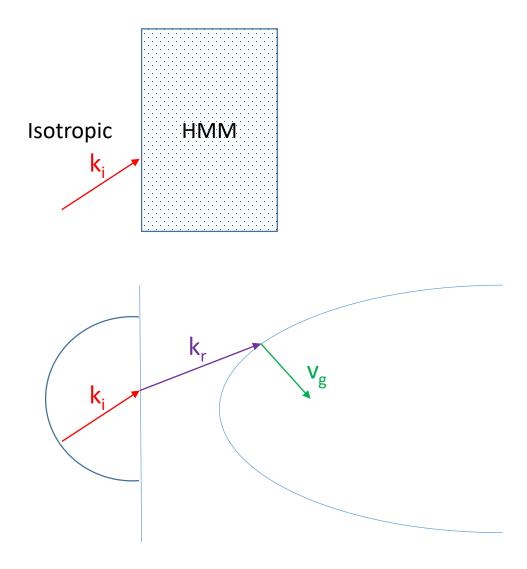


Z. Jacob et al, Applied Physics B, vol. 100, 215. (2010)

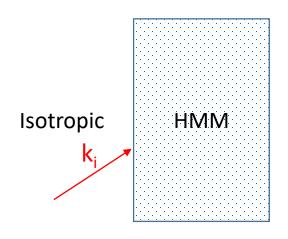
Negative refraction

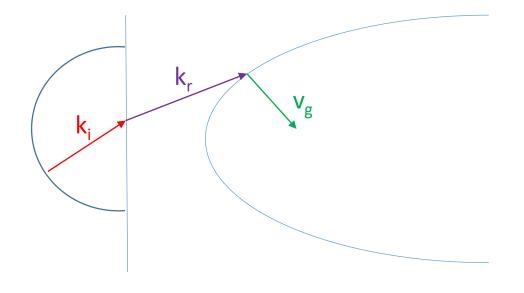


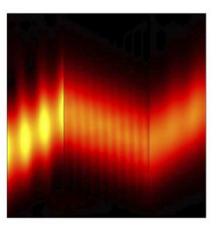
Negative refraction



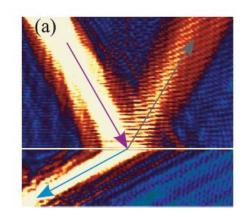
Negative refraction







Y. Liu et al, Optics Express, vol. 16, 15439. (2008)



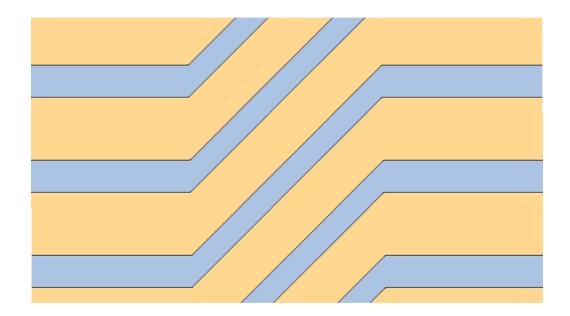
A. Orlov et al, Physical Review B, vol. 84, 045424 (2011)

Overview

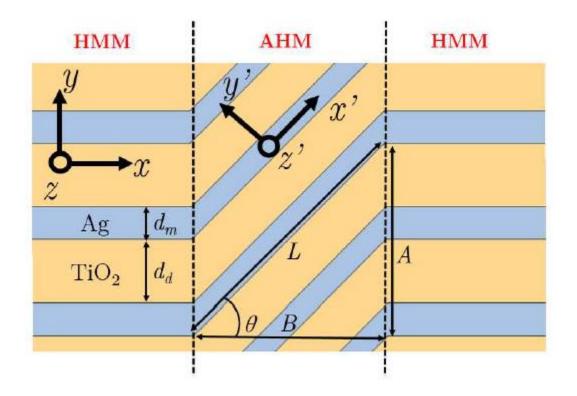
> Introduction to hyperbolic metamaterials (HMMs)

- > Some properties
- > Hyperbolic cavities with Fano resonances

Reflection and transmission in slanted cavities



Reflection and transmission in slanted cavities

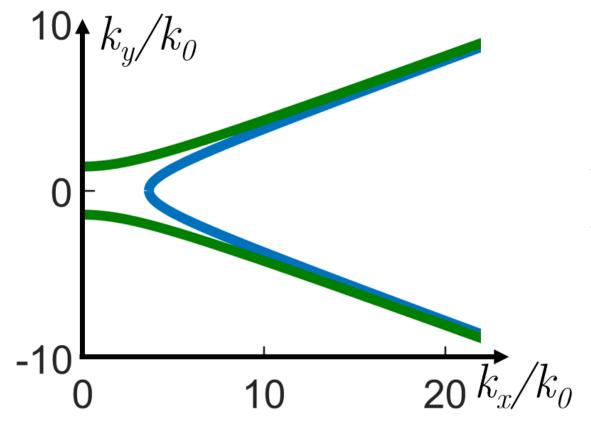


Right and left: simple multilayer HMM

Centre: « asymmetric hyperbolic metamaterial » (tilted optical axis)

1st model: EMT

$$\frac{k_{\parallel}^2}{\varepsilon_{\perp}} + \frac{k_{\perp}^2}{\varepsilon_{\parallel}} = k_0^2$$



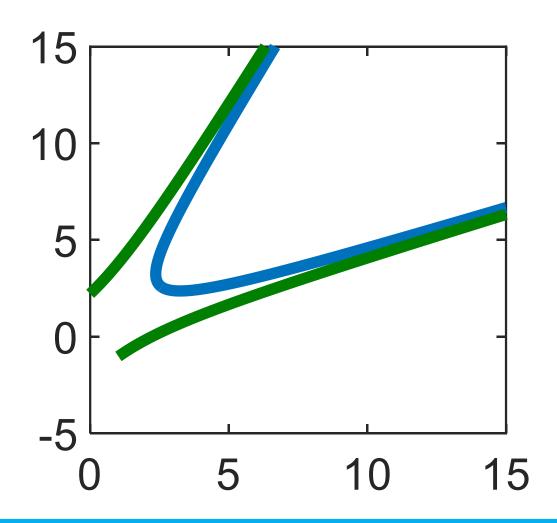
- Propagative mode
- Evanescent mode

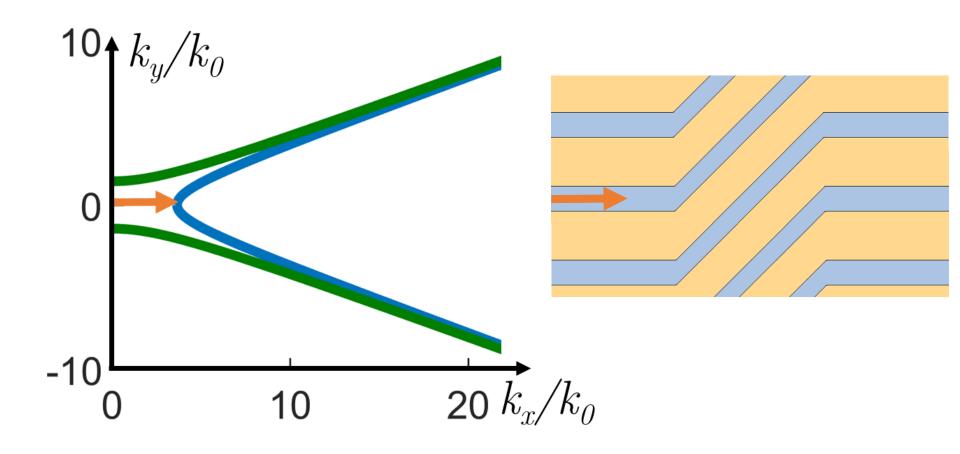
EMT of the asymmetric HMM

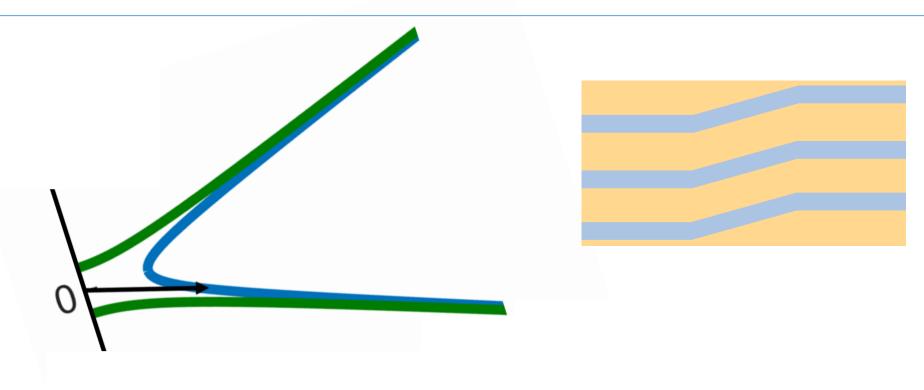
$$\overline{\overline{\varepsilon}} = \mathcal{R}(\theta) \, \overline{\overline{\varepsilon'}} \, \mathcal{R}(\theta)^T = \begin{pmatrix} \varepsilon_{xx} & \varepsilon_{xy} \\ \varepsilon_{xy} & \varepsilon_{yy} \end{pmatrix} \qquad \qquad k_x^{(1,2)} = \frac{k_y \varepsilon_{xy} \pm \sqrt{\left(\varepsilon_{xy}^2 - \varepsilon_{xx} \varepsilon_{yy}\right) \left(k_y^2 - k_0^2 \varepsilon_{xx}\right)}}{\varepsilon_{xx}}$$

EMT of the asymmetric HMM

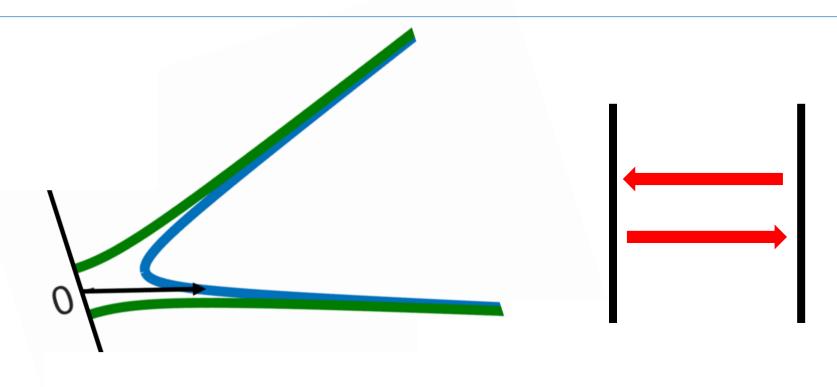
$$\overline{\overline{\varepsilon}} = \mathcal{R}(\theta) \, \overline{\overline{\varepsilon'}} \, \mathcal{R}(\theta)^T = \begin{pmatrix} \varepsilon_{xx} & \varepsilon_{xy} \\ \varepsilon_{xy} & \varepsilon_{yy} \end{pmatrix} \qquad \qquad k_x^{(1,2)} = \frac{k_y \varepsilon_{xy} \pm \sqrt{\left(\varepsilon_{xy}^2 - \varepsilon_{xx} \varepsilon_{yy}\right) \left(k_y^2 - k_0^2 \varepsilon_{xx}\right)}}{\varepsilon_{xx}}$$



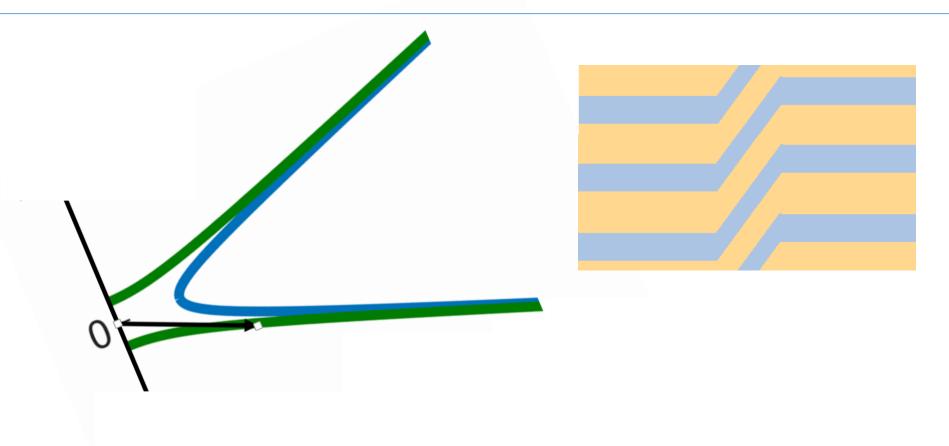




Below θ_t , propagative mode excited

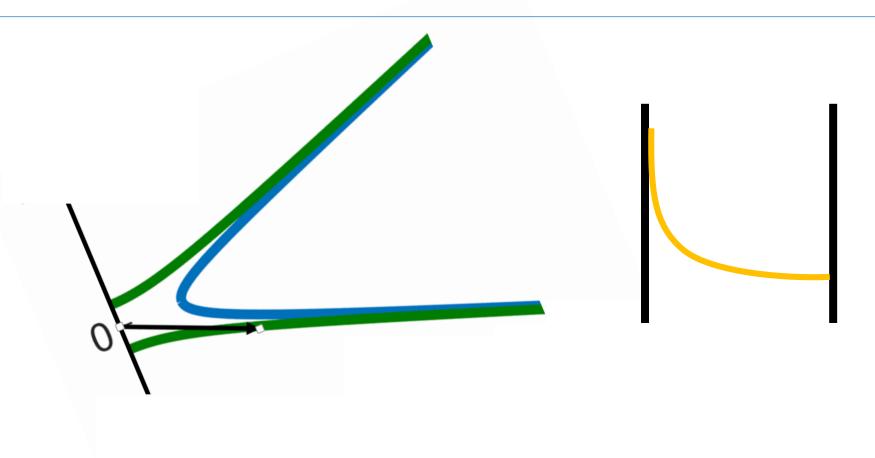


Below θ_t , propagative mode excited



Below θ_t , propagative mode excited

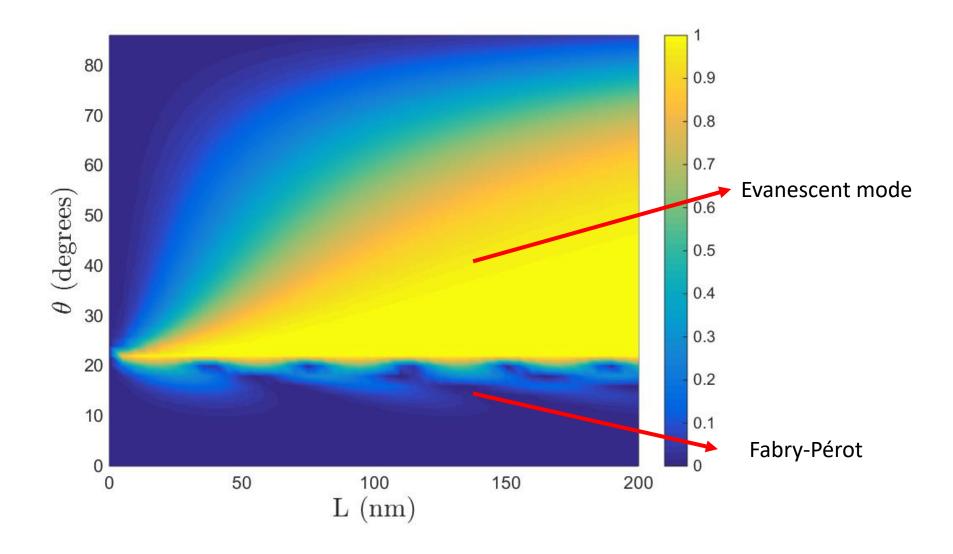
Above θ_t , evanescent mode excited



Below θ_t , propagative mode excited

Above θ_t , evanescent mode excited

Reflection map

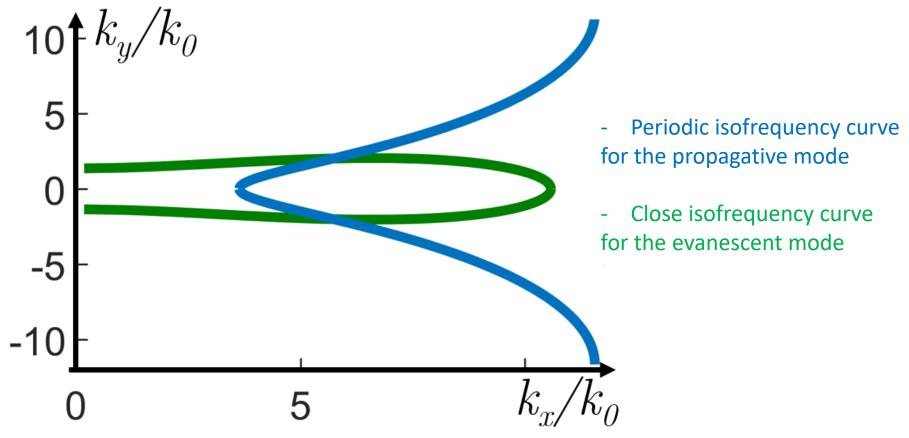


Exact solution (without losses in metal)

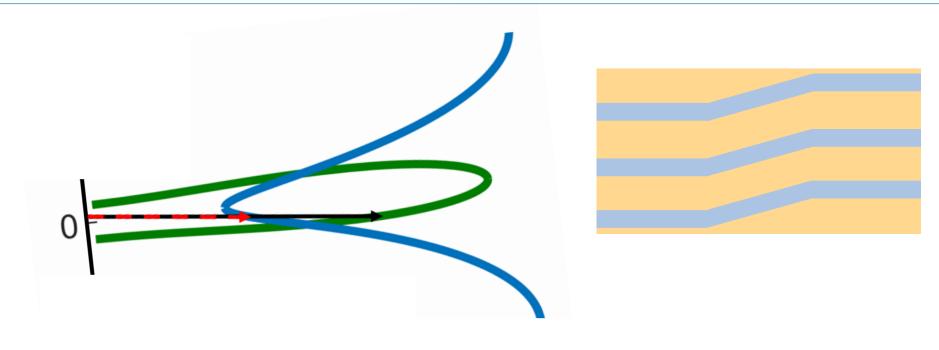
$$\cos(k_y D) = \frac{(\kappa_d \varepsilon_m + \kappa_m \varepsilon_d)^2}{4\kappa_d \kappa_m \varepsilon_d \varepsilon_m} \cosh(\kappa_d d_d + \kappa_m d_m) - \frac{(\kappa_d \varepsilon_m - \kappa_m \varepsilon_d)^2}{4\kappa_d \kappa_m \varepsilon_d \varepsilon_m} \cosh(\kappa_d d_d - \kappa_m d_m)$$

Exact solution (without losses in metal)

$$\cos\left(k_{y}D\right) = \frac{\left(\kappa_{d}\varepsilon_{m} + \kappa_{m}\varepsilon_{d}\right)^{2}}{4\kappa_{d}\kappa_{m}\varepsilon_{d}\varepsilon_{m}} \cosh\left(\kappa_{d}d_{d} + \kappa_{m}d_{m}\right) - \frac{\left(\kappa_{d}\varepsilon_{m} - \kappa_{m}\varepsilon_{d}\right)^{2}}{4\kappa_{d}\kappa_{m}\varepsilon_{d}\varepsilon_{m}} \cosh\left(\kappa_{d}d_{d} - \kappa_{m}d_{m}\right)$$

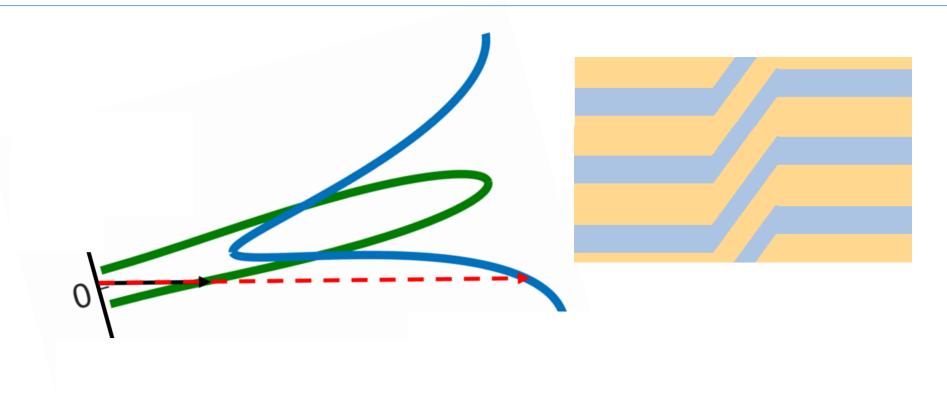


Transverse momentum conservation $(k_y = 0)$



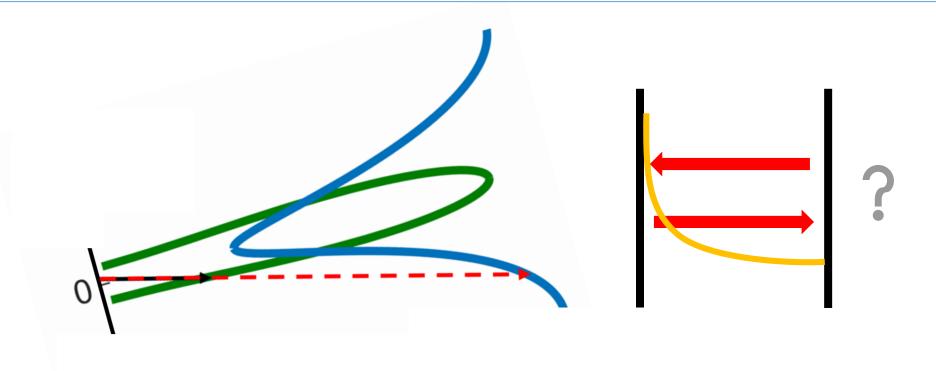
Always a propagative and evanescent mode excited!

Transverse momentum conservation



Always a propagative and evanescent mode excited!

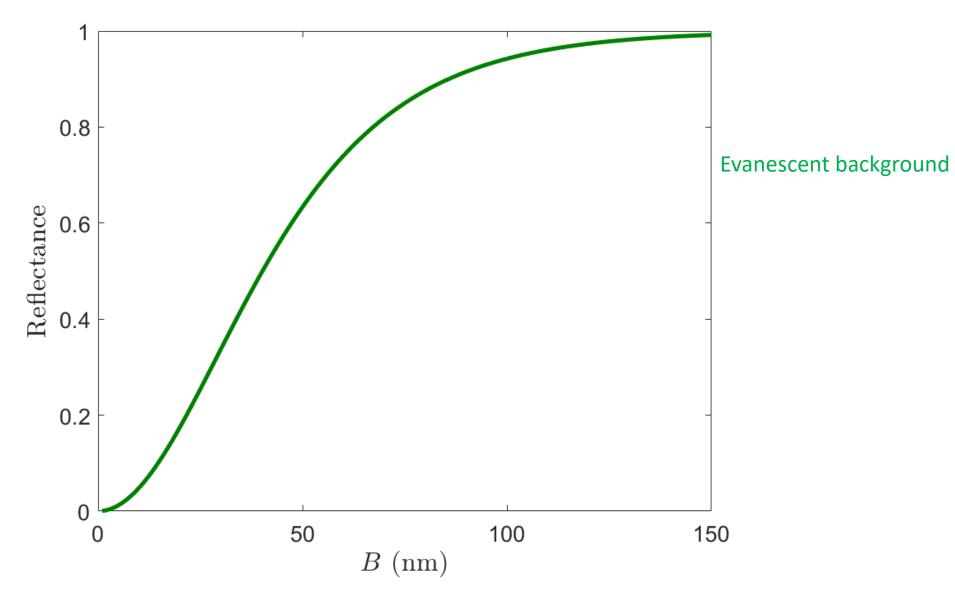
Transverse momentum conservation



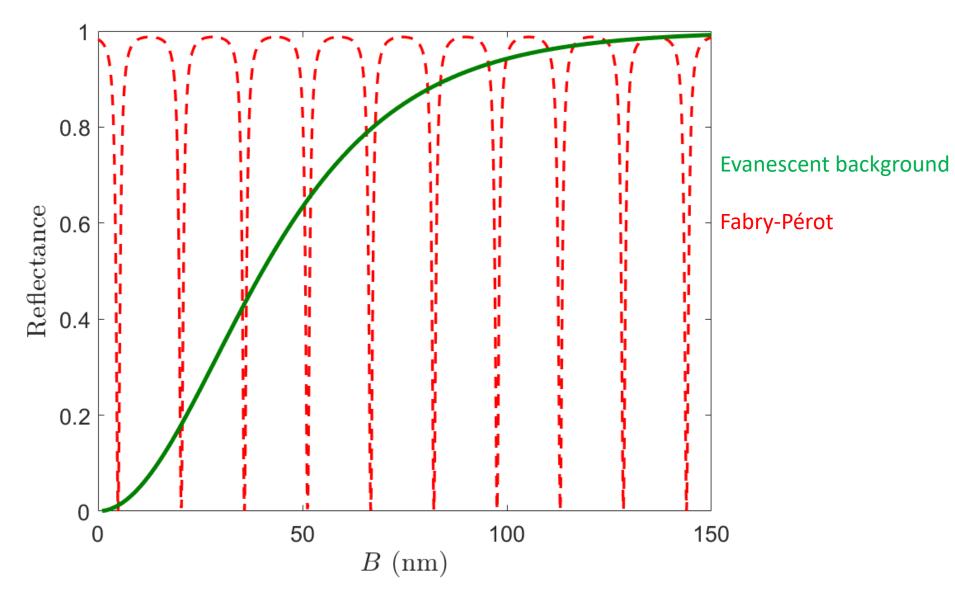
Always a propagative and evanescent mode excited!

→ Interference at the output

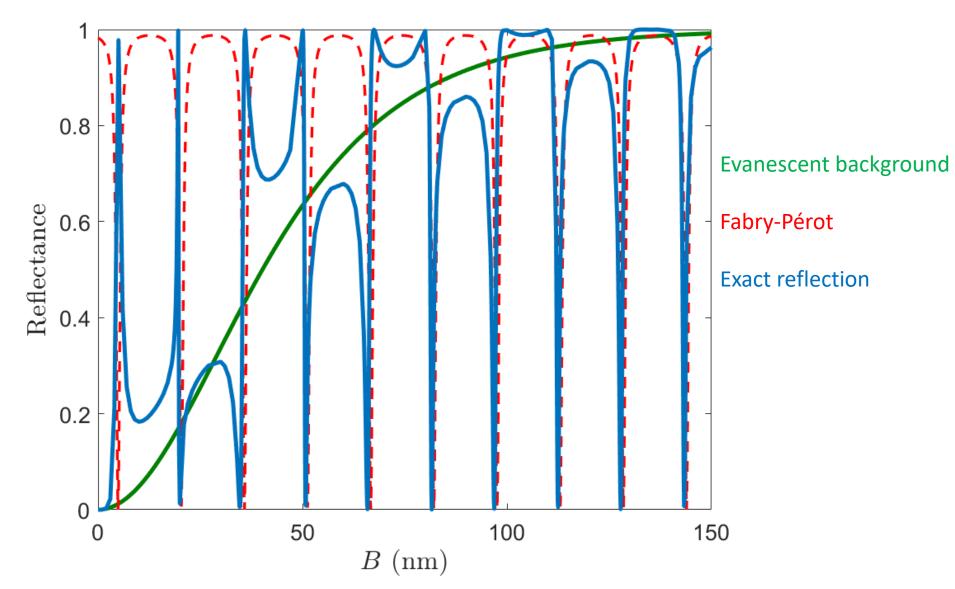
Fano resonances ($\Theta = 45^{\circ}$)



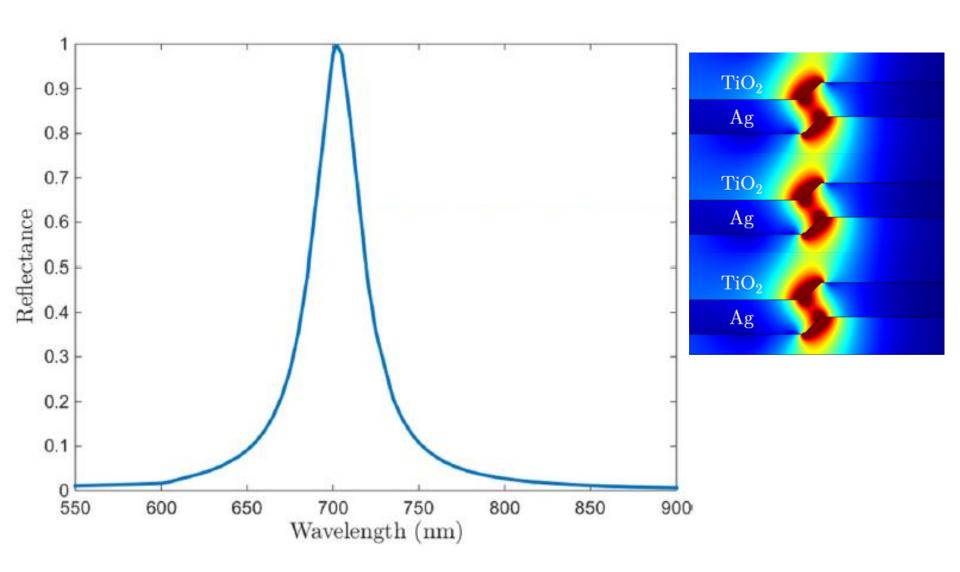
Fano resonances ($\Theta = 45^{\circ}$)



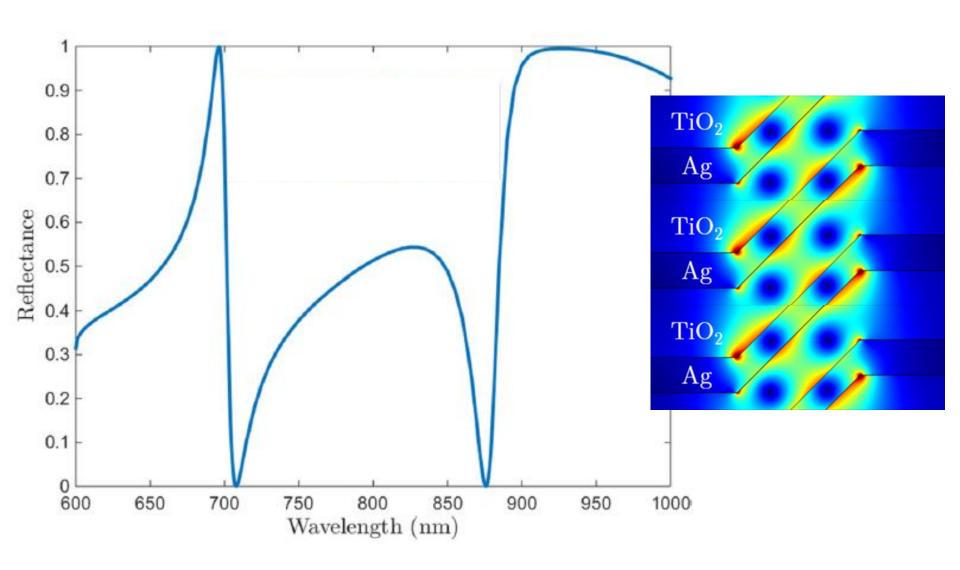
Fano resonances ($\Theta = 45^{\circ}$)



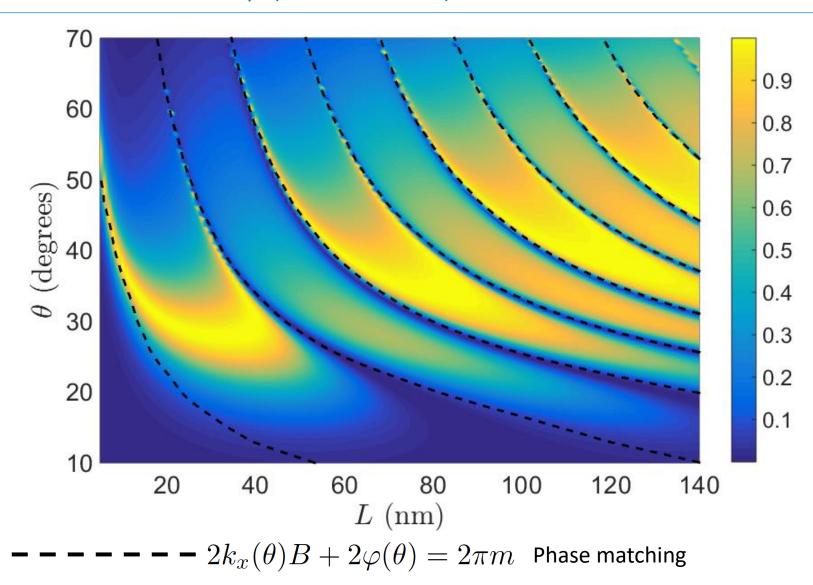
Spectrum for B = 5 nm



Spectrum for B = 35 nm

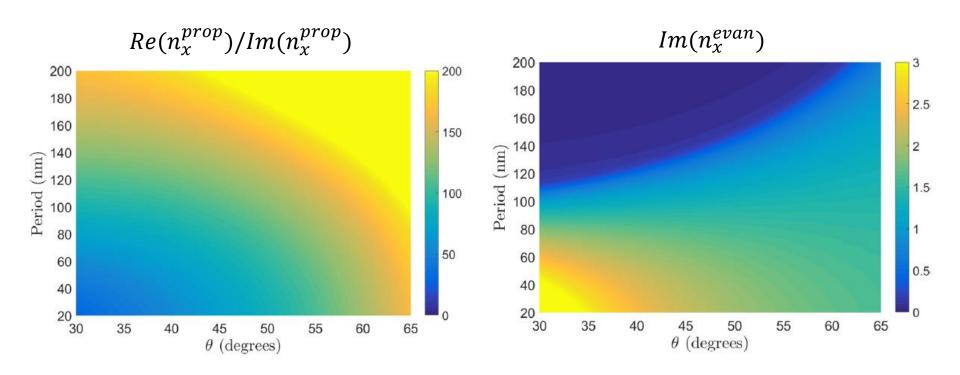


Reflection map (without loss)

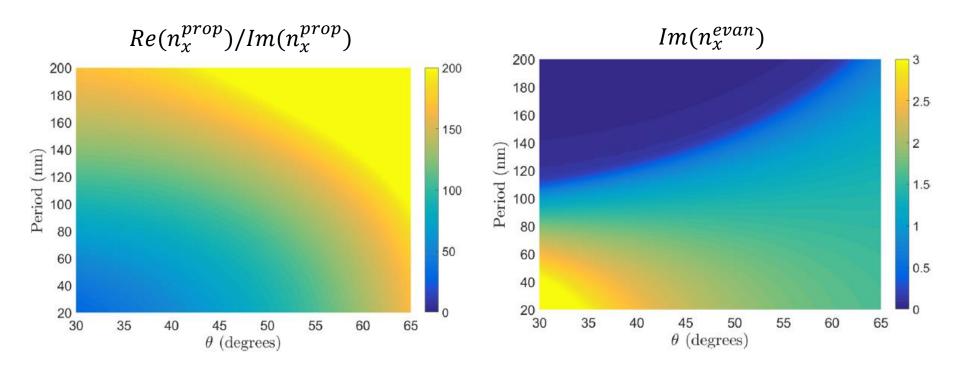


F. Vaianella and B. Maes, Physical Review B, vol. 94, pp 125442. (2016)

Lossy metal: condition for Fano resonances

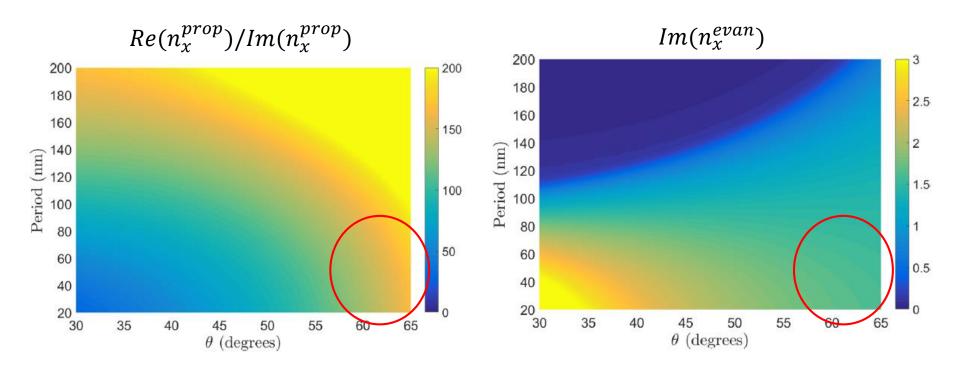


Lossy metal: condition for Fano resonances



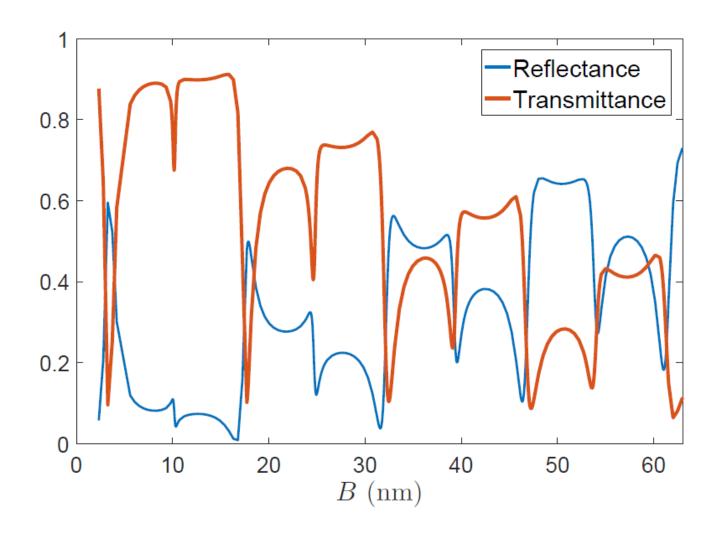
- Propagating mode should have large real part and small imaginary part of refractive effective index
- Evanescent mode should have imaginary part not to high (background would disappear) And not to low (background not efficient)

Lossy metal: conditions for Fano resonances



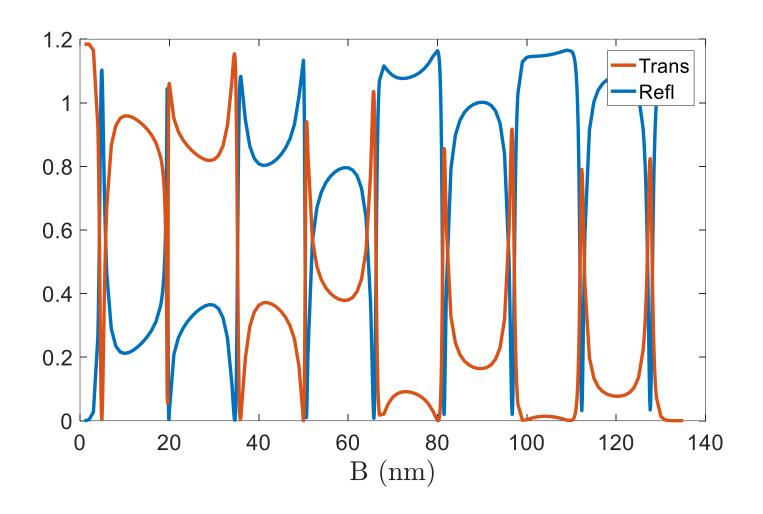
- > Propagating mode should have large real part and small imaginary part of refractive effective index
- > Evanescent mode should have imaginary part not to high (background would disappear) and not to low (background not efficient)

Scattering with losses for $\Theta = 65^{\circ}$

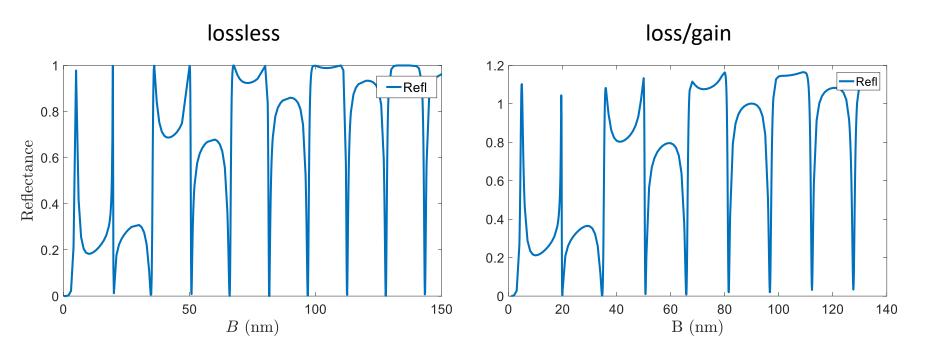


Fano resonances still present but more or less damped

Introduction of gain in the dielectric : $Im(n_{TiO_2}) = -0.07$



Comparison lossless – gain/loss structures



Introduction of gain allows 100% transmittance-reflectance Fano resonances Actually difficult to introduce gain in TiO2
Would be easier to work with semiconductors in infrared regime

Conclusions

- Hyperbolic metamaterials are periodic plasmonic structures with positive component of dielectric tensor in one direction and negative in another
- Fano resonances in ultra compact cavities for great control of the reflection and transmission of light
- ➤ Effective medium approximation inaccurate for this work. Predicts the excitation of one single mode, no Fano resonances possible
- ➤ Other topics: Heat transfer, active HMM, tunable HMM with graphene, homogenization theory, ...

Chank you for your attention

This work is financially supported by the F.R.I.A.-F.N.R.S.