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Abstract Given a model-complete theory of topological fields, we considered its
generic differential expansions and under a certain hypothesis of largeness,we axioma-
tised the class of existentially closed ones. Here we show that a density result for
definable types over definably closed subsets in such differential topological fields.
Then we show two transfer results, one on the VC-density and the other one, on the
combinatorial property NTP2.
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1 Introduction

As in [15], we consider generic differential expansions of model-complete theories of
topological fields. Let K be a topological L-field and consider the expansion 〈K , D〉,
where D is a derivation on K with a priori no interactions with the topology on K . We
will always assume that we have a basis of neighbourhoods of 0 which is uniformly
definable and that the topology is non-discrete.

We first consider the case where T is universally axiomatised and admits a model
completion Tc. We further assume that the models of Tc satisfy an hypothesis, that
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810 F. Point

we call Hypothesis (I ), an analog of largeness in that context of topological fields.
We show in [15] that the expansion of T to the L ∪ {D}-theory TD consisting of T
together with the axioms expressing that D is a derivation, admits a model-completion
T ∗
c,D that we axiomatize. Under these additional assumptions, the axiomatisation we

give is quite transparent and T ∗
c,D also admits quantifier elimination. Then, more

generally (weakening the assumption that Tc admits quantifier elimination to Tcmodel-
complete) we show that Tc,D has a model-companion that we denote T ∗,ω

c,D .

In this paper, we will show several transfer results from the theory Tc to the theory
T ∗
c,D (respectively T ∗,ω

D ).
An axiomatisation of T ∗

c,D consists in adding to the theory TD ∪ Tc, a scheme
(DL) of axioms, which expresses that each differential polynomial has a zero close
to a zero of its associated algebraic polynomial [15, Definition 5(3)]. Except for the
fact that Tressl [37] considers fields endowed with several commuting derivations, it
can be seen as a generalisation of his work on large differential fields. Note also that
Solanki [36] extended the work of Tressl to a topological setting similar to ours.

A former well-studied case taking for Tc the theory RCF of real-closed fields, is
the theory CODF of closed ordered differential fields, who has been axiomatized by
Singer [35]. Singer [35] also noted that even though isolated types are dense in the
Stone space of types of the theory RCF , this no longer holds for CODF . Along the
same lines as the proof of Singer for CODF , we first show that in general isolated
types are not dense in Stone spaces of the theory T ∗

c,D .
Brouette [8] described definable types over definably closed subsets of models of

CODF and in particular he showed that they are dense. He used the description
of definable types over real-closed fields (and more generally over definably closed
subsets of models of a complete o-minimal theory) due to van den Dries, Marker,
Steinhorn [23] and Pillay [29].

Here, using the description of certain definable types over models of Tc, we show
that definable types over definably closed subsets of models of T ∗

c,D are dense in the
corresponding Stone spaces.

The density property of definable types has been a key ingredient in recent proofs
of elimination of imaginaries (see for instance [17]). In a recent paper with Brouette
and Cubidès [6], we strengthen the result of Brouette [31] cited above and give a new
proof of the elimination of imaginaries for CODF .

Note that whenever Tc has the N I P property, it transfers to T ∗
c,D [15,26] since the

theory T ∗
c,D admits quantifier elimination.

Then, assuming that Tc is N I P , we relate the dual VC-density of LD-definable
subsets of models of T ∗

c,D to their L-counterparts, under the further hypothesis that
Tc has finite Skolem functions and the local continuity property. In order to prove
that result we need a precise description of the LD-definable sets and these two last
assumptions allow us to use a cell-decomposition theorem for models of Tc due to
Mathews [24, Theorem 7.1].

In the last section,we consider the transfer of the NT P2 property; that combinatorial
property was introduced by Shelah as a dividing line in the hierarchy of unstable
theories. More recently, NT P2-theories have been shown to be a natural framework
for developing the properties of forking [10]. In that last section, wework simply under
the hypothesis that Tc is model-complete and we show that if Tc is NT P2, then the
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Definability of types and VC density in differential… 811

theory T ∗,ω
c,D is also NT P2. Then we apply our transfer result when Tc is the theory of

bounded pseudo-real closed fields PRCe with e ≥ 2 distinct orderings. In her thesis
[27],Montenegro [28] showed that bounded pseudo-real closed fields are exactly those
pseudo-real closed fields which are NT P2. Moreover pseudo-real-closed fields which
are not real-closed are not N I P [28].

Finally, let us mention the following question. In [15, Sections 9, 10], we axioma-
tized the model-companion of the generic differential expansions of certain theories
of ordered fields and valued fields endowed with finitely many distinct orderings and
valuations. For instance, we showed that the theory of maximal pseudo-real closed
fields OFe endowed with a derivation, has a model-companion. A natural question
is what happens in the case of pseudo p-adically closed fields. Using a similar strat-
egy as in the ordered case, Montenegro [28] proved that bounded pseudo p-adically
closed fields are NT P2 and those valued fields are endowed with finitely many p-adic
valuations.

2 Preliminaries

LetL be the languageLrings∪{Ri ; i ∈ I }∪{c j ; j ∈ J }whereLrings := {+,−, ., 0, 1},
the c j ’s are constants and the Ri are ni -ary predicates, ni > 0. Let K be an L ∪ {−1}-
structure such that its Lrings-reduct is a field of characteristic zero. Let V of a basis of
neighbourhoods of 0 in K and assume that 〈K ,V〉 is a topologicalL-field as introduced
in [15, Section 2]. We will assume here that the topology is non-discrete. Recall
that every relation Ri (respectively its complement ¬Ri ), with i ∈ I , is interpreted
in K, as the union of an open set ORi (respectively O¬Ri ) and an algebraic subset
{x̄ ∈ Kni : ∧

k ri,k(x̄) = 0} of Kni (respectively {x̄ ∈ Kni : ∧
l si,l(x̄) = 0} of Kni ),

where ri,k, si,l ∈ K [X1, . . . , Xni ].
Examples of topological L-fields are: ordered fields, ordered valued fields, val-

ued fields, p-valued fields, fields endowed with several distinct valuations or several
distinct orders [15, Section 2].

Let 〈L ,W〉 be a topologicalL-extension of 〈K ,V〉 [15, Definition 2.3]. For a subset
W̃ of W satisfying natural compatibility conditions with respect to the language L
that we called Comp(K ) (see [15, Definition 2.4] and [15, Notation 2.6]), we define
for a, b ∈ L , the relation a ∼W̃ b by (a − b ∈ V for all V ∈ W̃).

Let T be an L-theory (respectively a universal L ∪ {−1}-theory) which admits a
model-companion (respectively a model-completion) Tc. We will in addition assume
that there is an L-formula ϕ(x, ȳ) such that for K |	 T , the set of subsets of the form
ϕ(K , ā) := {x ∈ K : K |	 ϕ(x, ā)} with ā ⊂ K can be chosen as a basis V of
neighbourhoods of 0.

Let L |	 Tc extendingK, and endow L with the following basis of neighbourhoods
of 0: Ṽ := {ϕ(L , b̄) : b̄ ∈ L}. Denote by Ṽ(K ) := {ϕ(L , ā) where ā varies in K };
this subset of neighbourhoods of 0 (in L) satisfies Comp(K ) (this follows from the
fact that L is an elementary extension of K).

Further,wewillwork under the extra-assumption thatmodels of Tc satisfiesHypoth-
esis (I ); it generalizes in our topological setting of the notion of large fields introduced
by Pop [33], see [15, Definition 2.21] and [15, Section 2.3].

123



812 F. Point

Recall that a field K is large if and only if it is existentially closed in the field of
Laurent series K ((t)) [33, Proposition 1.1] and equivalently in any iterated Laurent
series field extension K ((t1))((t2)) · · · ((tn)), for some natural number n ≥ 1 (also
denotedby K ((Zn))) [37, Proposition5.3]. (This second equivalence is straightforward
using Frayne’s embedding theorem: if a structureA is existentially closed inB (A ⊆ec

B), then there is an embedding of B in an ultrapower of A, which is the identity on
A.)

Now let us recall below Hypothesis (I ) (in a slightly less general form which
will suffice in the present setting). First, we fix some notations. Let K be a model
of Tc and consider the iterated Laurent series field extension K ((Zn)) endowed with
the valuation map v taking its values in the lexicographic product Z

n of n copies
of 〈Z,+,−,<, 0, 1〉. We endow K ((Zn)) with the following fundamental system of
neighbourhoods W of zero:

WV,0 := {a ∈ K ((t1)) · · · ((tn)) : α0 ∈ V and v(a) ≥ 0} with V ∈ V,

Wγ := {a ∈ K ((t1)) · · · ((tn)) : v(a) ≥ γ } with γ ∈ (Zn)≥0.

We will denote the corresponding topological structure by 〈K ((Zn)),W〉 and let
WK ,0 := {WV,0; V ∈ V}. It is easy to see that 〈K ((Zn)),W〉 is a topological Lrings-
extension of 〈K ,V〉. In [15, Lemma 2.10], we show that the relation on K ((Zn))

defined by a ∼WK ,0 b satisfies Comp(K ).

Definition 2.1 [15, Definition 2.21] The class C of models of Tc satisfies Hypothesis
(I ) if for every element 〈K ,V〉 of C the following holds: given the topological Lrings-
extension 〈K ((Zn)),W〉 ofK and a polynomial f (X) ∈ K ((Zn))[X ]with coefficients
in WK ,0 if we have f (a) ∼WK ,0 0 and f ′2(a) �WK ,0 0 for some element a ∈ WK ,0,
then there exists a topological Lrings-extension 〈L̃, Ṽ〉 of 〈K ((Zn)),W〉 such that

(1) 〈L̃, Ṽ〉 is a topological L-extension of 〈K ,V〉 belonging to C;
(2) there exists a subset ṼK of Ṽ satisfying Comp(K);
(3) ti ∼ṼK

0, i = 1, . . . , n;

(4) there exists an element b of L̃ with f (b) = 0 and a ∼ṼK
b.

Remark 2.2 Note that if the language L does not contain any relation symbols and if
the models of Tc are in addition large fields, then the class of models of Tc satisfies
Hypothesis (I ). Indeed, when K is a large field, we have K ⊆ec K ((Zn)). Therefore
by Frayne’s theorem, there is a non-principal ultrapower K ∗ of K such that K ⊆
K ((Zn)) ⊆ K ∗. In order to check that if K |	 Tc, then it satisfies Hypothesis (I ), we
set L̃ = K ∗ and we endow K ∗ with the basis of neighbourhoods Ṽ := {ϕ(K ∗, d̄) :
d̄ ∈ K ∗} and we take ṼK := Ṽ(K ) = {ϕ(K ∗, d̄) : d̄ ∈ K }. We use the fact that
K ((Zn)) is henselian and that if a, b ∈ K ((Zn)) and a ∼WK ,0 b, then a ∼Ṽ(K ) b.

Indeed if a ∼WK ,0 b, then K ((Zn)) |	 ϕ(a − b, d̄) for any d̄ ∈ K . Since the formula
ϕ can be taken existential, it still holds in K ∗ and so a ∼Ṽ(K ) b.

We consider expansions of topological L-fields to L ∪ {−1, D}-structures, where
D is a new unary function symbol which will satisfy the axioms of a derivation:

∀a ∀b D(a + b) = D(a) + D(b), ∀a ∀b D(a.b) = a.D(b) + D(a).b.
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Definability of types and VC density in differential… 813

We will call such generic expansions, differential topological L-fields. Let LD :=
L ∪ {−1, D}, Lrings,D := Lrings ∪ {D}.
Notation 2.3 Let K {X1, . . . , Xn} be the ring of differential polynomials over K in n
differential indeterminates X1, . . . , Xn over K , namely it is the ordinary polynomial
ring in indeterminates X ( j)

i , 1 ≤ i ≤ n, j ∈ ω, with by convention X (0)
i := Xi . One

can extend the derivation D of K to this ring by setting D(X ( j)
i ) := X ( j+1)

i and using
the additivity and the Leibnitz rule.

Set X := X1, . . . , Xn . Let f (X) ∈ K {X}\K and suppose that f is of order m,
then we write f (X) = f ∗(X1, . . . , X

(m)
1 , . . . , Xn, . . . , X

(m)
n ) for some ordinary poly-

nomial f ∗(X1, . . . , Xn.(m+1)) in K [X1, . . . , Xn.(m+1)]. We will make the following
abuse of notation: if b̄ ∈ Kn , then f ∗(b̄) means that we evaluate the polynomial
f ∗ at the tuple b̄∇m := (b1, . . . , b

(m)
1 , . . . , bn, . . . , b

(m)
n ), where b(i) := D(b(i−1)),

b(0) := b, i ≥ 1 and b̄ := (b1, . . . , bn). (Sometimes, we simply denote the tuple b̄∇m

by b̄∇ .) If n = 1, recall that the separant s f of f is defined as s f := ∂ f

∂X (m)
1

. Finally for

f (X) ∈ K {X}, we denote by f D(X) the differential polynomial obtained from f (X)

by applying the derivative D to its coefficients.
Let φ(x1, . . . , xn) be a quantifier-free LD-formula, for each xi , 1 ≤ i ≤ n, let mi

be the maximal natural number m such that x (m)
i occurs in an atomic subformula.

Then, we denote by φ∗((xi, j )n,mi
i=1, j=0) the formula we obtain from φ by replacing

each x ( j)
i by xi, j .

Let R := K [X̄ ]. Recall that R[Xk] satisfies the generalized Euclidean algorithm.
Namely, given f (Xk), g(Xk) �= 0 two polynomials in R[Xk] and letting b ∈ R be the
leading coefficient of g(Xk) (viewed as a polynomial in Xk), then there exists d ∈ N

and polynomials q(Xk), r(Xk) ∈ R[Xk] such that bd . f (Xk) = q(Xk).g(Xk)+r(Xk)

with deg(r(Xk)) < deg(g(Xk)) [18, Theorem 2.14].
Let T be a theory of topological L-fields admitting a model companion Tc. Let

TD (respectively Tc,D) be the L-theory T (respectively Tc) together with the axioms
stating that D is a derivation. Under the assumption that the models of Tc satisfy
Hypothesis (I ), we show that TD admits a model companion T ∗,ω

c,D [15, Theorem 9.3].
In the special case of L = Lrings and Tc a model complete theory of large fields, the
existence of the model companion of Tc,D is due to Tressl [37, Theorem 7.2]. This was
recently revisited in [5] where one can find, in particular, a geometric axiomatisation
of the model-companion and a proof if K |	 T ∗,ω

c,D , then the subfield of constants CK

is always a model of Tc.
In the case where T is universally axiomatisable in L ∪ { −1} and Tc is its

model completion, we first show that any model of TD embeds into one satisfy-
ing the scheme (DL) [15, Proposition 3.9], namely for each differential polynomial
f (X) = f ∗(X, X (1), . . . , X (n)) ∈ K {X}, for every W ∈ V ,

(∃α0, . . . , αn ( f ∗(α0, . . . , αn) = 0 ∧ s∗
f (α0, . . . , αn) �= 0)) ⇒

(
∃z( f (z) = 0 ∧ s f (z) �= 0 ∧

n∧

i=0

(z(i) − αi ∈ W )
))

.
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814 F. Point

Note that in [15], the scheme (DL) is not quite given as above (the coefficients of the
polynomials f vary over a smaller subset), but in an equivalent form [15, Proposition
3.14].

Since we assumed that the topology is first-order definable, the scheme of axioms
(DL) can be expressed in a first-order way. Let T ∗

c,D be the LD-theory consisting of
Tc,D together with the scheme (DL), then T ∗

c,D is the model completion of TD (in
particular T ∗

c,D admits quantifier elimination). A consequence of that axiomatisation
is that in a model U of T ∗

c,D , the subfield of constants CU is dense in U [15, Corollary
3.13].

Lemma 2.4 Under the above hypothesis, let M |	 T ∗
c,D and let CM be its subfield

of constants. Then the isolated points are not dense in the Stone space of 1-types

S
T ∗
c,D

1 (CM ).

Proof The proof is analogous to the proof when T ∗
c,D = CODF [35]. Consider the

clopen subset [x (1) = 1] in S
T ∗
c,D

1 (CM ); any realisation of that formula in a model
of T ∗

c,D containing M is an (algebraically) transcendental element over CM . Assume
that we have a formula χ(x) (with parameters in CM ) isolating a point in that clopen
subset. Then the formula χ(x) is equivalent to (x (1) = 1 ∧ θ(x)), where θ is an open
formula (with parameters in CM ) with the property that θ∗(M) is a non-empty open
subset of some cartesian product of M . Moreover since we may assume that only the
variable x (and not any term of the form x (n)) occurs in θ , we may assume that θ∗(M)

is actually a subset ofM and equal to θ(M). Since the topology of M is definable, non-
discrete andCM dense inM , we canfind twonon-empty disjoint open definable subsets
θ1(M), θ2(M) included in θ(M), with θ1, θ2 two open formulas with parameters in
CM . By the scheme (DL), both formulas (x (1) = 1 ∧ θ1(x)), (x (1) = 1 ∧ θ2(x)) are
realized in M . Indeed, we can find two algebraic solutions namely (a, 1) and (b, 1)
in M2 with θ1(a) and θ2(b). Therefore there exist two differential solutions u1, u2 in
M with u(1)

1 = 1, u(1)
2 = 1, close to respectively (a, 1) and (b, 1), which implies that

θ1(u1) and θ2(u2) also hold, a contradiction. ��
Notation 2.5 Let K ⊂ L be a pair of differential fields and ā ∈ L , then we denote
ID
K (ā) the differential ideal: {p(X̄) ∈ K {X̄} : p(ā) = 0}. Let 〈 f 〉 denote the differen-

tial ideal generated by f . The ideal ID
K (ā) is a prime differential ideal of the form, for

some f ∈ K {X}, I( f ) := {g ∈ K {X} : g.skf ∈ 〈 f 〉, for some k ∈ N} [22, Lemma
1.4].

We will denote by U � L the L-reduct of U. Given a subset B of U, we will denote
by L(B) (respectively LD(B)) the expansion of L (respectively LD) by constants for
each element of B. In the following lemma, we relate the algebraic closure in models
of T ∗

c,D to the algebraic closure in their L-reducts.
Fact 2.6 [7, Lemma 5.5] LetA |	 TD and let U be a model of T ∗

c,D extendingA. Then

the algebraic closure aclU(A) is equal to aclU�L(A).

Proof For convenience of the reader we reproduce the proof below. Let a ∈ aclU(A)

and letφ(x) be anLD(A)-formula such thatφ(a) holds inU andwhich has only finitely
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Definability of types and VC density in differential… 815

many realizations. Since T ∗
c,D admits quantifier elimination, φ(x) is equivalent to a

finite disjunction of formulas of the form:

∧

i∈I
pi (x) = 0 ∧ θ(x),

where θ∗(U) is an open subset of some cartesian product of U and pi (X) ∈ A{X}
[15, Theorem 4.1]. If I = ∅, then we obtain a contradiction since θ(U) is infi-
nite (it is a direct consequence of the scheme (DL) that near every tuple, one
can find a tuple of the form d∇ [15, Lemma 3.12]). Therefore we may assume
that I �= ∅; consider ID

A (a). This is a prime ideal of the form I( f ), for some
f ∈ A{X} [22, Lemma 1.4]. Note that f ∗(a∇) = 0 ∧ s∗

f (a
∇) �= 0. If

the set of solutions in U of the formula f ∗(ȳ) = 0 ∧ θ∗(ȳ) is finite, then
a ∈ aclL(A). If not, by the scheme (DL), there exist elements b ∈ U satisfying
f (b) = 0 (and θ(b)) in a neighbourhood of each of these points included in θ∗(U).
So we get a contradiction with the finiteness of the number of solutions of φ(x).

��
The following is folklore (see for instance [19, Lemma 6.2.9] and also [8] in the

case of RCF). It reduces the description of definable n-types to definable 1-types.
LetM |	 Tc and assume that for any subset B of M we have a prime model exten-

sion, that we will denote by 〈B〉, to a model of Tc. Let m̄ be a tuple of elements of M ,
we denote by tpMB (m̄) the type of m̄ over B in M and by Bm̄ the subset B ∪ {m̄}.

Lemma 2.7 LetM |	 Tc. Let A ⊂ M, assume thatM is |A|+-saturated. Let ā1, ā2 ∈
M and suppose that tpM〈A〉(ā1) is definable over 〈A〉 and that tpM〈Aā1〉(ā2) is definable
over 〈Aā1〉. Then tpM〈A〉(ā1, ā2) is definable over A.

Proof Let φ(v̄1, v̄2, w̄) be an L-formula. We will show that we can find an L(A)-
formula dφ(w̄) such that for any ā ∈ 〈A〉, φ(v̄1, v̄2, ā) ∈ tpM〈A〉(ā1, ā2) iff M |	
dφ(ā).

By hypothesis, tpM〈Aā1〉(ā2) is definable over 〈Aā1〉. So we have an L(〈Aā1〉)-
formula d1φ(w̄) such that d1φ(ā1, ā) holds iff φ(ā1, v̄2, ā) ∈ tpM〈Aā1〉(ā2). Let
d̄ ∈ 〈Aā1〉 be the parameters occurring in d1φ and rewrite that formula as
an L-formula d̃1φ(w̄, d̄). Since d̄ belongs to 〈Aā1〉, its type is isolated over
Aā1 by an L(Aā1)-formula ψ(x̄). Rewrite that formula as an L(A)-formula
ψ̃(x̄, ā1). Consider the formula χ(ā1, ā) := ∀x̄ (ψ̃(x̄, ā1) → d̃1φ(ā1, ā, x̄)).
Since tpM〈A〉(ā1) is definable over 〈A〉, there is an L(〈A〉)-formula d2χ(z̄) such

that d2χ(ā) holds if and only if χ(ā1, ā) ∈ tpM〈A〉(ā1). Since 〈A〉 is a prime

extension of A, we may assume that the only parameters occurring in d2χ
belong to A; the corresponding L(A)-formula is the formula we looked for.

��
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816 F. Point

3 Axiomatization

As recalled in the preceding section, examples of theories T and of the corresponding
theories Tc [15, Section 2] to which we may apply our set-up, are in each case, the
L-theory T of :

(1) ordered fields with L := L< := Lrings ∪ {<}, with Tc the theory RCF of real-
closed fields,

(2) ordered valued fields with L := L< ∪ {div}, where div is a binary predicate
defined as x div y iff v(x) ≤ v(y), where v is a valuation, with Tc the theory
RCV F of real-closed valued fields,

(3) valued fieldswithL := Lrings∪{div}, with Tc the theory ACV F0 of algebraically
closed fields of characteristic (0, 0),

(4) p-valued fields with L := Lrings ∪ {div} ∪ {Pn : n ≥ 2, n ∈ N} with Tc the
theory pCFd of p-adically closed fields of characteristic (0, p) and p-rank d.

One can note a few straightforward consequences of the axiomatisation of T ∗
c,D , in

some of the above cases.

Remark 3.1
(1) If K |	 RCV F∗

D , then K |	 CODF .

Proof LetK |	 RCV F∗
D , in particularK is an ordered differential field, soK embeds

into a model K̃ of CODF . Let us show that K |	 CODF . Let us take the axiomati-
sation of Singer [35]. So consider a system of the form f (X) = 0 ∧ ∧m

i=1 gi (X) > 0
with ord(gi ) ≤ ord( f ) and f (X), gi (X) ∈ K {X}. Suppose this system has a alge-
braic solution ā in K̃ such that s f (ā) �= 0. Then since both K and K̃ are models
of RCF , there is an algebraic solution in K and so by the scheme (DL), there is a
differential solution in K . ��

(2) If K |	 ACV F∗
D , then K |	 DCF0.

Proof Consider a system of the form f (X) = 0 ∧ g(X) �= 0 with ord(g) < ord( f ),
f, g ∈ K {X}. This system has a solution a in the differential closure K̂ of K . Let
h(X) ∈ K {X} be a differential polynomial such that I(h) = ID

K (a) and consider the
system h(X) = 0 ∧ sh(X) �= 0. So K̂ has an algebraic solution of the corresponding
algebraic system. Since K is an existentially closed subfield of K̂ , K has an algebraic
solution and so a differential one by the scheme (DL). ��

(3) If K |	 RCV F∗
D , then by (1), K |	 CODF and we have both that K(i) |	

DCF0 [35] and K(i) |	 ACV F0 [25, Corollary 1.3]. However, is it the case that
K(i) |	 ACV F∗

D?

Note that in each of the cases RCF , RCV F ACV F0 and pCFd , there exist prime
models extensions over subfields A [39,40]. In particular, the typeof a tuple of elements
of 〈A〉 over A will be isolated over A. In all of these cases 〈A〉 is equal to the relative
field algebraic closure of A, which implies that if U |	 T ∗

c,D , then CU |	 Tc. Note
also that in all cases but ACV F0, we have 〈A〉 = dcl(A), where dcl denotes the
model-theoretic definable closure.
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Definability of types and VC density in differential… 817

4 Definable types

In this section, we will show that in the case certain types are definable in models

of Tc, definable types are dense in the Stone spaces of n-types S
T ∗
c,D

n (A), where A is
a definably closed subset of a model of T ∗

c,D . We will first prove the statement for
1-types and then Lemma 2.7 will entail it holds for n-types.

In the following, types will always be complete types unless we use the term partial
types.

Definition 4.1 Let M |	 Tc. Recall that the set of subsets of the form ϕ(M, ā) :=
{x ∈ M : M |	 ϕ(x, ā)} with ā ⊂ M can be chosen as a basis V of neighbourhoods
of 0. Let A be a substructure ofM. We will say that a partial 1-type over A is a 0+-type
over A if it contains the set of all L(A)-formulas ϕ(x, ā), with ā ⊂ A together with
x �= 0.

Example 1 Let M be an expansion of an ordered field. Then a 0+-type (over M) is
any partial type containing the set of formulas: {0 < |x | < m : m ∈ M>0}.
Definition 4.2 [23, Preliminaries] Let M be an ordered field. A partial type p(x)
over M is a cut if it contains the set of formulas: {c1 < x < c2 : c1 ∈ C1, c2 ∈ C2}
where C1 < C2 are two nonempty disjoint subsets of M with C1 ∪ C2 = M and C1
(respectively C2) has no maximum (respectively no minimum) in M. Note that this is
sometimes called an irrational cut. Recall that M is Dedekind complete in M(ā) if
no cut of M is realised inM(ā).

Extending previous results of van den Dries in the context of real-closed fields,
Marker and Steinhorn have described definable types in o-minimal theories. Let T be
an o-minimal theory and let p(v̄) ∈ STn (M), where M |	 T . Then p(v̄) is definable
iff M is Dedekind complete in 〈Mā〉 where ā any realisation of p(v̄) [23, Theorem
2.1]. Moreover if A ⊂ M and A = dcl(A), then p(v̄) is definable over A iff A is
Dedekind complete in dcl(A, ā) for any ā realising p ([23, Theorem 4.1], [29]).

IfM := (M,<, . . .) is a weakly o-minimal structure, then Mellor described defin-
able 1-types as follows. Let C be a convex subset of M . Then, a set A is initial
(respectively final) on C if (∀x ∈ C) (∃y ∈ A ∩ C) (x > y) (respectively (x < y)).

Let B ⊂ M and p(x) ∈ S1(B), a left (respectively right) generic type ofC over B is
the set of formulas with parameters in B that define sets which are initial (respectively
final) on C . Mellor showed that p(x) is B-definable if for some convex B-definable
subsetC ofM , p(x) is the right or left generic type ofC (over B).Moreover, if Th(M)

is a model-complete weakly o-minimal theory and B an elementary substructure of
M, then these are exactly the B-definable 1-types [25, Proposition 2.13].

LetM be an expansion of a non-trivially valued field. Then there are three kinds of
non-realized 1-types over M : the valuational, residual and limit types. The valuational
types are realised by elements increasing the value group, a realisation of a residual
type increases the residue field and a limit type is realised in an immediate extension.
One can show that a realisation of a limit type over M is a limit of a pseudo-Cauchy
sequence of M [21, Theorem 1].
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Example 2 Let M be a non-trivially valued field, then a 0+-type over M is a special
kind of valuational type, namely a type containing the set of formulas: {v(x) > v(m) :
m ∈ M\{0}}.

In ACV F0, the definable 1-types have been described over models; they are either
residual or valuational. Moreover, valuational types are not definable if and only if
they determine a cut in the value group [12, Corollary 2.7].

If M be a model of pCF1. Then again the definable types have been described
in an expansion of the valued field language with coefficients maps [4]. Since we
are working in the langage with the predicates Pn (the Macintyre language), a more
adequate reference is [3, Proposition 4.6 and its proof].

Example 3 LetM be a model of pCF1. Then the complete 0+-types are of the form:
{v(x) > v(m) : m ∈ M\{0}} ∪ {Pn(x .en) : en ∈ N\{0}, n ∈ N\{0, 1}}.
Proposition 4.3 Let T be a universal theory of topological L-fields, satisfying
Hypothesis (I ) and admitting a model completion Tc. Assume in addition that Tc
has prime model extensions and that in any model K of Tc, there exists a complete
0+-type qK (x) over K , which isL(K )-definable in Tc. LetM |	 T ∗

c,D and let A ⊂ M

be a model of Tc,D. Then the definable types over A are dense in S
T ∗
c,D

1 (A).

Proof Let M |	 T ∗
c,D and let A ⊂ M be a model of Tc,D . Let φ(x, ȳ) be an LD-

formula and let ā ∈ A. Let [φ(x, ā)] a clopen subset of S
T ∗
c,D

1 (A). We may assume
that φ(x, ȳ) is quantifier-free and of the form:

∧
i∈I pi (x) = 0 ∧ θ(x), where

pi [X ] ∈ A{X}\{0} and θ∗(M) is an open subset in some cartesian product of M .
Let u be a realisation of φ(x, ā) in M and first note that we may further assume

that I �= ∅.
Indeed, suppose otherwise that I = ∅. Let n be the maximum order of the variable

x occurring in the formula θ . Then consider the clopen subset of [φ(x, ā)] defined by
[θ(x) ∧ x (n+1) = 0]. We will show that there is a definable type (over A) in that
clopen subset.

So we reduce ourselves to the case where the differential ideal ID
A (u) of A{X}

is non-trivial. Let f (X) be an irreducible polynomial such that I( f ) = ID
A (u) (see

Notation 2.5). Assume that the order of f is equal to n + 1, n ∈ N. Note that if
f (u) = 0, then u(n+1+k) ∈ A(u, . . . , u(n+1)), k ≥ 1, where A(u, . . . , u(n+1)) denotes
the field generated by A and u, . . . , u(n+1). So without loss of generality we will
assume that in θ(x) the variable x occurs with order at most n + 1.

Since A |	 Tc, there is a n + 2-tuple d̄ in A such that f ∗(d̄) = 0 ∧ s∗
f (d̄) �=

0 ∧ θ∗(d̄).
Let N be a |A|+-saturated extension of A and let ε0 ∈ N realising qA(x), then

ε1 realising q〈A(ε0)〉, and iterating n times εn realising q〈A(ε0,...,εn−1)〉(x). Note that
ε0, . . . , εn are algebraically independent over A. Using the fact that the models of Tc
satisfyHypothesis (I ), we show in [15, Lemma3.7], that there exists amodel Ñ of Tc,D
extending 〈A(ε0, . . . , εn)〉 and an element b ∈ Ñ such that f (b) = 0 ∧ s f (b) �= 0
with b(i) = di + εi , 0 ≤ i ≤ n, (b(n+1) close to dn+1 with respect to A). This implies
that we have in addition θ(b). Note that b(n+1) is algebraic over A(b(0), . . . , b(n)) and
so its L-type is isolated (and so definable) over A(b(0), . . . , b(n)).
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Claim 4.4 The L-type of (b, b(1), . . . , b(n+1)) over A is L(A)-definable.

Proof of Claim Thefield A(b, b(1), . . . , b(n)) is equal to A(b−d0, b(1)−d1, . . . , b(n)−
dn). By assumption, each b(i) − di realizes a definable 0+-type over A(b− d0, b(1) −
d1, . . . , b(i−1) − di−1), n ≥ i ≥ 1, and b− d0 realizes a definable 0+-type over A. So
by Lemma 2.7, the type of (b, b(1), . . . , b(n)) over A isL(A)-definable. Finally b(n+1)

is algebraic over A(b, b(1), . . . , b(n)) and applying again Lemma 2.7, we get that the
type of (b, b(1), . . . , b(n+1)) over A is L(A)-definable. ��
Claim 4.5 The LD-type of b over A is LD(A)-definable.

Proof of Claim The LD-type of b over A in T ∗
c,D is determined by the (n+ 2)-L-type

of (b, b(1), . . . , b(n+1)) in Tc over A. (Note that A is a differential subfield of M .) ��
Let ψ(x, ā) be an open L(A)-formula belonging to tp(b/A). Then since

T ∗
c,D admits quantifier elimination, we may assume that ψ(x, ā) is of the form:∨
�∈L(

∧
i∈I� pi (x) = 0 ∧ χ�(x)), with for all � ∈ L , i ∈ I�, pi (X) ∈ A{X}\{0}

and for all j ∈ J�, χ∗
� defines an open subset. Since f (b) = 0 and s f (b) �= 0,

b(n+k) ∈ A(b, . . . , b(n+1)), k ≥ 2, so without loss of generality, we may assume
that the orders of pi (X) are at most n + 1 and that the order of the variable x in
χ� is at most n + 1. Therefore we may rewrite pi (x) = p∗

i (x, . . . , x
(n+1)) and

χ�(x) = χ∗
� (x, . . . , x (n+1)), we can transform the LD-formula ψ(x, ā) into an L-

formula ψ∗(x, . . . , x (n+1), ā, . . . , ā(m)) with the property that ψ(x, ā) ∈ tp
T ∗
c,D
A (b)

iff ψ∗(x, . . . , x (n+1), ā, . . . , ā(m)) ∈ tpTcA (b, . . . , b(n+1)). By the previous claim,
this last type is definable over A. So there exists an L(A)-formula dψ∗ such that
ψ∗(x, . . . , x (n+1), ā, . . . , ā(m)) ∈ tpTcA (b, . . . , b(n+1)) iff M |	 dψ∗(ā, . . . , ā(m)).

Finally rewrite dψ∗ as an LD(A)-formula dψ and we get ψ(x, ā) ∈ tpT
∗
c,D (b) iff

M |	 dψ(ā). ��
Corollary 4.6 Under the same hypothesis on Tc, M and A, the definable types over

A are dense in S
T ∗
c,D

n (A).

Proof It follows from the above proposition and Lemma 2.7. Indeed by induction
assume that the definable types are dense in Sn−1( Ã), for n ≥ 2 and Ã |	 Tc,D .
Let φ(x̄) be an L(A)-formula with x̄ := (x1, x2, . . . , xn). Consider the formula
∃x2 . . . ∃xn φ(x1, x2, . . . , xn). By the above proposition, there is a definable type,
say p(x1), over A in the corresponding clopen subset. Let N be a |M |+-saturated
elementary extension of M and let a1 ∈ N be a realisation of p(x1). Then consider
B := 〈A(a1)〉. By assumption, there is q(x2, . . . , xn) a definable type over B contain-
ing the formula φ(a1, x2, . . . , xn). Let (a2, . . . , an) be a realization of q(x2, . . . , xn)
in N . By Lemma 2.7, tpMA (a1, . . . , an) is definable over A and contains φ(x̄). ��
Corollary 4.7 For Tc = RCF, RCV F, ACV F, pCF1 andM |	 T ∗

c,D, the definable

types over A are dense in S
T ∗
c,D

n (A), with A ⊂ M a model of Tc,D, n ≥ 1. ��
In the case T ∗

c,D = CODF , Brouette obtained the following characterisation of
definable types [8, Chapter 4]. Themain ingredientswere the analog of Proposition 4.3,
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the description of definable types for RCF recalled at the beginning of the section
and the fact that models of CODF are definably complete [31] (i.e. any bounded
definable non-empty subset in the domain of a model has an upper bound).

Fact 4.8 [9] Let p(x) ∈ SCODF
1 (A), where A is a differential real-closed ordered

field. Then p(x) is definable over A if and only if A is Dedekind complete in
A(v, . . . , v(n), . . .), for any element v realizing p(x). ��

5 VC-density

Aschenbrenner et al. [1] calculate bounds for Vapnik-Chervonenkis (VC) densities
for o-minimal, weakly o-minimal, P-minimal theories. The tool they use is the link
between VC-density and the uniform definability property of types over finite sets
(UDTFS property) introduced by Guingona [14, Definition 2.1], which they gener-
alised to finite sets of formulas [1, Definition 5.1].

In view of the transfer of the N I P property that we recall below, a natural question
is to relate VC-density bounds in Tc to ones in T ∗

c,D . In the next section, we will work
with the theory T ∗,ω

c,D and so we state our result in a slightly more general context.

Fact 5.1 [15] Let Tc be a model-complete theory of topological L-fields satisfying
Hypothesis (I ). Assume that any quantifier-free formula in Tc,D is N I P, then any
quantifier-free formula in T ∗,ω

c,D is N I P.

Proof This follows from [15, Lemma 4.2, Theorem 9.3]. ��
In the further case when Tc admits quantifier elimination and is N I P , it implies

that T ∗
c,D is N I P (since it admits quantifier elimination too). Therefore, we can apply

the above result to the theories: Tc = RCF, pCFd , RCV F, ACV F0.
Let us fix notation and recall some basic definitions. In the following T will denote

a complete L-theory with only infinite models and let M be a model of T . Given a
(partitioned) L-formula φ(x̄; ȳ), let φdual(x̄; ȳ) be the dual formula, namely φ(ȳ; x̄).

Let B ⊂ M |ȳ| and let Sφ(B) be the set of φ-types over B, namely the set of
consistent sets of formulas of the form {φ(x̄; b̄) : b ∈ B ′} ∪ {¬φ(x̄; b̄) : b̄ ∈ B\B ′}.
If 
 is a finite set of partitioned formulas with x̄ , ȳ of some fixed length, one defines

-types similarly.

Set πφdual (x̄;ȳ)(t) := max{|Sφ(B)| : B ⊂ M |ȳ|, |B| = t}.
The dual VC-density of φ is equal to the infimum of all real numbers r such that

π
φdual (t)

tr is bounded (as a function of t) and denoted by vc(φdual).
Let vc(m) := sup{vc(φdual(x̄; ȳ)) : φ(x̄; ȳ) is an L−formula, |x̄ | = m}, m ∈

N\{0}.
AnL-structureMhas theVC d property if anyfinite set
(x̄; ȳ)ofL-formulaswith

|x̄ | = 1 has a uniform definition of 
(x̄; B)-types over finite sets with d parameters
[2, 5.2]. If T has the VC d property, then m ≤ vc(m) ≤ d.m for every m ∈ N\{0} [2,
Corollary 5.8].

The following result on the dual VC-density for weakly o-minimal theories T (for
instance T = RCF or T = RCV F) was proven by Aschenbrenner et al., using the
fact that such theories have the VC 1 property.
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Fact 5.2 [2, Theorem 6.1] Let T be a weakly o-minimal theory. Then, the dual VC-
density of a formula φ(x̄; ȳ) is bounded by |x̄ |.

Interpreting ACV F0 in RCV F , they deduce that in ACV F0, the dual VC-density
of a formula φ(x̄; ȳ) is bounded by 2|x̄ | − 1 [2, Corollary 6.3].

Then using that P-minimal theories have the VC 2 property, they show the follow-
ing bound on the dual VC-density.

Fact 5.3 [2, Theorem 7.3] Let T = pCF1. Then, the dual VC-density of a formula
φ(x̄; ȳ) is bounded by 2.|x̄ | − 1.

In order to relate the dual VC-density in models of T ∗
c,D to the bounds obtained in

models of Tc, we need to recall how to associate with an LD-definable set in a model
of T ∗

c,D , a (closely related) L-definable set.
Notation 5.4 Let M be a topological L-field, we denote the projection maps as fol-
lows: π(i1,...,ik ) : Mn → Mk : (x1, . . . , xn) → (xi1 , . . . , xik ), 1 ≤ i1 < · · · < ik ≤
n,

πk : Mn → Mk : (x1, . . . , xn) → (x1, . . . , xk), 1 ≤ k ≤ n.

For ease of notation, we will also denote π(i1,...,ik ) by πc̄, where c̄ is a tuple of 0’s
and 1’s with the 1’s at the i1, . . . , ik positions and 0’s elsewhere.

Recall that a cell C is a definable subset of Mn (with parameters) either consisting
of single point in Mn (in which case it has dimension 0), or such that π(i1,...,ik )(C)

is an open subset of Mk , for some 1 ≤ k ≤ n and 1 ≤ i1 < · · · < ik ≤ n and the
projection map π(i1,...,ik ) a definable homeomorphism. In the latter case, we call k the
L-dimension of C , which we denote by L-dim(C) [24, Definition 6.2].

The topological L-field M has the cell decomposition property (CDP) if any A-
definable subset X ⊂ Mn , A ⊂ M , can be partitioned into finitely many cells and
if given any A-definable function f from X to M there exists a partition of X into
finitely many A-definable cells Xi such that f |Xi is continuous [24, Definition 6.3].

In the remainder of the section, we will assume the following hypotheses on Tc, a
model-complete theory of topological L-fields satisfying Hypothesis (I ): Tc admits
quantifier elimination, it has finite Skolem functions and the local continuity property
of zeroes of polynomials. These additional hypotheses are needed in order to apply a
result of Mathews [24, Theorem 7.1] who showed that any model of Tc has the cell
decomposition property. He also proved that if the model-theoretic closure aclL has
the exchange property, then there is a well-defined notion of dimension (L-dim) which
coincides with the topological dimension [24, Theorem 8.8].

This can be applied to Tc = RCF , or RCV F or pCFd . Indeed in these three cases
one has (definable) Skolem functions. Van den Dries proved it for pCFd [39, Theorem
3.1]. He applied a general result for theories T which admits quantifier elimination,
proving [39, Theorem 2.1] the equivalence between the following two properties:

(i) T has definable Skolem functions and
(ii) any substructure A of a model of T , has a prime model extension to a model of T

which is rigid over it.
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The following Proposition is proven in [31, Lemma 2.1, proof of Theorem 2.4] for
T ∗
c,D = CODF and in [30] in the general case. Recall that a differential tuple in a

differential field M is a tuple of the form a∇ with a ∈ M .

Proposition 5.5 [31, Proposition 3.13] Let Tc be as above, let M |	 T ∗
c,D and let

K be a differential subfield of M. Given an LD(K )-definable set S ⊂ Mk, k ≥ 1,
there exists an L(K )-definable subset S∗ ⊂ Mn1+···+nk such that S is included and
dense π(i1,...,ik )(S

∗), with i1 = 1 < i2 = n1 + 1 · · · < ik = n1 + · · · + nk−1 + 1.
Moreover, S∗ is a finite union of L(K )-cells C in which the differential tuples are
dense. Each cell C is included in dclL(K )(πc̄110̄···0̄c̄k1(C)) with πc̄110̄···0̄c̄k1(C) an open

set, c̄i1, a tuple of 1’s of length ni1 ≤ ni and c̄i10̄ of length ni , 1 ≤ i ≤ k. In particular,
L-dim(C) = ∑k

i=1 ni1.

This proposition is proven by induction on k. Given an LD-formula φ such that
S = φ(M), we modify the L-formula φ∗ given in Notation 2.3 to a more intrinsic
L-formula denoted by φ∗

mod such that S∗ := φ∗
mod(M) has the required properties.

We use the cell decomposition property of the models of Tc. Given a cell occurring
in the decomposition of φ∗(M) we modify it to a cell C where the differential tuples
in S∇ ∩ C are dense in C . Below, in the special case when k = 1 and n1 = n, we
describe each cell C as follows:

either L-dim(C) = n and so C is an open subset of Mn (this is the case when the
cell occurring in the decomposition of φ∗(M) is already an open cell and so we simply
take it since by the scheme (DL), the differential tuples are dense),

or L-dim(C) = 0 and C is a singleton of the form

v̄ := (u, g1(u), . . . , gn−1(u)),

where gs(x) are rational functions of x , u(s) = gs(u), 1 ≤ s ≤ n − 1, and u, v̄ ∈
acl(K ),

or 0 < L-dim(C) = L-dim(πm(C)) = m < n (depending on C) and C consists
of tuples

v̄ := (ū, f (ū), g1(ū, f (ū)), . . . , gn−m−1(ū, f (ū))),

where ū belongs to πm(C), f (ȳ) is a definable Skolem function, gs(ȳ, z) rational
functions, with �(ȳ) = �(ū), 1 ≤ s ≤ n − m − 1. Moreover f (ȳ) is continuous
and gs(ȳ, f (ȳ)) are well-defined on πm(C). For a tuple ū ∈ πm(C) of the form u∇m ,
gs(u∇m+1) = u(m+s+1), 1 ≤ s ≤ n −m − 1 and in any neighbourhood of ū, there is a
tuple of the form a∇m such that a(m+1)) = f (a∇m ).

The L-dimension of the cells appearing in the decomposition of S∗ appearing in
Proposition 5.5, has the following interpretation. Let ū ∈ S and consider the subfields
K [t] := K (ū, . . . , ū∇t ) of M generated by the differential subfield K and ū∇� , 0 ≤
� ≤ t . The transcendence degree of K [t] over K stabilises for t sufficiently big and is
asymptotically given by a linear polynomial of the form α.t + β, called the Kolchin
polynomial of ū over K [32, Proposition 2.4] (see also [20]). The coefficient α is the
differential transcendence degree of L := K (ū∇�; � ∈ ω) [32, Proposition 2.4]. The
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tuple ū∇ belongs to some cell C appearing in the decomposition of S∗ and assume
it is a L-generic point of C . In the description of C above, the interpretation of α

is also given by α = |I1| where I1 := {1 ≤ i ≤ k : ni1 = ni } [16, Proposition
3.12] and we get an interpretation of the constant term β as β = ∑

i∈I0 ni1, where
I0 := {1 ≤ i ≤ k : ni1 < ni }.

Let M |	 T ∗
c,D , assume that M sufficiently saturated and let φ(x; ȳ) be an LD-

formula. Let K ⊂ M and S = φ(M, k̄), with k̄ ⊂ K . Let φ∗
mod(x

∇; ȳ∇) be the
formula constructed above, with n11 = |x∇|.
Proposition 5.6 Let Tc be as above. Then, in models of T ∗

c,D, the dual VC-density of

the LD-formula φ(x; ȳ) is equal to the dual VC-density of φ∗
mod(x

∇m−1; ȳ∇), where
m is equal to L-dim(φ∗

mod) (viewed as a formula in x̄).

Proof Let φ(x; ȳ) be an LD-formula, let M |	 T ∗
c,D and let B ⊂ M |ȳ|. Since

T ∗
c,D admits quantifier elimination, one may assume that φ(x; ȳ) is of the form

∨
j∈J (

∧
i∈I j pi j (x, ȳ) = 0∧ θ j (x, ȳ)), with for all i ∈ I j , pi j (X; Ȳ ) ∈ Q{X; Ȳ }\{0}

and for all j ∈ J , θ∗
j defines an open subset in some cartesian product of M .

We associate with φ(x; ȳ) an L-formula φ∗(x̄; z̄) as in Notation 2.3, where x̄, z̄
are tuples of variables of the same length as x∇ , respectively ȳ∇ . Set B∇ := {(b̄∇) :
b̄ ∈ B} and note that |B| = |B∇|. We apply Proposition 5.5 to both formulas φ and
¬φ, in order to obtain L-formula φ∗

mod(x̄, z̄), (¬φ)∗mod with the following properties.
The definable set φ∗

mod(M) (respectively (¬φ)∗mod(M)) is a finite union of cells C̃ and

L-dim(C̃) = ∑�+1
i=1 ni1, where � is the length of ȳ. The number of cells depends only

on the formulas φ∗
mod , (¬φ)∗mod in particular the number of cells of dimension 0.

Fix a finite set B := {b1, . . . , b�}, consider a fiber of the form φ∗
mod(ā; M) and let

I+ := {i : φ∗
mod(ā; b∇

i ), bi ∈ B}. For each i ∈ I+, let C̃i be one of the cells such
that (ā, b∇

i ) ∈ C̃i , with C̃i occurring in the decomposition of φ∗
mod(M). First, if for

some i , πn1(C̃i ) is of dimension 0, then since the differential points are dense in C̃i ,
ā is a differential point. Otherwise we let n1i > 0 be such that πn1i (C̃i ) is an open
set. Let m > 0 be the minimum of all such n1i . So

⋂
i∈I+ φ∗

mod(M, b∇
i ) is infinite

and contains ā. Using the scheme (DL) we can construct a differential point a∇ close
to ā and satisfying the formula

∧
i∈I+ φ∗

mod(x̄, b
∇
i ). It may happen that such a∇ does

satisfy φ∗
mod(M, b∇

j ) for j ∈ I−. This corresponds to the case when ā ∈ πn1(D),
for D a cell occurring in the cell decomposition of (¬φ)∗mod of dimension 0. Since
the number of such cells is bounded independently of |B|, the difference between
|Sφ∗

mod
(B∇)| and |Sφ(B)| is constant. ��

Example 4 Let T ∗
c,D be the theoryCODF of closed ordered differential fields. Below

we give some examples of, given anLD-formula, how to construct anL-formulaφ∗
mod .

Let q0(Y ), q1(Y ), q2(Y ) ∈ Q{Y }\{0} and assume that the order of these dif-
ferential polynomials is respectively m0,m1,m2. Let m = max{m0,m1,m2} and
ȳ = (y0, . . . , ym). Fix a differential tuple b∇ := (b0, b

(1)
0 , . . . , b(m)

0 ).
Let ϕ(x; y) be the formula ϕ1(x; y) ∨ ϕ2(x; y), where ϕ1(x; y) := (D(x) =

q0(y) ∧ q1(y) < x < q2(y)) and ϕ2(x; y) := (p(x) = q0(y) ∧ q1(y) < D(x) <

q2(y)). Set ϕ∗ := ϕ∗
1 ∨ ϕ∗

2 , where
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ϕ∗
1 (x0, x1; b∇) := ((q∗

1 (b∇) < x0 < q∗
2 (b∇) ∧ x1 = q∗

0 (b∇)) ∨ (x0 =
q∗
1 (b∇) ∧ D(q1(b)) = q0(b)). In this case we take ϕ∗

1 = ϕ∗
1mod and we have that

L − dim(ϕ∗
mod) = 1. We use the axiomatisation of CODF to show that we can find

close to any element in the open interval ]q1(b) q2(b)[ an element whose derivative
is equal to q0(b).

Let ϕ∗
2 (x0, x1; b∇) := (p(x0) = q∗

0 (b∇) ∧ q∗
1 (b∇) < x1 < q∗

2 (b∇). In this case
we consider the following disjunction (p(x0) = q∗

0 (b∇) ∧ sp(x0) �= 0 ∧ x1 =
D(q0(b))
sp(x0)

∧ q∗
1 (b∇) < x1 < q∗

2 (b∇) or (p(x0) = q∗
0 (b∇) ∧ sp(x0) = 0 ∧ q∗

1 (b∇) <

x1 < q∗
2 (b∇). In order to obtain ϕ∗

mod we have to put the second disjunct into a
form similar to the first disjunct in order to be able to calculate D(x0). In any case,
L−dim(ϕ∗

mod) is either 0 or −∞, depending on whether a condition of the form

q∗
1 (b∇) <

(∂Xq0)∗(b∇ ))
sp(a)

< q∗
2 (b∇) is satisfied for one of the non singular roots a of

p(x) = 0 and some tuple b∇ .

Corollary 5.7 For Tc a weakly o-minimal theory, the dual VC-density of a formula
φ(x; ȳ) in T ∗

c,D is bounded by L−dim(φ∗
mod).

Proof By [2,Theorem6.1] andproposition above, the dualVC-density of such formula
is bounded by |x̄ | and this bound is optimal as noted in [2, Section 1.4]. ��
Corollary 5.8 For Tc = pCF1, the dual VC-density of a formula φ(x; ȳ) in T ∗

c,D is
bounded by 2.L-dim(φ∗

mod) − 1

Proof We apply [2, Theorem 7.3] and the above proposition. ��

6 Transfer of NT P2

Definition 6.1 Let T be a complete theory, then T is T P2, if it has a formula φ(x̄; ȳ)
with T P2. A formula φ(x̄; ȳ) has T P2 if there exist an array (ā�j )�, j<ω in a modelM
of T and |ȳ| = |ā�j |, and k ∈ ω\{0, 1} such that:

• for all � ∈ ω, the set of formulas φ(x̄; ā�j ) j∈ω is k-inconsistent,
• for every f : ω → ω, the set {φ(x̄; ā� f (�))} is consistent.
If a theory T is T P2, then there is a formula φ(x; ȳ) with T P2 with |x | = 1 [10,

Theorem 2.9 and Lemma 3.2].
From now on, we let Tc be a model-complete theory of topological L-fields satis-

fying Hypothesis (I ) (as defined in Sect. 2), where the topology is non-discrete and
uniformly definable. (Note that here we are no longer assuming that Tc admits quan-
tifier elimination). Let Tc,D be the corresponding theory of differential topological
L-fields and T ∗,ω

c,D its model-companion as described in [15, Theorem 9.3]. We show
that the NT P2 property transfers from Tc to T ∗,ω

c,D . Then we apply our result to the
case of certain theories of bounded pseudo-real closed fields, in particular when Tc is
the theory of maximal pseudo-real closed fields.

In the case of a generic predicate P , A. Chernikov showed that if T is geometric
(namely acl satisfies the exchange property and T eliminates the quantifier ∃∞) and
NT P2, then TP is NT P2 [10, Theorem 7.3].
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Proposition 6.2 Let Tc is a model-complete theory of topological L-fields satisfying
Hypothesis (I ). Assume that Tc has NT P2, then T ∗,ω

c,D has NT P2.

Proof By theway of contradiction, we supposewe have anLD-formulaφ(x; ȳ)which
is T P2 with |x | = 1. Let M be a sufficiently saturated model of T ∗,ω

c,D , k ∈ ω\{0, 1}
and an array (ā�j ) j∈ω such that

(i) for all � < ω, the set of formulas (φ(x; ā�j )) j∈ω is k-inconsistent,
(ii) for all f : ω → ω, {φ(x; ā� f (�))) : � ∈ ω} is consistent.

Since T ∗,ω
c,D is model-complete, the LD-formula φ(x; ȳ) is equivalent to an exis-

tential formula. Since the disjunction of two NT P2 formulas is NT P2 [10, Lemma
7.1], we may assume φ(x; ȳ) is of the form ∃z̄ (χ(x, z̄; ȳ) ∧ θ(x, z̄; ȳ)), where χ

is a conjunction of differential polynomial equations, θ∗(M) is an open subset and
z̄ := (z1, . . . , zm).

Let χ∗(x∇n1 , z̄∇n3 ; ȳ∇n2 ) be the corresponding Lrings-formula (which expresses
that a certain differential tuple belongs to an algebraic set); we may assume that
n1 = n2 = n3 = n. Let φ∗(x̄; ỹ) be the formula ∃z̃ (χ∗(x̄, z̃; ỹ)∧ θ∗(x̄, z̃; ỹ)), where
x̄ has length n + 1, ỹ (respectively z̃) has length (n + 1).|ȳ| (respectively (n + 1).|z̄|).

Since the theory Tc is NT P2, there exists � such that {φ∗(x̄; ā�j ) : j ∈ ω} is
consistent. Let us show that this implies that {φ(x; ā�j ) : j ∈ ω} is finitely consistent
and so consistent which is a contradiction with assumption (i).

Let J be a finite subset of N and consider the formula
∧

j∈J φ∗(x̄; ā∇n
�j ). Let (d̄, b̃)

an element of M realising the formula χ∗(d̄, b̃; ā∇n
�j ) ∧ θ∗(d̄, b̃; ā∇n

�j ). Consider the

algebraic set W given by:
∧

j∈J χ∗(x̄, b̃; ā∇n
�j ) (defined over M). By applying the

generalised Euclidean algorithm, we may assume that W is given by a finite union
of subsets Wi of the form pi (x, . . . , xk, b̃; ā∇n

�j ) = 0 & ∂xk pi (x, . . . , xk, b̃; ā∇n
�j ) �=

0&
∧

t qt (b̃; ā∇n
�j ) = 0 & q(b̃; ā∇n

�j ) �= 0. The tuple d̄ belongs to one of the Wi .

By the axiomatisation of T ∗,ω
D [15, Lemma 9.2], which reduces in the one variable

case to the scheme (DL) (see Sect. 2), we can find a differential solution u∇n ∈ Wi

that we can choose close enough to d̄ in order to be in θ∗(M, b̃; ā∇n
�j ). So we get that

χ∗(u∇n , b̃; ā∇n
�j ) ∧ θ∗(u∇n , b̃; ā∇n

�j ) holds. Then we fix the differential tuple u∇n and

we re-iterate the above procedure with the first element b1 of the tuple b̄, namely
we express the tuple b̃ as (b̄1, b̃′) with |b̄1| = n + 1, |b̃1| = (n + 1).(|b̄| − 1). We
replace b̄1 with a close enough differential tuple v

∇n
1 such that χ∗(u∇n , v

∇n
1 , b̃′; ā∇n

�j )∧
θ∗(u∇n , v

∇n
1 , b̃′; ā∇n

�j ) holds.

Continuing in this way with the successive elements of the tuple b̄, we get a differ-
ential tuple v̄∇n close to b̄ and such that

∧
j∈J χ∗(u∇n , v̄∇n ; ā∇n

�j )∧θ∗(u∇n , v̄∇n ; ā∇n
�j )

holds. So
∧

j∈J φ(u, ā�j ) holds in M , which leads to a contradiction. ��
Nowwe apply the above result taking for Tc amodel-complete theory of pseudo-real

closed fields. Recall that the class of pseudo-real-closed fields has been axiomatised by
Prestel [34] and then independently by S. Basarab. A pseudo-real-closed field (PRC-
field) is bounded if it has only finitely many algebraic extensions of each degree and it
is maximal if it has no proper algebraic extensions. (Note that an algebraic extension
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of a PRC-field is again PRC .) It is easy to show that if a PRC-field is bounded, then
it can be only endowed with finitely many distinct orderings. Denote by PRCe the
theory of pseudo-real-closed fields endowed with exactly e distinct orderings.

In his thesis [38], van den Dries introduced the theory OFe of formally real fields
endowedwith e distinct orderings and showed that this theory has amodel-companion:
OFe, which coincides with the theory of maximal PRCe fields, as observed later by
Jarden [18].

Montenegro [27] noted that PRC-fields which are not algebraically closed nor real-
closed have the independence property. (They can be interpreted in PAC fields and
then one applies a former result of Duret [13]). Furthermore, she proved that bounded
PRC-fields are exactly the PRC fields with NT P2 [27], answering a question of
Chernikov et al. [11].

In [15], we considered differential generic expansions of fields endowed with sev-
eral distinct orderings. LetL := Lrings ∪{<1, . . . , <e}, e ≥ 2. The generic expansion
of the theory OFe with a derivation D: OFe,D has a model-companion OFe,

∗,ω

D [15,
Theorem 9.3] (the notation used there was OFe,D

ω
).

Adding to the languageL, a countable setC of new constants, we can generalize that
result as follows. Let K be a bounded PRC-field endowed with exactly e orderings
and let K0 be a countable elementary substructure of K . Then theLrings(C)-theory Tc
of K is model-complete, where C is interpreted by the elements of K0 [28, Corollary
3.6]. (One first uses a former result of Jarden that the L(C)-theory of K is model-
complete and then one shows that the orderings <i , 1 ≤ i ≤ e, are existentially
definable in Lrings(C) [28, Lemma 3.5]). In order to show that Tc,D has a model-
companion, one either uses the result of Tressl [37, Theorem 7.2] or one checks that
Tc satisfies Hypothesis (I ) and this follows from Remark 2.2 since PRC-fields are
large fields.

Corollary 6.3 Let K be a bounded PRC-field and let K0 be a countable elementary
substructure of K . Let Tc the Lrings(C)-theory of K , where C is interpreted by the
elements of K0. Then the theory T ∗,ω

c,D is NT P2.

Let OFe be the theory of maximal PRCe fields, e ≥ 1. Then LD-theory OFe,
∗,ω

D
is NT P2.

Proof This follows from the preceding proposition and the fact that the theories Tc,
respectively OFe are NT P2 [28, Theorem 4.22]. ��

Remark 6.4 Let Tc be as in the preceding corollary. Then any quantifier-free formula
in T ∗,ω

c,D , respectively in OFe,
∗,ω

D is N I P .

Proof We apply Fact 5.1 and the fact that the corresponding property holds for Tc,
respectively OFe by [28, Corollary 4.12]. ��
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