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Since graphene supports low loss plasmonic guided modes in the infrared range, we theoretically investigate the
coupling of thesemodes in patterned sheets with nanocavities.We calculate cavitymodes and (potentially critical)
coupling in filter-type circuits, with resonances observed as multiple minima in the reflection spectrum. The ori-
gin and properties of the cavity modes are fully modeled by coupled mode theory, exploring for various positions
of the cavity with respect to the access waveguide. A useful resonance frequency shift is examined by modifying
the graphene doping (e.g., via voltage tuning). The deep subwavelength cavity modes reach quality factors up to 42
for ribbons of 30 nm width around 5 μm wavelength. These resonances provide opportunities for ultracompact
optoelectronic circuits. © 2014 Optical Society of America

OCIS codes: (250.5403) Plasmonics; (230.7370) Waveguides; (230.5750) Resonators; (250.3140) Integrated
optoelectronic circuits.
http://dx.doi.org/10.1364/JOSAB.31.001096

1. INTRODUCTION
Graphene is a promising material for a wide range of nano-
technological applications [1–3]. If we focus on the optoelec-
tronic applications, functional graphene circuits using
plasmonic modes form an interesting developing field [4].
In this paper, we describe the coupling of graphene plasmons
between a semi-infinite sheet and a nanoribbon, which gives
deep reflection dips at certain resonant wavelengths. The use-
ful phenomenon of critical coupling leading to zero reflection
from these cavities can be engineered. Furthermore, by tuning
the gate voltage on graphene the resonant wavelength is
adjusted. The width of the ribbon (only 75 nm or smaller) and
the confinement of the plasmon mode (<50 mm) lead to ultra-
small, tunable optoelectronic circuits.

Since its discovery graphene has spurred tremendous inter-
est for its electronic, mechanical, and optical properties. This
one atom thick material has been used in many optical appli-
cations: in the optical range as a transparent conductor [5,6],
in the far-infrared and terahertz frequencies as a building
block to realize tunable metamaterials [7], and in the near-
infrared to design optical sensors [8,9] or graphene plasmonic
devices [10].

Indeed, in the infrared range graphene supports plasmon-
like modes which can be less lossy and more confined than
their noble metal counterparts [11]. In themeantime, the prom-
ise of photonics integrated circuits is jeopardized by limiting
problemswith downscaling and integration [10]. Consequently,
graphene circuits create great interest for their tiny size (one
atom thick material and very small plasmon wavelength λp <
50 nm [11]) and their tunability via electrostatic gating [12].

In recent work, plasmons in graphene nanoribbons were
studied in [13]. Bends and splitters were discussed in [14],
and directional couplers were demonstrated in [15], with a

switching behavior in [16]. Additionally, it was shown that
curved graphene sheets support plasmons with low radiation
losses leading to flexible graphene circuits [17].

Here, we study the coupling of graphene plasmons on a
semi-infinite sheet with a nanoribbon (functioning as cavity)
separated by an air-gap, and we show and explain tunable
minima in the reflection spectra. To the best of our knowl-
edge, these cavities have not been studied extensively.

The simulations are performed with COMSOL, a commer-
cial finite-element-based software package. Graphene is
modeled as a thin layer of 0.5 nm thickness and its optical
parameters are defined via the relative permittivity:
ε∥�ω; EF � � 1� iσ�ω; EF �∕�ε0ωt�, where t is the thickness
of the graphene sheet, EF the Fermi energy, ω the angular fre-
quency, and σ�ω; EF � the optical surface conductivity (S∕m2)
computed by the Kubo–Greenwood formula [18,19]. The scat-
tering lifetime of electrons in graphene is fixed to τg � 10−12 s.

We operate in the range ω � 2 to 3 × 1014 rad∕s and EF � 0.2
to 1 eV (Fermi energies up to EF � 1 − 2 eV have been re-
ported [20]). The doping level can be employed to tune gra-
phene. Note that optical properties of graphene are
anisotropic [21,22]. We employed ε⊥ � −3.8 − 0.70i in the di-
rection normal to the surface of graphene. Nevertheless, this
parameter has negligible influence on the results.

The paper describes the numerical and theoretical model-
ing of a small graphene ribbon operating as a cavity in various
geometries. In the first section, the cavity is placed at the end
of an access sheet or waveguide. Tunable minima in the reflec-
tion spectra are observed (Section 2.B) and described by the
coupled mode theory (Section 2.A). In the following section,
the cavity is next to the access waveguide. A directional-
coupler-based theory is developed in Section 3.A, with
simulation results in Section 3.B.
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2. RIBBON AT THE END OF A SHEET
In this section, we study a two-dimensional system composed
of a semi-infinite sheet of graphene (the access waveguide)
and a small ribbon (serving as the cavity) of width L at dis-
tance d from the sheet (Fig. 1). The background medium is
air (εair � 1).

Without the cavity, the injected plasmon propagates along
the graphene sheet and is nearly totally reflected at the edge:
the plasmon is so confined that very little light is radiated.
When a cavity ribbon is placed near the end of the sheet,
the evanescent field can couple into and light can resonate
in the cavity [Fig. 2(a)]. For a specific wavelength, we observe
a reflection minimum [Fig. 2(b)]. Note that the presented
reflections are “normalized”: the losses in the access
waveguide are neglected, but the losses in the cavity are
accounted for.

A. Coupled Mode Theory
The properties of the cavity modes are modeled very
adequately by the coupled mode theory (CMT). CMT de-
scribes the coupling of ports with resonators [23]. In our case,
a single mode port couples with a cavity, with the coupling
strength characterized by τ−1c . The dissipative and radiative
losses occurring in the resonator are represented by τ−1a
and τ−1r , respectively. The equations of temporal CMT are [23]

da
dt

�
�
jω0 −

1
τ

�
a�

����
2
τc

s
s�; (1)

s
−

� r0s� �
����
2
τc

s
a; (2)

where s� and s
−

are the input and output amplitudes of the
(plasmon) mode transmitted through the port, a is the ampli-
tude of the cavity mode, r0 is the reflection at the edge of the
graphene sheet without the resonator, and ω0 is the resonant
frequency. Note that �1∕τ� � �1∕τc� � �1∕τa� � �1∕τr�.

Isolating s
−

∕s� and going to the frequency domain (e�jωt),
we find

s
−
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1 −

2
τc

j�ω − ω0� � 1
τ

�
; (3)

and finally

Fig. 1. Side view of the ribbon cavity.
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Fig. 2. (a) Normalized jHzj field for EF � 0.3 eV at λ � 7.95 μm. The size of the cavity is L � 75 nm and the distance from the sheet is d � 10 nm.
(b) Simulated reflection spectrum for different doping (EF ). Theoretical points are shown for EF � 0.3 eV. Three orders of resonances are shown
for each EF . (c) Table with fitted lifetimes and resonant frequencyω0, and the calculated absorption lifetime. The quality factors are computed from
the fitted parameters as Q � ω0∕ΔωFWHM.
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The Lorentzian-shaped resonance has its minimum at ω � ω0.
In addition, one obtains a useful critical coupling when
τa � τc: all the energy coupled to the cavity is dissipated,
and the reflection goes to zero.

As previously mentioned, because of the remarkable
impedance mismatch between the plasmon and free space,
radiative losses at the edge of a sheet can be neglected, so
jr0j2 ≈ 1 and τ−1r ≈ 0.

The absorption lifetime τa can be modeled via [24]

τa � 1
vgI�β�

; (5)

where vg is the group velocity of the considered mode and
I�β� is the imaginary part of its propagation constant.

B. Results and Discussion
In Fig. 2(b), the cavity has a size of L � 75 nm. The doping of
graphene is shifted from EF � 0.2 eV to EF � 0.5 eV and we
observe a shift of the fundamental resonance wavelength from
λ � 10 to 6 μm. This could be realized by introducing a gate
voltage on graphene (the sheet and the ribbon are doped in
the simulations (doping only the cavity gives identical results,
not shown here). Figure 2(c) shows different fitted parame-
ters from the first-order minima of these spectra using
Eq. (4), and the corresponding fit is shown in Fig. 2(b) for
EF � 0.3 eV (dots).

First of all, one observes that the theoretical absorption life-
time [Eq. (5)] matches the fitted value, which increases with
the graphene doping. This is understood from the interband
transitions in graphene, occurring above a threshold related
to the Fermi energy (ℏω > 2EF ) which can be shifted to higher
frequencies by larger doping [12]. Subsequently increasing
doping decreases interband transitions and thus decreases
losses. This impacts the imaginary part of the graphene

plasmon propagation constant: doping graphene decreases
its value and from Eq. (5) one finds an increase of τa.

Note that the absorption lifetime is correlated to the scat-
tering lifetime τg of electrons in the graphene sheet. Theoreti-
cally [13], the latter can be determined by the equation
τg � μEF∕ev2F ≈ EF × 10−12 s∕eV, where the Fermi velocity
vF ≈ 106 m∕s and with the measured impurity-limited DC
mobility μ ≈ 1000 cm2∕�V s� [25]. For the sake of clarity,
we arbitrarily fix τg � 10−12 s in the permittivity model but
the minima are also observed for lower values of this
parameter. This is illustrated in Fig. 3(a) for EF � 0.4 eV
(theoretically τg ≈ 4 × 10−13 s). Varying τg keeps the resonant
frequency (ω0 � 2.8 × 1014 rad∕s) and the coupling lifetime
(τc � 1.7 × 10−13 s) constant while τa changes. A limiting prob-
lem is that the minimum becomes wider with the losses.

Next, from Fig. 2(c) we note that τc decreases when in-
creasing the doping level. This is explained by the confine-
ment of the plasmon. As it will be demonstrated later, the
resonances always occur for the same value of the real part
of the propagation constant R�β� � neffω∕c (where c is the
speed of light). This implies that neff decreases when omega
increases, leading to a smaller confinement for larger angular
frequencies. Since τ−1c theoretically stems from an overlap in-
tegral of the evanescent fields, this gives stronger coupling
(τc smaller) when ω increases as shown in Fig. 2(c). Because
of the integration model of τ−1c , the coupling lifetime is also
tunable via the distance d, increasing with this parameter. This
is shown in Fig. 3(b) for EF � 0.3 eV, with all other parame-
ters constant (ω0 � 2.4 × 1014 rad∕s, τa � 2.0 × 10−13 s).

Because of these evolutions of τa and τc, for the configura-
tion of Fig. 2(b), critical coupling (R � 0) is reached when
τa � τc � 2.0 × 10−13 s and ω � ω0 � 2.4 × 1014 rad∕s [see
Eq. (4)]. Note that doping only the cavity will change the cou-
pling and absorption lifetimes following the same trends as in
Fig. 2(c). The equality τa � τc will then be reached for another
doping configuration. For instance, when the access wave-
guide is EF � 0.4 eV doped and the cavity EF � 0.25 eV, a
critical coupling R � 0 is reached when ω0 � 2.1 × 1014 rad∕s.
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Fig. 3. Simulated reflection in function of the wavelength. (a) The resonances are modified with the scattering lifetime of the electrons in gra-
phene. For the first-order minimum, critical coupling is obtained for τg � 7.5 × 10−13 s (legend with τg in 10−13 s). EF � 0.4 eV, L � 75 nm, and
d � 10 nm. (b) The resonances depend on the cavity–waveguide distance d. A critical coupling is observed for d � 30 nm. EF � 0.3 eV and
L � 75 nm.
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When examining the second-order minima [Fig. 3(a)] we do
not reach critical coupling. Indeed, losses are too important at
these wavelengths (τa too small in comparison to τc to reach
τa � τc). Consequently, the minimum of reflection is only
about 0.5. Note that for 0.4 eV doping, the second-order dip
has a quality factor Q � 15. This value is higher than the
one obtained for the first-order dip (Q � 13), but this is mainly
due to the larger resonance frequency ω0.

The particular resonance frequency is strongly determined
by the plasmon properties. Indeed, in order to get a resonance
in the cavity one needs constructive interference during a
round trip

2Rfβ�ω�gL� 2φr � 2mπ; (6)

where β is the propagation constant of the plasmon mode, R
indicates the real part, φr is the phase induced by the reflec-
tion at the end of the ribbon, and m is an integer. The first-
order resonance is obtained when m � 1.

It turns out that φr is relatively constant (≈0.85 rad) in the
typical mid-infrared range of frequencies, so for a particular L
the resonance always occurs at the same value of the propa-
gation constant Rfβg ≈ 30 rad∕μm. In Fig. 4, the graphene
dispersion is plotted for different doping levels. The crossing
between this value ofRfβg (vertical black line) with the differ-
ent dispersion curves corresponds with the resonance
frequencies fitted in the Fig. 2(c) from our simulations. This
is a consequence of the specific properties of graphene: apply-
ing a gate voltage shifts the optical properties of the plasmon
and thus the resonance frequency.

Thanks to these properties one can easily predict the res-
onance frequency for a given cavity length. For example, the
gray straight vertical line (Fig. 4) at Rfβg � 76 rad∕μm shows
the expected resonances for a L � 30 nm length cavity,
the first-order frequency for 1 eV doping will occur
at ω0 � 6.8 × 1014 rad∕s.

In order to improve the quality factor one would need
smaller cavities, i.e., larger resonance frequencies. However,
going in this direction increases the losses (interband transi-
tions occur when ℏω > 2EF ). To counter that effect a high
doping of graphene is required, so when EF � 1 eV a quality

factor of Q � 42 is reached with a cavity of L � 30 nm, at
λ0 � 2.8 μm. This is the of the same order of magnitude of
the quality factor of localized surface plasmon resonances
of metals like silver (Q ≈ 30) or gold (Q ≈ 10) [26].

3. DIRECTIONAL COUPLER CAVITY
In this section, we study a graphene ribbon (cavity) on top of a
free-standing semi-infinite graphene sheet (Fig. 5). Without
the cavity the plasmon propagates along the semi-infinite gra-
phene sheet, is reflected at the edge, and creates a stationary
wave. If we put a ribbon on top of the sheet the plasmon can
couple with this cavity, leading to more complex interference
effects and resonances.

We introduce a simple model in the following subsection,
and discuss the behavior and comparison with simulations in
the next subsection.

A. Theory
The coupling between two parallel graphene sheets separated
by a distance d can be described by directional coupler
theory. We suppose that the two plasmonic waveguides are
identically doped so that they support a plasmon with the
same propagation constant β. The coupling between the plas-
mon modes is characterized by κ. The solution for the lossless
case is in [27]. One can take the phase and the losses into
account via the exponential factor e−jβx

a1�x� � �cos�κx�a1�0� − j sin�κx�a2�0��e−jβx; (7)

a2�x� � �−j sin�κx�a1�0� � cos�κx�a2�0��e−jβx; (8)

where ai�x� are the amplitudes of the plasmonic mode in the
ith waveguide, and x is the propagation direction.

In a first step, we propose a systemwith two ports. In Fig. 5,
suppose that the reflection r0 is handled by a port, with s2�
and s2− the input and output amplitude of the mode transmit-
ted through the port, respectively. With a cavity of length L
separated a distance x1 from port 1 and x2 from port 2, the
scattering matrix is

�
s1−
s2−

�
�

�
S1 Sx

Sx S3

��
s1�
s2�

�
; (9)

where

Si �
−r0 sin2�κL�

1 − �r0 cos�κL�e−jβL�2 e
−2jβ�L�xi�; (10)
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Fig. 4. Dispersion of the plasmon propagating along a graphene
sheet for different doping levels. The black vertical line represents
the required real part of β for a resonance in a 75 nm long cavity.
The horizontal lines indicate the resonance frequencies. The vertical
gray line stands for the expected resonances in a 30 nm cavity. Fig. 5. Transversal view of the studied structure.
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Sx � cos�κL�e−jβ�x1�L�x2� 1 − r20 cos�2κL�e−2jβL
1 − �r0 cos�κL�e−jβL�2 ; (11)

with r0 as the reflection of the plasmon mode at the end
of a graphene sheet (also in the cavity ribbon). The final
system requires that the mode transmitted in port 2 is re-
flected, so with s2� � r0s2− in Eq. (9) one finds for the total
reflection

R �
���� s1−s1�

����2 �
����S1 �

r0S2
x

1 − r0S3

����2: (12)

The reflection is then determined by the parameters L and
x2 that we discuss in the next section and also by β, κ, and r0.
The latter one was mentioned in the previous section and was
relatively constant with the frequency and the doping. The
coupling constant κ is fitted from simulations of a directional
coupler composed of two sheets of graphene separated a dis-
tance d using Eqs. (7) and (8). Finally, the plasmon dispersion
is known from simulations. We already discussed the real part
of the propagation constant R�β� in Fig. 4.

B. Results and Discussion
First we examine the effect of x2, the distance between the
side ribbon and the end of the semi-infinite sheet. The total
size of the system x1 � L� x2 � 200 nm is kept constant.
By fitting simulations we obtain κ ≈ 9 rad∕mwhen d � 30 nm
and the graphene is 1 eV doped. Note that varying the distance
d changes κ (for example κ ≈ 15 rad∕m for d � 20 nm) and
one can tune resonance frequencies with this parameter
(not shown here). Note also that we chose to work with high
doping (EF � 1 eV) to reduce the size of the structure and the
computational time, but the same effect is observed for
smaller doping levels at higher wavelengths.

Figures 6(a) and 6(b) show, respectively, the simulated and
theoretical reflection as a function of wavelength λ and the
position of the cavity x2 for a cavity length L � 30 nm. First,
one observes a good agreement of simulations with theory.
Next, we observe a general augmentation of the reflection
with increasing wavelength. Indeed, because of the interband
transitions, losses are less important at larger wavelengths:
the propagation length of the plasmon is greater and the
reflection becomes larger.
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Let us focus on the minima of the map (blue zones). As a
first approximation, one can predict the resonant wavelengths
as explained for the isolated ribbon in the previous section via
Eq. (6). In this way, the expected wavelength would be λ �
2.8 μm which is close to what is observed. However, with
the directional coupling and the semi-infinite sheet reflection,
there is an interference via two other parameters: the coupling
constant κ and x2.

First of all, for some values of x2 (e.g., x2 � 20 and 61 nm),
there are no resonances. This stems from the half-plasmon
wavelength λp∕2 � 41 nm. Indeed, when there is no cavity,
there is a stationary wave on the ribbon with incoming and
reflected waves. Subsequently, if the cavity is centered on
top of a node, the resultant field in the cavity will be very
small: the forward incoming wave and the backward reflected
wave create destructive interference in the cavity.

When the cavity is not centered on a node, different pos-
sible interferences appear depending on the cavity position
and the coupling strength κ. An interpretation is provided by
the supermodes of the directional coupler. Depending on the
position of the cavity, one will excite the symmetric [large
field between the graphene sections, Fig. 6(d) (up)] or anti-
symmetric [node between the graphene sections, Fig. 6(d)
(down)] supermode. The two supermodes have a different
plasmon dispersion leading to two corresponding wave-
lengths. This is why we observe a slanted shape of the blue
zone, with two reflection dips, e.g., at λ � 2.75 μm
(x2 � 10 nm) and at λ � 2.78 μm (x2 � 28 nm).

As the supermodes differ more when κ is large, the wave-
length gap between the reflection dips becomes larger, see
Fig. 6(c), which shows the reflection in function of λ and
x2 for a larger cavity length L � 60 nm. Indeed, a larger cavity
size implies a larger resonance wavelength (≈λp∕2) and so a
larger coupling κ (the plasmon is less confined transversally
and it interacts more with the other ribbon). In this case, one
observes a larger wavelength gap between two minima
(λ � 3.7 μm, x2 � 27 nm, and λ � 3.95 μm, x2 � 53 nm).
The other blue zones observed around λ � 2.5–2.6 μm are
second-order resonances.

Finally, we investigate the reflection tunability of such a
structure. The reflection as a function of the wavelength is
plotted for different doping levels of the cavity ribbon in Fig. 7.

The doping level of the access waveguide is fixed to 1 eV and
the one of the cavity ribbon is modified from 0.7 to 1 eV. One
clearly sees a shift in the reflection dip from λ � 3.3 to
2.75 μm. Here, a minimum of reflection (R � 2.5%) can be
reached for EF � 0.93 eV when λ � 2.84 μm.

The tuning behavior is explained in a first approximation by
the phase resonance condition of Eq. (6) as previously dis-
cussed (Section 2.B). A more accurate model can be devel-
oped similar to Section 3.A for two dissimilar waveguides.
The tunability of such a structure can be realized via electro-
static gating of the graphene nanoribbon.

4. CONCLUSION
In conclusion, we show tunable reflection minima using nano-
cavities constructed by graphene ribbons. When the cavity is
aligned with the semi-infinite sheet, there is a coupling of the
plasmon depending on the distance, the losses, and very inter-
estingly, the graphene doping. This leads to tunable wave-
length selectors easily performed by changing an applied
gate voltage, which is useful for optoelectronic applications,
even if the quality factor is of the order of more traditional
plasmonic devices. The coupling is fully explained by coupled
mode theory and the resonance condition is modeled via the
graphene plasmon dispersion.

When the cavity is on top of a semi-infinite sheet of gra-
phene, the reflection resonances depend on the vertical dis-
tance and the horizontal position of the cavity, the cavity
size, and the graphene doping. The theory of directional cou-
plers is in good agreement with the simulated results. We
show that the horizontal position of the cavity plays an impor-
tant role creating or annihilating the resonance. The coupling
constant is also essential, giving two resonant wavelengths for
two different positions because of the symmetric and antisym-
metric supermodes. Finally, we illustrate the strong tunability
of the reflection thanks to the doping level of graphene. This
work aids in the design of ultracompact optoelectronic devi-
ces utilizing nanoscale graphene cavities.
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