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1. Introduction

Consider the Lie algebraM2(C) and the Lie (sub)algebra sl2(C) of all 2×2 trace zeromatriceswith complex entries. Recall

that a standard basis of sl2(C) (as C-vectorspace) is given by: x =
(
0 1
0 0

)
, y =

(
0 0
1 0

)
, h =

(
1 0
0 −1

)
= diag(1,−1).

The generators x, y, h satisfy the relations: [h, x] = 2x, [h, y] = −2y, [x, y] = h, where [u, v] is the usual commutator of u
and v .
For each positive integer λ, we consider the finite-dimensional simple sl2(C)-module Vλ of dimension λ + 1 and the

(matrix) Lie algebra Mλ+1(C) (the endomorphism ring of Vλ, viewed as a C-vectorspace) and take the exponential maps
fromMλ+1(C) into the linear group GLλ+1(C). (In Section 5, we recall some properties of these exponential maps.)
We connect these exponential maps to the universal enveloping algebra U of sl2(C) (whose definition and algebraic

properties are described in Section 6). We will use some basic facts on the representation theory of this associative algebra
(and its analogue over any algebraically closed field of characteristic 0). It has been studied from a model theoretical point
of view by [7] and then by [8,13,14].
Using on the one hand the concrete exponential maps defined on the matrix rings Mλ+1(C) and on the other hand the

universal property ofU , we define a sequence of exponential maps indexed by λ fromU toGLλ+1(C). We describe some of the
properties of thesemaps, whichwe have formalized (in Section 4) by defining the notion of a non-commutative exponential
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ring (generalizing the commutative case) and we explicitly calculate elements lying in their kernels (respectively images).
Then, for V any non-principal ultrafilter on ω, we show that U embeds into the non-principal ultraproduct

∏
V Mλ+1(C)

and we define an exponential map EXP from U to the non-principal ultraproduct
∏

V GLλ+1(C) of the groups GLλ+1(C). We
show that (U, EXP) is a non-commutative exponential ring, and we explicitly calculate a part of the kernel of EXP. Note that
a formal exponential map exp was previously defined in the completion Û of U [17], on the ideal on Û generated by the
generators of U; in Section 9, we will compare the two approaches.
We go on to endow U with a topology using a norm in

∏
V Mλ+1(C)which takes its values in a non-standard ultrapower

of R, and we show that the exponential map EXP is continuous and that the subgroup generated by EXP(U) is a topological
group.
Finally, by considering another normon eachMλ+1(C), and the asymptotic cone relative to that norm and a non-principal

ultrafilter V on ω, we embed U in a complete metric space and show that U has a faithful continuous action on that space.

2. Preliminaries on formalism

Let us set up the languages we need.
Let Lg := {·, 1} be the language of groups. Let L := {+,−, ·, 0, 1} be the language of (associative) rings (with 1), and

let Lł := {+,−, [·, ·], 0} be the language of Lie rings. For a ring R, let Lm,R := {+,−, 0, ·r; r ∈ R} be the language of right
R-modules.
For the language of R-algebras, where R is a commutative ring, we will choose the expansion LAlg of L, a two-sorted

language with a sort for a ring R, a sort for an algebra A (associative or not) and a scalar multiplication map from A× R to A,
where A is either aL-structure or aLl-structure and R is aL-structure.
For the language of Lie K -algebras, where K is a field, wewill choose eitherLLie := Ll∪Lm,K or the two-sorted language

LAlg . Note that for the former we omit reference to K when it is understood.Wewill assume that K is a field of characteristic
0 and is complete with respect to a nontrivial absolute value. Let TK be the theory of K -vector spaces inLm,K .
Let TL be the theory of Lie K -algebras L in the languageLLie, namely

(1) TK ,
(2) [·, ·] is a K -bilinear map from L× L to L,
(3) ∀x1 [x1, x1] = 0,
(4) ∀x1 ∀x2 ∀x3 ([[x1, x2], x3] + [[x2, x3], x1] + [[x3, x1], x2] = 0).

3. Axioms for semi-simple Lie algebras

We will translate, into model-theoretic terms, the basic results on existence and uniqueness of a semi-simple Lie
K -algebra with a given reduced abstract root system Φ ([10], chapter 18.2). This is not essential for the present paper,
but may be of interest in future generalizations.
Recall thatΦ is a subset of an Euclidean space E endowed with a positive definite symmetric bilinear form (., .). Denote

by< β, α >:= 2. (β,α)
(α,α)

. For a root systemΦ these values are integers.
For x ∈ L, let ad x be the linear transformation of L sending y ∈ L to [x, y].

Proposition 3.1. The theory of any semi-simple Lie algebra L with given reduced root system Φ (and inner product on it) is
axiomatisable inLAlg by the set TΦ of axioms below. Moreover each TΦ is ℵ1-categorical.

(1) TAlg the theory of K-algebras inLAlg over some field K;
(2) The scheme of axioms expressing that K is an algebraically closed field of characteristic 0;
(3) (the αj are the elements of the root system) ∃h1 · · · ∃h` ∃e1 · · · ∃e`∃e−1 · · · ∃e−`[∧

1≤i,j≤`[hi, hj] = 0∧
1≤i≤`[ei, e−i] = hi &

∧
1≤i6=j≤`[ei, ej] = 0∧

1≤i,j≤`[hi, ej] =< αj, αi > ·ej &
∧
1≤i,j≤`[hi, e−j] = − < αj, αi > ·e−j∧

1≤i6=j≤`(ad ei)
−<αj,αi>+1(ej) = 0∧

1≤i6=j≤`(ad e−i)
−<αj,αi>+1(e−j) = 0

& ∀x ∃k1 ∈ K · · · ∃k3` ∈ K x =
∑
1≤i≤` ki.hi +

∑
1≤i≤` k`+j.ej +

∑
1≤j≤` k2`+j.e−j

]
.

Proof. Serre’s work tells us that given a root system Φ and a field of characteristic 0, there exists a unique Lie algebra L
that can be presented by these relations and that it is semi-simple. The second statement follows from the fact that if L is
a model of these axioms of cardinality ℵ1, then it is a Lie algebra over an algebraically closed field F of characteristic 0 of
cardinality ℵ1. �
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Question 3.1. Is the theory of any semi-simple Lie C-algebra L with given root system Φ finitely axiomatisable in LLie
modulo TC?

Let Axiom (3’) be got from Axiom (3) by deleting the last part where we quantify over x. Let L be a model of (1), (2) and (3’),
and let L0 be the Lie subalgebra generated by the elements hi, ej, e−j satisfying the above relations. Then, Serre’s theorem
tells us that L0 is a semi-simple finite-dimensional Lie algebra with root system Φ and Cartan subalgebra generated by
hi, 1 ≤ i ≤ `. Then can we add an axiom that forces L to be equal to L0?
We could have also worked in the language Ll since any semi-simple Lie algebra has a basis with integral structure

constants (a Chevalley basis). We do not pursue this matter here.

4. Exponential rings

LetLE := L ∪ {E} (respectivelyLAlg,E := LAlg ∪ {E}) where E is a unary function symbol. We will introduce the notion
of (non-commutative) exponential ring generalizing the commutative case (see for instance [18]).

Definition 4.1. Let (R, E,G) be a two-sorted structure with R anL-structure, G aLg-structure and E a map from R to G. We
will say that (R, E,G) is an exponential ring if R is an associative ring with 1, G a (multiplicative) group and if E : R → G
satisfies the following axioms:

(1) E(0) = 1,
(2) ∀x E(x). E(−x) = 1,
(3) ∀x ∀y (x. y = y. x → E(x+ y) = E(x). E(y)).

If in addition R is a K -algebra, then (R, K , E,G) is an exponential K -algebra if (R, K) is aLAlg-structure such that the reduct
(R, E,G) is an exponential ring, theLAlg-reduct (R, K) a K -algebra and

∀k1, k2 ∈ K ∀x ∈ R E(k1. x).E(k2. x) = E((k1 + k2). x).

Note that this last axiom together with (1) implies (2) above.

One recovers the classical case by taking G the group of units of R, by assuming that R is a commutative ring and then we
revert to the one-sortedLE-structure (R, E). In the case we deal with an exponential K -algebra, we will get that (K , E) is an
exponential field.

5. A natural exponential map overMλ+1(C)

Consider the field C of complex numbers and, for a fixed natural number λ, the associative C-algebra Mλ+1(C) of all
(λ + 1) × (λ + 1) matrices with coefficients in C (with the matrix multiplication · as the underlying operation). It is also
a Lie C-algebra with the bracket [A, B] := A · B − B · A (see [5,10]). For A ∈ Mλ+1(C), denote by A∗ the conjugate of the
transpose of A, by tr(A) the trace of A , and finally by det(A) its determinant.
We will denote by Diagλ+1(C) (respectively UTλ+1(C)) the subset of all diagonal matrices (respectively upper triangular

matrices) inMλ+1(C).
Recall that on the Lie algebraMλ+1(C), wehave aHermitian sesquilinear form (·, ·)λ+1 definedby (A, B)λ+1 := tr(B∗·A) =∑
i,j Aij · B̄ij, where A, B ∈ Mλ+1(C), its values are in C ([16] page 9). The Frobenius norm (denoted by F-norm) associated

with it, is defined as follows: ‖A‖2F ,λ+1 := (A, A)λ+1. We use this norm systematically later. In addition to the triangle
inequality and submultiplicativity (fromwhichmultiplication is continuous for the norm topology) the F-norm satisfies the
Cauchy–Schwarz inequality ([16] page 10). Note that for diagonalizable matrices, the F-norm is the square root of the sum
of the squares of the norms of the eigenvalues of the matrix.
There are many norms on Cλ+1, all giving the same topology. For example, on C we have the usual norm | · |, inducing

on Cλ+1 the norm (‘‘the 2-norm’’) whose value is the square root of the sum of the squares of the absolute values of the
entries. This norm, and the Frobenius norm, are both instances of Schatten 2-norms. When we refer later to norms, it will
be to such norms, unless we explicitly deal with operator norms. We consider the elements ofMλ+1(C) as linear operators
φ from (Cλ+1, ‖ · ‖1) to (Cλ+1, ‖ · ‖2). Then, for any ordered pair of norms on Cλ+1 there is a corresponding operator norm
onMλ+1(C). Later, when we consider ultraproducts of theMλ+1(C)we will return to discussion of such norms. We will use
operator norms only with reference to Schatten 2-norms.
From now on, wewill assume thatMλ+1(C) is equippedwith a fixed norm ‖·‖ satisfying the Cauchy–Schwarz inequality.

The topology on Mλ+1(C) is independent of the norm, but in discussing convergence of series we will appeal to the fixed
norm.
If A is any matrix inMλ+1(C), one defines ([16] 1.1) thematrix exponential of A, denoted by exp(A), as the power series:

exp(A) =
∞∑
n=0

An

n!
= Iλ+1 + A+

A2

2
+
A3

3!
+ · · · (1)
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where Iλ+1 denotes the (λ+ 1)× (λ+ 1) identity matrix. This exponential series converges in norm for all matrices, so the
exponential of A is well defined. If A is a 1 × 1 matrix, that is, a scalar a of the field C, then exp(A) = ea where ea denotes
the ordinary exponential of the element a ∈ C.
Recall that the matrix exponential satisfies the following properties:

Proposition 5.1. Let A, B ∈ Mλ+1(C) and a, b ∈ C we have:

(i) exp(0λ) = Iλ+1, where 0λ+1 denotes the zero matrix in Mλ+1(C);
(ii) exp(aA) · exp(bA) = exp((a+ b)A);
(iii) exp(A) · exp(−A) = Iλ+1;
(iv) for A and B commuting, exp(A+ B) = exp(A) · exp(B);
(v) for an invertible matrix B, exp(BAB−1) = B exp(A)B−1;
(vi) det(exp(A)) = exp(tr(A)).
(vii) If no two eigenvalues of A have a difference belonging to 2π.i.Z, then there exists a neighbourhood of A on which exp is

injective. The exponential is injective on the ball of radius log(2) around the origin, for the Frobenius norm.

Proof. See [16] Proposition 1 (b), (c), (d), Proposition 3 in section 1.1 and Proposition 7 in section 1.2. See also [1, Chapter 3].
It remains to prove (vi).
By (v), in order to prove (vi), onemay assumewithout loss of generality thatA is in Jordan normal form. SoA can bewritten

as a sum of a diagonalmatrixD and a nilpotentmatrixN withN andD commuting. So, by (iv), exp(D+N) = exp(D) ·exp(N).
Therefore, det(exp(A)) = det(exp(D)) · det(exp(N)) = det(exp(D)). �

For non-commuting matrices A and B, the equality exp(A + B) = exp(A) · exp(B) need not to hold. In that case, the
Baker–Campbell–Hausdorff formula can be used to express exp(A) · exp(B) (see [16, Section 1.3]).
Now, using the matrix exponential, one defines the exponential map

exp : Mλ+1(C)→ GLλ+1(C) : A 7→ exp(A),

and rephrasing, (part of) Proposition 5.1, we get that (Mλ+1(C), exp,GLλ+1(C)) is an exponential C-algebra. Moreover, the
map exp is surjective from Mλ+1(C) to GLλ+1(C). (Every invertible matrix can be written as the exponential of some other
matrix ([16] page 21).)
For future use, we recall some methods for explicitly calculating matrix exponentials.

Diagonalizable case. If a matrix A ∈ Mλ+1(C) is diagonal A = diag(a1, a2, . . . , aλ+1), then its exponential can be obtained by
just exponentiating every entry on the diagonal: exp(A) = diag(ea1 , ea2 , . . . , eaλ+1).
This also allows one to exponentiate any diagonalizable (so-called semi-simple) matrix S ∈ Mλ+1(C) . If S = BDB−1where

B is invertible and D is diagonal, then, according to the property (v) in Proposition 5.1, we have that exp(S) = B exp(D)B−1
and the exponential of the matrix D is calculated as above.

Nilpotent case. Recall that a matrix N ∈ Mλ+1(C) is nilpotent if Nq = 0 for some positive integer q ( without loss of generality
≤ λ+ 1).
In this case, thematrix exponential exp(N) can be computed directly from the series expansion (expressed by (1)), as the

series terminates after a finite number of terms: exp(N) = Iλ+1 + N + N2
2 + · · · +

Nq−1
(q−1)! .

General Case. Since any matrix A ∈ Mλ+1(C) can be expressed uniquely as a sum A = S + N where S is diagonalizable, N is
nilpotent and S · N = N · S, then the exponential of A can be computed by using the property (iv) of Proposition 5.1 and by
reducing to the previous two cases, so:

exp(A) = exp(S + N) = exp(S) · exp(N).

Note that this uniqueness easily translates, via quantifier elimination for algebraically closed fields, into a constructible
version in the sense of algebraic geometry.
We will need a more thorough description of Ker(exp). It is easy to see that the map exp is not injective. For instance,

consider a non-zero diagonal matrix Iλ+1 6= D ∈ Mλ+1(C), D = diag(d1, d2, . . . , dλ+1), with its matrix exponential,
exp(D) = diag(ed1 , ed2 , . . . , edλ+1). Then, exp(D) ∈ Ker(exp) if and only if the entries of D belong to the kernel of the
standard complex exponential map , so if and only if d1, d2, . . . , dλ+1 ∈ 2π i · Z.

Lemma 5.2. If the matrix A ∈ Mλ+1(C) belongs to the kernel of exp, then A is diagonalizable and its eigenvalues lie in the kernel
of the exponential function e in C.

Proof. In order to determine whether A ∈ Ker(exp), by Proposition 5.1(v), since exp(B−1AB) = B−1 exp(A)B,we have that
exp(A) = Iλ+1 if and only if exp(B−1AB) = Iλ+1, for any invertible matrix B ∈ Mλ+1(C). Since C is algebraically closed,
A is conjugated to a matrix in Jordan normal form, which can be written as a sum of a diagonal matrix D and a nilpotent
matrix N with N and D commuting. So, by Proposition 5.1(iv), exp(D+ N) = exp(D) · exp(N). Now exp(N) is unipotent. So
if exp(D+N) = Iλ+1, then exp(D) = exp(−N), so the diagonal matrix exp(D) = Iλ+1. Thus the eigenvalues of D are periods
of the exponential on the complex numbers. Also, exp(N) must be Iλ+1. Finally, a simple calculation with the polynomial
exp(N) (in N) gives N = 0λ+1. We conclude that the kernel of exp consists of the diagonalizable matrices with complex
periods as eigenvalues. �
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Proposition 5.3. Each associative Lie algebra (Mλ+1(C), exp) viewed as anLE- structure is bi-interpretablewith the exponential
field (C, ex).

Proof (See [15]). We embed Mλ+1(C) in the direct product C(λ+1)
2
. Then since C is algebraically closed, any matrix is

conjugate to amatrix in Jordan normal form, namelyD+N whereD andN commute,D is a diagonalmatrix andN a nilpotent
matrix with Nλ+1 = 0. By Proposition 5.1, exp(D + N) = exp(D) · exp(N). Furthermore, exp(N) = 1 + N + · · · + Nλ. For
the other direction of interpretability, see [15]. �

However, note that the class of rings {Mλ+1(C); λ ∈ ω} is undecidable since the class of their invertible elements {GLλ+1(C);
λ ∈ ω} is undecidable (one interprets uniformly in λ a class of finite models whose theory is undecidable) and this implies
that the theory of any non-principal ultraproduct of theMλ+1(C) is undecidable. Moreover, note that one may replace C by
an arbitrary field, and the group GLλ+1(C) by other algebraic groups like SLλ+1(C) (see [6]).

6. The universal enveloping algebra of sl2(C)

Recall that the universal enveloping algebra U of sl2(C) is an associative C-algebra (hence, equipped by a Lie algebra
structure) together with a canonical mapping σ which is a Lie algebra homomorphism σ : sl2(C)→ U such that, if R is any
associativeC-algebra and f : sl2(C)→ R is a Lie algebra homomorphism, then there exists a unique algebra homomorphism
Θ : U → R sending 1 to 1 and such f = Θ ◦ σ (see [4] chapter 2, sections 1, 2).

Diagram 6.1. Let us choose as R the Lie algebra M2(C) and as f the Lie algebra homomorphism f1 : sl2(C)→ M2(C), so there
exists a unique algebra homomorphism Θ1 : U → M2(C) such that (according to what just said above) the following diagram
commutes.

sl2(C) σ - U

f1

?

�
�
�

�
�
�	

Θ1

M2(C)

Since the canonicalmappingσ of sl2(C) intoU is injective ([4] Proposition 2.1.9), fromnowonwewill identify every element
of sl2(C) to its canonical image in U .
By using this universal property of U , we can construct an exponential map over U . Let us define the exponential map

from U to GL2(C) as follows:

EXP1 : U Θ1 - M2(C) exp - GL2(C)

EXP1(α) = exp(Θ1(α)) ∀α ∈ U .
So, the values of EXP1(U) are in GL2(C) and the restriction of EXP1 to sl2(C) coincides with the exponential map exp :
sl2(C) → GL2(C) (viewing sl2(C) ⊂ M2(C)), previously defined (see (1)). Note that the image of the restriction of exp to
sl2(C) is included in SL2(C) (see Proposition 5.1(vi)). Clearly (U, EXP1,GL2(C)) is an exponential algebra.
Let c = 2x · y+ 2y · x+ h2 be the Casimir element of U , where x, y, h are the generators of sl2(C); c generates the center

of U . Let us calculate EXP1(c). First, let

Θ1(c) = Θ1(2x · y+ 2y · x+ h2) = 2
(
0 1
0 0

)
·

(
0 0
1 0

)
+ 2

(
0 0
1 0

)
·

(
0 1
0 0

)
+ (diag(1,−1))2

= 2
(
1 0
0 0

)
+ 2

(
0 0
0 1

)
+ diag(1, 1) = diag (3, 3) .

By using the universal property of U , we have that EXP1(c) = exp(Θ1(c)) = diag(e3, e3).
Now we want to describe the map EXP1 on U . Recall that U is a Z-graded algebra with grading gr(x) = 1, gr(y) := −1

and so gr(h) = 0; am-homogeneous element u ∈ U is an element such that gr(u) = m,m ∈ Z. So U decomposes as a direct
sum ofm-homogeneous components Um consisting ofm-homogeneous elements,m ∈ Z,

U = ⊕
m∈Z
Um.
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Furthermore, every m-homogeneous component satisfies the following relation, depending on whether m is positive or
negative:

Um = xmU0 = U0 xm, for every positive integer numberm,
Um = y|m|U0 = U0 y|m|, for every negative integer numberm,

where, as well described in [7], the 0-homogeneous component U0 coincides with the ring of polynomialsC[h, c] in h and c ,
with coefficients inC. Let um be an element in Um form a positive integer. So, um = u0xm = xmv0, for some u0, v0 ∈ U0, and
u2m = (u0x

m)(xmv0) = u0x2mv0. Applying Θ1 to um, we can see that Θ1(u2m) = Θ1(u0x
2mv0) = Θ1(u0)Θ1(x)2.mΘ1(v0) = 0

(because Θ1(x)2 = 0). By similar calculations, we can see that, ∀u, v ∈ U with every degree different from −1, 0, 1,
Θ1(uv) = 0. Now, we focus on U0, so pick an element p = p(c, h) and calculate the corresponding value of EXP1. Since
Θ1(p(c, h)) = p(Θ1(c),Θ1(h)) = p(diag(3, 3), diag(1,−1)), we can deduce that ∀p ∈ U0, Θ1(p(c, h) = 0) if and only if
p(3, 1) = 0 and p(3,−1) = 0.Note that the corresponding ideal is not prime. Anyway,Θ1(p(c, h)) is a diagonalmatrixwith
eigenvalues p(3, 1) and p(3,−1), and the matrix EXP1(p) = diag(ep(3,1), ep(3,−1))with determinant equal to ep(3,1)+p(3,−1).
By what sketched above,Θ1 acts as zero on U±2,U±3, . . . . So, we restrict our attention to U−1, U0, U1. Let us pick up in

U−1 ⊕ U0 ⊕ U1 an element γ = yp−1(c, h)+ p0(c, h)+ xp1(c, h)where the polynomials p(c, h), p0(c, h), p1(c, h) belong
to U0. We want to calculate the exponential value of γ , as follows:

EXP1(γ ) = EXP1 (yp−1(c, h) + p0(c, h) + xp0(c, h))
= exp (Θ1(yp−1(h, c)) + Θ1(p0(c, h)) + Θ1(xp1(c, h)))
= exp (Θ1(y)Θ1(p−1(c, h)) + Θ1(p0(c, h))+Θ1(x)Θ1(p1(c, h))) .

Since the value ofΘ1 calculated on any element in U0 is represented by a diagonal matrix, soΘ1(yp−1(c, h)),Θ1(p0(c, h)),
Θ1(xp1(c, h)) can be respectively represented by the diagonal matrices diag(a−1, b−1), diag(a0, b0), diag(a1, b1), where
ai, bi ∈ C, with i = −1, 0, 1. So, we have

EXP1(γ ) = exp
((
0 0
1 0

)
· diag(a−1, b−1)+ diag(a0, b0)+

(
0 1
0 0

)
· diag(a1, b1)

)
= exp

((
0 0
a−1 0

)
+ diag(a0, b0)+

(
0 b1
0 0

))
= exp

(
a0 b1
a−1 b0

)
.

Thanks to these calculations, we can easily find the EXP1 of xp1(h, c): indeed, EXP1(xp1(h, c)) = exp(Θ1(xp1(h, c))) =

exp
(
0 b1
0 0

)
= I2 +

(
0 b1
0 0

)
=

(
1 b1
0 1

)
, (because the square of the matrix Θ1(x), so of Θ1(xp1(c, h)) is

null). So, EXP1(xp1(h, c)) = I2 + Θ1(xp1(h, c)). A similar property holds for yp−1(c, h), in fact, EXP1(yp−1(c, h)) =

exp(Θ1(yp−1(c, h))) = exp
(
0 0
a−1 0

)
=

(
1 0
a−1 1

)
.

7. Other exponential maps

In this section, we define other exponential maps over U by using finite-dimensional representations of sl2(C), that is,
finite-dimensional sl2(C)-modules ([4] 1.2). (All our modules will be left modules.) First, recall that by Weyl’s theorem, any
finite-dimensional representation of sl2(C) can be decomposed as a direct sum of simple sl2(C)-modules ([4] 1.8.5). For
every positive integer λ, there exists a unique (up to isomorphism) simple sl2(C)-module Vλ of dimension λ+ 1; Vλ can be
described as theC-vectorspace of all homogeneous polynomials of degree λwith coefficients inC and variables X and Y (see
[5, Chapter 5]). We decompose Vλ with respect to the basis of monomials Xλ, Xλ−1Y , . . . , XY λ−1, Y λ, Vλ = ⊕λi=0C[X

λ−iY i].
The representation fλ of sl2(C) can be described as follows:

x acts as X
∂

∂Y

y acts as Y
∂

∂X
,

h acts as X
∂

∂X
− Y

∂

∂Y
.

So, for 0 < i ≤ λ, the basis element Xλ−iY i is shifted to the left by the action of x, sent to i · X (λ−i)+1Y i−1 and for i = 0, Xλ is
sent by x to 0. For 0 ≤ i < λ, the basis element Xλ−iY i is shifted to the right by the action of y, sent to (λ − i)X (λ−i)−1Y i+1
and for i = λ, Y λ is sent by y to 0. Each subspace generated by Xλ−iY i is left invariant by the action of h: Xλ−iY i is mapped
to (λ− 2)Xλ−iY i (so the corresponding eigenvalue is equal to λ− 2.i).
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The C-vectorspace End(Vλ) coincides with the C-vectorspace Mλ+1(C) of all (λ + 1) × (λ + 1) matrices written with
respect to a basis of eigenvectors for h.
More precisely, through the representation fλ, the actions of x, y and h are represented respectively the following three

(λ+ 1)× (λ+ 1)matrices Xλ+1, Yλ+1, Hλ+1, λ ∈ ω − {0}:

Xλ+1 =


0 1 0 . . . 0
0 0 2 . . . 0
...

... λ
0 0 0 . . . 0

 , Yλ+1 =


0 0 . . . 0
λ 0 . . . 0
0 λ− 1 0
...
0

...
0 1 0

 , (2)

Hλ+1 = diag (λ, λ− 2, . . . ,−λ+ 2,−λ) .

Note that the operator norm of Xλ+1 (respectively Yλ+1) is equal to λ, as is the operator norm of Hλ+1. The operator norm

ofΘλ(c) is equal to λ2 + 2λ. On the other hand, the F-norm of Xλ+1 (respectively Yλ+1) is equal to
√
λ(λ+1)(2λ+1)

6 .
For every positive integer λ, we have the following diagram.

Diagram 7.1. For any simple representation Vλ of sl2(C) of dimension λ+1 (with λ ∈ ω−{0}), let us consider the representation
map fλ : sl2(C)→ Mλ+1(C), and the following (commutative) diagram determined by the universal property of U:

sl2(C) σ - U

fλ

?

�
�
�

�
�
�	

Θλ

Mλ+1(C)

where σ is the canonical mapping (which is a Lie algebra homomorphism) from sl2(C) to U and Θλ is the (unique) algebra
homomorphism from U to Mλ+1(C) sending 1 to 1making the diagram commutes.

Using the commutativity of the above diagram, we obtain that the images of x, y, h by the representation map Θλ :
U → Mλ+1(C) coincide with their images by the representation map fλ, and so are equal to the matrices Xλ+1, Yλ+1, Hλ+1,
(see (2)).
The image byΘλ of the Casimir element c in U is given by the following calculation.

Θλ(c) = Θλ(2xy+ 2yx+ h2) = 2Θλ(x)Θλ(y)+ 2Θλ(y)Θλ(x)+ (Θλ(h))2

= 2Xλ+1Yλ+1 + 2Yλ+1Xλ+1 + H2λ+1
= diag

(
λ2 + 2λ, . . . , λ2 + 2λ

)
. (3)

By the technique used for defining the exponential map EXP1 from U to GL2(C), we can define the exponential map EXPλ
for every positive integer λ, as follows.

Definition 7.1. Letλ ∈ ω−{0}. The exponentialmap EXPλ overU is obtained by composingΘλwith the natural exponential
map exp fromMλ+1(C) to GLλ+1(C) (see Section 5):

EXPλ(u) = exp(Θλ(u)) ∀u ∈ U .

Proposition 7.2. ∀λ ∈ N− {0}, the map EXPλ is surjective.

Proof. Since exp is surjective from Mλ+1(C) to GLλ+1(C), it suffices to prove that Θλ : U → Mλ+1(C) is surjective. The
latter is deduced directly by Jacobson density theorem [11, Section 2.2]. For convenience of the reader, we indicate below
the proof.
Let Vλ be the irreducible representation of sl2(C) of dimension λ+1. As representation of U , we know by Schur’s lemma,

that EndU(Vλ) ∼= C. Consider φ ∈ EndC(Vλ) (= Mλ+1(C)). Then by Jacobson density theorem we get that, for each finite
subset of elements v1, . . . , vλ+1 ∈ Vλ, that there exists u ∈ U such that

∧m
i=1 ( φ(vi) = Θλ(u).vi) . �

We can easily calculate (as matrices in GLλ+1(C)) the values by EXPλ of x, y, h, c , using on the one hand thatΘλ(x),Θλ(y)
are nilpotent matrices (inMλ+1(C))), and on the other hand thatΘλ(h),Θλ(c) are diagonal matrices.

EXPλ(x) = exp(Θλ(x)) = exp(Xλ+1) = Iλ+1 + Xλ+1 +
X2λ+1
2
+ · · · +

Xλλ+1
λ!
;
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EXPλ(y) = exp(Θλ(y)) = exp(Yλ+1) = Iλ+1 + Yλ+1 +
Y 2λ+1
2
+ · · · +

Y λλ+1
λ!

,

EXPλ(h) = exp(Θλ(h)) = exp(Hλ+1) = diag(eλ, eλ−2, . . . , e−λ+2, e−λ);

EXPλ(c) = exp(Θλ(c)) = exp(diag(λ2 + 2λ, . . . , λ2 + 2λ)) = diag(eλ
2
+2λ, . . . , eλ

2
+2λ).

Furthermore, we easily see that EXPλ satisfies the properties of the matrix exponential exp described by Proposition 5.1.

Proposition 7.3. Let λ ∈ N−{0}. Then (U, EXPλ,GLλ+1(C)) is an exponentialC-algebra. More precisely, we have the following
properties. Let u, v ∈ U and let a, b ∈ C, then:

(i) EXPλ (0U) = Iλ+1, where 0U denotes the identity element (with respect to the addition) in U.
(ii) EXPλ (a · u) · EXPλ (b · u) = EXPλ ((a+ b) · u);
(iii)EXPλ (u) · EXPλ (−u) = Iλ+1;
(iv) for u and v commuting, EXPλ (u+ v) = EXPλ (u) · exp(v);
(v) for an invertible element v in U, EXPλ (vuv−1) = Θλ(v)EXPλ (u)Θλ(v)−1.

Proof. (i) By definition of EXPλ, EXPλ (0U) = exp(Θλ(0U)) = exp(0λ) = Iλ+1 (see Proposition 5.1(i)).
(ii) EXPλ (au) · EXPλ (bu) = exp(Θλ (au)) · exp(Θλ (bu)) = exp(aΘλ (u)) · exp(bΘλ (u)). Since Θλ(u) ∈ Mλ+1(C)

and Proposition 5.1(ii) can be applied, then exp(aΘλ (u)) · exp(bΘλ(u)) = exp((a + b)Θλ(u)) = exp(Θλ((a + b) u)) =
EXPλ((a+ b)u).
(iii) This follows immediately from the corresponding property for the matrix exponential.
(iv) First, note that if u and v commute in U , then Θλ(u) and Θλ(v) commute also (for Θλ is a homomorphism

from U to Mλ+1(C) for every λ). Thus, by using Proposition 5.1(iv) and the fact that Θλ is a homomorphism, we have:
EXPλ(u) · EXPλ(v) = exp(Θλ(u)) · exp(Θλ(v)) = exp(Θλ(u)+Θλ(v)) = exp(Θλ(u+ v)) = EXPλ (u+ v).
(v) ThemapΘλ is amorphism of associative rings, so if an element v ∈ U is invertible, then so isΘλ(v). The result follows

immediately by the corresponding property for the matrix exponential.
Note that since the Casimir element is central in U , its imageΘλ(c) is central inΘλ(U) ⊆ Mλ+1(C), so for any u ∈ U , we

get by Proposition 5.1 that exp(Θλ(c)+Θλ(u)) = exp(Θλ(c)) · exp(Θλ(u)). So, EXPλ(c + u) = EXPλ(c) · EXPλ(u).
As a direct consequence of the definition of themap EXPλ, we observe that u ∈ Ker(EXPλ) if and only ifΘλ(u) ∈ Ker(exp).

So in order to describe Ker(EXPλ), we should say as much as possible aboutΘλ(u) for u ∈ U . �

Proposition 7.4. Decompose U = ⊕m∈ZUm. The representation mapΘλ sends:

(i) an element u0 of U0 onto a diagonal matrix,
(ii) an element um ∈ Um, m > 0, onto an upper triangular matrix if 0 < m ≤ λ, otherwise (when m ≥ λ+ 1)Θλ(um) = 0λ+1.
(iii) an element um ∈ Um,m < 0, is mapped to a lower triangular matrix, if−λ ≤ m ≤ −1 and, otherwise, for m ≤ −λ− 1, to

the zero matrix 0λ+1.

Proof. (i) Let u0 ∈ U0 − {0}; so u0 is of the form p(c, h) with p(x1, x2) ∈ C[x1, x2], where x1 and x2 are two commuting
variables. We know that Θλ(p(c, h)) = p(Θλ(c),Θλ(h)), where Θλ(c) and Θλ(h) are the diagonal matrices described
respectively by (3) and (2). Since any algebraic operation on diagonal matrices concerns just their diagonal entries, then
for any polynomial p(x1, x2) ∈ C[x1, x2], we have that:

Θλ(p(c, h)) = diag
(
p
(
λ2 + 2λ, λ

)
, . . . , p

(
λ2 + 2λ,−λ

))
(∈ Mλ+1(C)) (4)

(ii) For the positive integer m, let um be an element in Um of the form um = xm · u0 where the 0-component u0 = p(c, h)
as above. On the one hand, suppose that m ≤ λ. By using the fact that Θλ is a homomorphism and the values of Θλ(x)
and Θλ(p(c, h)) (described by (2) and (4) respectively) we have that Θλ(um) = Θλ(xm · u0) = Θλ(x)m · Θλ(u0) =
Xmλ+1 · diag

(
p
(
λ2 + 2λ, λ

)
, . . . , p

(
λ2 + 2λ,−λ

))
, so Θ(um) is represented by the strictly upper triangular matrix with

?l ∈ C, 1 ≤ l ≤ (λ+ 1)−m
0 0 ?1 0 . . . 0
0 0 0 ?2 . . . 0
...

... 0 ?m
...

... 0 0
0 0 . . . 0 0

 . (5)

On the other hand, assume that m ≥ λ + 1. Since Θλ(x) is a nilpotent matrix, we can easily see: Θλ(um) = Θλ(x)m ·
Θλ(u0) = 0.



S. L’Innocente et al. / Annals of Pure and Applied Logic 161 (2010) 1565–1580 1573

(iii) Similarly, we can repeat the same argument for any element um, withm < 0, of the form ym · u0. So, for−λ ≤ m ≤ −1
the image byΘλ of um, is a lower triangular matrix of the form

0 0 0 0 . . . 0
0 0 0 0 . . . 0
?1 0 0 0 . . . 0
0 ?2 0 0 . . .
...

... 0
0 . . . 0 ?−m . . .

 . (6)

Ifm ≤ −(λ+ 1).we haveΘλ(um) = Θλ(ym · α0) = 0. �

Remark 1. An element u0 ∈ U0 belongs to the kernel of EXPλ if and only if∧
0≤j≤λ

p
(
λ2 + 2λ, λ− 2j

)
∈ 2π i · Z. (7)

In fact, for u0 = p(c, h) the diagonal matrix Θλ(p(c, h)) belongs to Ker(exp) if and only if their diagonal entries described
by (4) belongs to Ker(e) = 2π i · Z.

Proposition 7.5. EXPλ maps an element u of U into SLλ+1(C) whenever

tr(Θλ(u)) ∈ 2π i · Z. (8)

In particular, if u ∈ ⊕m6=0Um, then its image by EXPλ lies always in SLλ+1(C).

Proof. For the first statement, it is enough to apply property (vi) of Proposition 5.1, so for any u ∈ U , the determinant of
exp(Θλ(u)) equals 1 if the trace ofΘλ(u) belongs to Ker(e) = 2π i · Z.
As to the second claim, first we can note that the map EXPλ maps x, y and their powers into SLλ+1(C), because their

images by Θλ are matrices of trace 0. We get the same results with xm (respectively ym). Since the subalgebra U0 is sent to
the subalgebra of diagonal matrices in Mλ+1(C), the image of an element αm = xm · α0 in Um by Θλ is a matrix of trace
0 (as illustrated by (5)) and so its matrix exponential has determinant 1. The same argument holds where αm = ym · α0
(for negativem). Since the sum of matrices of trace 0 has trace 0, an element of⊕m6=0Um is sent by EXPλ to SLλ+1(C). �

Whenwe restrict Proposition 7.5 to any element u0 of U0, where u0 = p(c, h) (for some polynomial p(x1, x2) ∈ C[x1, x2])
the condition (8) means that the sum of eigenvalues ofΘλ(u),

∑
0≤j≤λ p(λ

2
+ 2λ, λ− 2j), has to belong to 2π i · Z.

Put p(x1, x2) =
∑d
l=0 ql(x1)x

l
2, then

∑
0≤j≤λ

∑bd/2c
l=0 ql(λ

2
+ 2λ)(λ− 2j)2l =

∑bd/2c
l=0 qj(λ

2
+ 2λ)[

∑
0≤j≤λ(λ− 2j)

2l
].

Now, let us assume that u0 is in the kernel of
⋂
λ∈Z; λ>λ0

EXPλ, for some λ0. Then, p(λ2 + 2λ, λ − j) ∈ 2π i · Z, for all
|λ| > λ0 and 0 ≤ j ≤ λ.
In the remainder of this section, we will give a partial answer to the question of which elements u of U are such that

Θλ(u) ∈ suλ+1.
Recall that suλ+1 := {A ∈ Mλ+1(C) : A∗ = −A, tr(A) = 0}, and SUλ+1 := {X ∈ GLλ+1(C) : X · X∗ = Iλ+1, det(X) = 1},

where X∗ denotes the conjugate transpose of X; it is a compact Lie group.
Coming back first to the case λ = 1, it is well known that the exponential map exp (defined inM2(C)) restricted to sl2(C)

does not map it surjectively to its Lie group SL2(C) ([16] page 38). However if we restrict to the R-subalgebra su2, exp is
surjective onto the (compact) Lie group SU2(C) (see Lemma 2.a in section 2 of [16]). We have the following decomposition:
SL2(C) = SU2(C).B, where B is the subgroup of triangular matrices with determinant 1 and positive real diagonal entries
([16] page 39).
The surjectivity property of exp still holds if one replaces su2 with suλ+1 and SU2 by SUλ+1 (see Corollary 2 in [16]).
Let u ∈ U0, so u = p(c, h). So, Θλ(u) ∈ suλ+1, if

∑
j p(λ

2
+ λ, λ − 2j) = 0 and for all−λ ≤ j ≤ λ, p(λ2 + λ, λ − 2j) =

−p̄(λ2+λ, λ−2j). The last condition occurs, for instance if p(x1, x2) is themultiple by the complex number i of a polynomial
with real coefficients.
Now consider elements u ∈ ⊕m6=0Um, namely u =

∑
`>0(p`(c, h) · x

`
+ y` · q`(c, h)) with p`, q` ∈ C[h, c]. Then the

condition under which Θλ(u) ∈ suλ+1 is that (λ − j)q`(λ2 + λ, λ− 2j) = (−λ + j)p`(λ2 + λ, λ− 2j), for all−λ ≤ j ≤ λ.
Given a polynomial p`, we can always find a polynomial q` (of degree≤ λ− 1) meeting these λ conditions, using Lagrange
interpolation theorem.
So, given u ∈ ⊕m>0Um, there exists u′ ∈ ⊕m<0Um such thatΘλ(u+ u′) ∈ suλ+1.
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8. Exponentiations and ultraproducts

Wewill be considering a non-principal ultraproduct of the Lie algebrasMλ+1(C), λ ∈ ω. Namely, letV be a non-principal
ultrafilter on ω and consider the corresponding ultraproducts

∏
V Mλ+1(C) and

∏
V GLλ+1(C).

By Łos’s theorem, the structure (
∏

V Mλ+1(C),+,−, 0, [·, ·]) is a Lie algebra overC or overC
∗
:=
∏

V C, which is infinite-
dimensional.
We first observe the following.

Proposition 8.1. (i) If u0 is any element of U0 − {0}, then there exists λ0 such that for all λ ≥ λ0, we haveΘλ(u0) 6= 0.
(ii) For any u ∈ U − {0}, there exists λ0 such that for all λ ≥ λ0 we haveΘλ(u) 6= 0.

Proof. (i) Let u0 ∈ U0 − {0}; so u0 is of the form p(c, h) with p(x1, x2) ∈ C[x1, x2], where x1 and x2 are two commuting
variables.
The claim can be deduced directly from [7, Lemma 19]. For convenience of the reader, we repeat the argument here. We

argue by contradiction.
Assume that

∧
0≤j≤λ p(λ

2
+ 2λ, λ − 2j) = 0. First, we choose λ such that p(λ2 + 2λ, x2) 6= 0, so as a polynomial in j,

p(λ2 + 2λ, λ − 2j) is nontrivial of degree k and so the number of roots is bounded by k. So, if we choose λ big enough, we
will always find j such that p(λ2 + 2λ, λ− 2j) 6= 0. Therefore,Θλ(p(c, h)) 6= 0 for some λ.
(ii) Letu ∈ U−{0}, then there existsm ∈ Z such that itsmth componentum 6= 0. Assume thatm ≥ 0 and thatm isminimal

such. Let um = xmu0, where u0 ∈ U0. Let p(x1, x2) ∈ C[x1, x2] be such that u0 = p(c, h). Write p(x1, x2) =
∑d
l=0 qi(x1)x

l
2.

We can find (explicitly) an interval [−r; r] in R such that all the roots of the polynomial qd(x1) are in that interval. Let
r ′ = max{r, d}. Then if λ > r ′, then qd(λ2 + 2λ) 6= 0 and so the polynomial

∑d
l=0 ql(λ

2
+ 2λ)xl2 has less than d roots and

among theλ+1 elements of the form (λ−2j)where 0 ≤ j ≤ λ, we have such jwith the property that p(λ2+2λ, (λ−2j)) 6= 0.
Since the images of any homogeneous components Um with −λ ≤ m ≤ λ are in direct sum and Θλ(um) 6= 0, then we

haveΘλ(u) 6= 0. �

Define the obvious Θ := [Θλ] from U to the ultraproduct of theMλ+1(C), over any non-principal ultrafilter V on ω. By
Proposition 8.1, the mapΘ is an associative ring monomorphism. So, we get the following corollary.

Corollary 8.2. For any non-principal ultrafilter V on ω, U embeds in the associative Lie algebra
∏

V Mλ+1(C). �

Recall that U is a left and right Ore domain, so it has a left and right field of fractions which embeds in the ring U ′ of
definable scalars of U . This ring U ′ has been shown to be von Neumann regular by Herzog [7], equivalently every left (right)
principal ideal is generated by an idempotent. Moreover, since any Vλ is also a U ′-module, we can send r ∈ U ′ in the direct
product

∏
λ∈ω Mλ+1(C) by sending it in each factor to the element ofMλ+1(C), representing its action on each Vλ.

Then, [13] explicitly identifies certain idempotents of U ′ of the form eu, u ∈ U , corresponding to the projections on
ker(Θλ(u)) on Vλ, λ ∈ ω. For instance ex is the projection on the highest weight space of Vλ. When u ∈ U0, so of the form
p(c, h), with p(x1, x2) ∈ C[x1, x2], they call p standard if there are only finitely many λ such that p(λ2 + 2λ, λ − 2j) = 0
for some 0 ≤ j ≤ λ (and non-standard otherwise). Note that if u = p(c, h) with p standard, then [Θλ(u)]V is invertible in∏

V Mλ+1(C). (Note that the converse holds if [Θλ(u)]U is invertible with respect to any non-principal ultrafilterU.)
Let now u = p(c, h) ∈ U0 be such that p is non-standard, so for some non-principal ultrafilter V the action of eu in the

ultraproduct
∏

V Vλ will be a non-invertible element of the form [(diag(0, . . . , 1, . . . , 0, 1, . . . , 0)] 6= 0, where the number
of possible 0’s is bounded by the degree of pwith respect to the second variable.
We know that Θ is a surjection from

∏
V U to

∏
V Mλ+1(C) (see the proof of Proposition 7.2). Then, we will compose

with the map

Exp :
∏
V

Mλ+1(C)→
∏
V

GLλ+1(C) : [Aλ]V → [exp(Aλ)]V .

So, by composing with [Θλ]V , we get a map EXP∗ = Exp[Θλ]V from
∏

V U to
∏

V GLλ+1(C),which is surjective. The kernel
of that map is in bijection with the kernel of Exp on

∏
V Mλ+1(C).

Definition 8.1. Let EXP from U to
∏

V GLλ+1(C) be defined as follows:

EXP : U →
∏
V

GLλ+1(C) : u→ [EXPλ(u)]V .

Proposition 8.3. Both (U, EXP,
∏

V GLλ+1(C)) and (U0, EXP,
∏

V Diagλ+1(C)) are exponential C-algebras. Moreover we have
that EXP(⊕m6=0Um) ⊂

∏
V SLλ+1(C), EXP(⊕m≥0Um) ⊂

∏
V UTλ+1(C), and EXP(U0) ⊂

∏
V Diagλ+1(C).

Proof. Adirect application of Łos Theoremshows that EXP satisfies the properties stated for each EXPλ in Proposition 7.3. �

Note that the above properties are independent of the non-principal ultrafilter V on ω.

Question 8.1. What is the kernel of EXP?
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It is the set of elements u such that for a subset of λ belonging toV , exp(Θλ(u)) = 1. So, the eigenvalues ofΘλ(u) belong to
2π i · Z; does it translate into an independently interesting property of u ∈ U? For u0 ∈ U0, we have the following answer.
Let p(x1, x2) ∈ C[x1, x2] such that u0 = p(c, h). Then, for almost all λ and all 0 ≤ j ≤ λ, we have p(λ2+λ, λ− 2j) ∈ 2π i ·Z.

Proposition 8.4. Let u := p(c, h) ∈ U0, with p(x1, x2) ∈ C[x1, x2]. Write p(x1, x2) in the form 2π i · q(x1, x2). Then, if
u ∈ ker(EXP), then q(x1, x2) ∈ Q[x1, x2].

Proof. Let q(x1, x2) =
∑d
k=0 qk(x1) · x

k
2 and assume that q(c, h) ∈ ker(EXP). Then, the set

{λ ∈ ω :
∧
0≤j≤λ q(λ

2
+ 2λ, λ− 2j) ∈ 2π i · Z} ∈ V (?).

Set ck := qk(λ2 + 2λ) and consider the following system of linear equations, with z` ∈ Z, 0 ≤ ` ≤ n:
1 y0 y20 · · · y

d
0

1 y1 y21 · · · y
d
1

...

1 yn y2n · · · y
d
n

 .

c0
c1
...
cn

 =

z0
z1
...
zn

 .

When n = d, the determinant of the (square) matrix


1 y0 y20 · · · y

d
0

1 y1 y21 · · · y
d
1

...

1 yd y2d · · · y
d
d

 is equal to ∏0≤n1<n2≤d
(yn1 − yn2). So it

is a non-zero integer whenever the yi’s are d pairwise distinct integers and so in that case, the coefficients ck are rational
numbers.
So, it suffices to express hypothesis (?) for λ > d.
Now, write each qk(x21 + 2x1) as q

′

k(x1) =
∑dk
h=0 fh · x

h
1 and again write the system of equations expressing that each

qk(λ2 + 2λ) ∈ Q, for λ ∈ ω. Let qj ∈ Q, 0 ≤ j ≤ n.
1 x0 x20 · · · x

dk
0

1 x1 x21 · · · x
dk
1

...

1 xn x2n · · · x
dk
n

 .

f0
f1
...
fn

 =

q0
q1
...
qn

 .

Then, again when n = dk, the determinant of the (square) matrix


1 x0 x20 · · · xdk0
1 x1 x21 · · · xdk1

...

1 xdk x2dk · · · x
dk
dk

 is equal to
∏
0≤n1<n2≤dk

(xn1 − xn2). So it is a non-zero integer whenever the xi’s are dk pairwise distinct integers and so in that case, the
coefficients fk are rational numbers. So, it suffices to express hypothesis (?) for dk + 1 values of λ’s, as soon as λ > d. �

Remark 2. We have a partial converse to the above proposition. Namely, let q(x1, x2) =
∑d
k=0 qk(x1) · x

k
2, where each

qk(x1) ∈ Q[x1], so can be written as 1/nk ·
∑dk
h=1 zh · x

h
1 + q0,k, where nk ∈ N− {0}, zh ∈ Z and q0,k ∈ Q.

If, we assume in addition that each q0,k ∈ Z, then for some ultrafilter V , 2π i · q(c, h) ∈ ker(EXP). Indeed, let
n = lcm{nk : 0 ≤ k ≤ d}. Then we choose an ultrafilter V containing 2n · ω.
So, if λ = 2n ·m, for somem ∈ ω, qk(λ2 + 2λ) = n/nk ·

∑dk
h=1 zh · (2n ·m

2
+ 2m)h + q0,k, then qk(λ2 + 2λ) ∈ Z and so

{λ ∈ ω :
∧
0≤j≤λ q(λ

2
+ 2λ, λ− 2j) ∈ 2π i · Z} ∈ V .

Corollary 8.5. Let u := p(c, h) ∈ U0, with p(x1, x2) ∈ C[x1, x2]. Write p(x1, x2) in the form 2π i · q(x1, x2). Write q(x1, x2) =∑d
k=0 qk(x1) · x

k
2, with qk(x) ∈ Q[x1].

Then, u ∈ ker(EXP) for all non-principal ultrafilters on ω, if and only if q(x1, x2) ∈ Q[x1, x2] and for each 0 ≤ k ≤ d,
qk(0) ∈ Z. �

Proposition 8.6. Let u := p(c, h) ∈ U0, with p(x1, x2) ∈ C[x1, x2]. Write p(x1, x2) in the form 2π i · q(x1, x2). Then, if
EXP(u) ∈

∏
SLλ+1(C), then q(x1, x2) ∈ Q[x1, x2].

Proof. Let q(x1, x2) =
∑d
k=0 qk(x1) · x

k
2 and assume that the set {λ ∈ ω : EXPλ(q(c, h)) ∈ SLλ+1(C)} ∈ V . Equivalently,

{λ ∈ ω : [
∑bd/2c

`=0 q`(λ
2
+ 2λ) ·

∑
0≤j≤λ(λ− 2j)

2·`
] ∈ 2π i · Z} ∈ V (?).
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Set ck := qk(x1) and consider the following system of linear equations, with z` ∈ Z, 0 ≤ ` ≤ n:
1 y0 y20 · · · y

d
0

1 y1 y21 · · · y
d
1

...

1 yn y2n · · · y
d
n

 .

c0
c1
...
cn

 =

z0
z1
...
zn

 .

When n = d, the determinant of the (square) matrix


1 y0 y20 · · · y

d
0

1 y1 y21 · · · y
d
1

...

1 yd y2d · · · y
d
d

 is equal to ∏0≤n1<n2≤d
(yn1 − yn2). So it

is a non-zero integer whenever the yi’s are d pairwise distinct integers and so in that case, the coefficients ck are rational
numbers.
So, it suffices to express hypothesis (?) for λ > d and show that

∑
0≤j≤λ(λ− 2j)

2·` are pairwise distinct.
The rest of the proof is similar to the previous one. �

9. Comparison with Serre’s definition of an exponential map

Recall that the completion Û of U [17] is defined as the infinite product Π∞n=0U
n, where Un denotes the component of

degree n of U (generated by all products of length ≤ n of generators x, y of U); an element f ∈ Û can be represented as∑
∞

n=0 fn, where fn ∈ U
n (see [17] Part 1, chapter 4, paragraph 6). (Note that Un differs in general from Un.)

Denote byM the ideal of U generated by x, y and let M̂ be the ideal of Û generated byM. For f ∈ M̂, Serre defines
expS by the usual formula expS(f ) :=

∑
n
f n

n! . It takes M̂ to 1 + M̂ (see [17] Part 1, chapter 4, paragraph 7). (Similarly,
one can define logS from 1 + M̂ to M̂ by logS(1 + x) :=

∑
∞

n=1(−1)
n+1 xn

n , obtaining that expS ◦ logS = 1 = logS ◦ expS
(see Theorem 7.2, Chapter 4, Part 1 in [17].)
Let f :=

∑
∞

n=0 fn ∈ Û and assume that
∑
∞

n=0Θλ(fn) belongs toMλ+1(C). Then, define Θ̂(f ) := [
∑
∞

n=0Θλ(fn)]V . Since, if
u ∈ U , there exists a bound on the number of non-zero components, this map is always well defined on the elements of U .

Proposition 9.1. For any u ∈M, Θ̂(expS(u)) = EXP(u).

Proof. Now, let u ∈Mwith u =
∑k
j=1 uj, where uj ∈ U

j, then un := (
∑k
j=1 uj)

n. So, for eachm, them-component of expS(u)
is a finite sum. Therefore Θ̂(expS(u)) is well defined and Θ̂(expS(u)) = [

∑
∞

n=0Θλ(
un
n! )]V = EXP(u). �

10. A ?-norm on the universal enveloping algebra of sl2(C)

Now, wewould like to put a natural topology on U in such away that EXP is continuous. As in the previous section, we fix
a non-principal ultrafilter V on ω; let C∗ :=

∏
V C be a non-principal ultrapower of the field (C,+, ·,−, 0). We equip C∗

with the ultrapower of the standard complex conjugation, and in addition consider the ultraproduct of the various Frobenius
norms. This takes values in the corresponding ultrapower of the reals, and satisfies the obvious modification of the norm
axioms. By functoriality this norm comes formally from the ultraproduct of the Hermitian sesquilinear forms.
Finally, by taking ultraproducts of normed algebras we get a natural notion of a ?-normed algebra, satisfying a natural

version of the Cauchy–Schwarz inequality if the component algebras do. Since ‖ · ‖λ+1 is a norm on each Mλ+1(C), by the
usual properties of an ultraproduct, we get a natural ?-norm ‖ · ‖ on

∏
V Mλ+1(C).

This in turn, by Corollary 8.2 induces a star norm on U .
In the next lemma, we will give an estimate of the norm of u ∈ U in terms of a polynomial in λ, with coefficients in R.

Lemma 10.1. For each u ∈ U, there exist non-zero polynomials q1(.), q2(.)with coefficients in R such that for λ sufficiently big,
we have q1(λ) ≤ ‖Θλ(u)‖2F ≤ q2(λ) and so q1([λ]V) ≤ ‖u‖ ≤ q([λ]V).

Proof. Let us examine the norm of Θλ(u) for any element of U . Let u =
∑
m∈Z um (where um ∈ Um and m ∈ Z). Moreover,

for eachm ≥ 0, each um = xm · pm(c, h), and u−m = ym · p−m(c, h), where pm(x1, x2), p−m(x1, x2) ∈ C[x1, x2]. Assume that
for some k ∈ N, we have u =

∑
−k≤m≤k um, then we estimate ‖Θλ(u)‖ as follows. Assume λ ≥ k, then

||Θλ(u)||2F = ||Θλ

(∑
m∈Z

um

)
||
2
F = ||

∑
m∈Z

Θλ(um)||2F

= ||

−1∑
m=−k

Θλ(um) + Θλ(u0) +
k∑
m=1

Θλ(um)||2F
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=

−1∑
m=−k

||Θλ(um)||2F + ||Θλ(u0)||
2
F +

k∑
m=1

||Θλ(um)||2F

=

−1∑
m=−k

||Θλ(y|m|p−m(c, h))||2F + ||Θλ(p0(c, h))||
2
F +

k∑
m=1

||Θλ(xmpm(c, h))||2F

=

−1∑
m=−k

||Θλ(y)|m| · p−m(Θλ(c),Θλ(h))||2F + ||p0(Θλ(c),Θλ(h))||
2
F

+

k∑
m=1

||Θλ(x)m · pm(Θλ(c),Θλ(h))||2F .

Then, we make the following estimate. Write pm(x1, x2) =
∑dm
j=0 qj(x1) · x

j
2. Let fj(x1) =

qj(x1)
qdm (x1)

and write the roots of∑dm
j=0 fj(x1) · x

j
2 as α1(x1), · · · , αdm(x1). Note that these roots are all in a ball of radiusMm(λ) := 1+

∑dm−1
j=0 |fj(λ

2
+ 2λ)|; let

Rm(λ) :=
∑dm
j=0 |qj(λ

2
+ 2λ)|. Then pm(x1, x2) = qdm(x1).

∏dm
j=1(x2 − αj(x1)).

We have |pm(λ2+2.λ, λ−2i)| = |qdm(λ
2
+2λ)|.

∏
j |((λ−2i)−αj(λ

2
+2.λ)|. Since the number of roots of pm(λ2+2λ, x2)

is at most dm, there is at least one integer in the interval [−λ; λ] at distance bigger than b λdm c of all of these roots. So,

|qdm(λ
2
+ 2λ)|2.b λdm c

2dm
≤
∑
−λ≤i≤λ |pm(λ

2
+ 2.λ, λ − 2i)|2 ≤ Rm(λ)2.(2.λ2dm+1 + 1) ≤ Rm(λ)2.(3λ2dm+1). So we get on

the one hand,

||Θλ(u)||2F ≤
−1∑
m=−k

λ2.|m| ·
∑
−λ≤i≤λ

|p−m(λ2 + 2λ, λ− 2i)|2 +
∑
−λ≤i≤λ

|p0(λ2 + 2λ, λ− 2i)|2

+

k∑
m=1

λ2m ·
∑
−λ≤i≤λ

|pm(λ2 + 2λ, λ− 2i)|2

≤

−1∑
m=−k

λ2.|m| · Rm(λ)2.(3λ2dm+1)+ R0(λ)2.(3λ2d0+1)+
k∑
m=1

λ2m · Rm(λ)2.(3λ2dm+1)

and on the other hand,

||Θλ(u)||2F ≥
−1∑
m=−k

(λ− k)2.|m|.
∑
−λ≤i≤λ

|p−m(λ2 + 2λ, λ− 2i)|2 +
∑
−λ≤i≤λ

|pd0(λ
2
+ 2λ, λ− 2i)|2

+

k∑
m=1

(λ− k)2m.
∑
−λ≤i≤λ

|pm(λ2 + 2λ, λ− 2i)|2

≥

−1∑
m=−k

(λ− k)2.|m|.|qdm(λ
2
+ 2λ)|2.

⌊
λ

dm

⌋2dm
+ |qd0(λ

2
+ 2λ)|2.

⌊
λ

d0

⌋2d0
+

k∑
m=1

(λ− k)2m.|qdm(λ
2
+ 2λ)|2.

⌊
λ

dm

⌋2dm
.

We can give an estimate of the degrees of q1 and q2. Namely, the degree of q2 is equal to max−k≤m≤k{2.deg(Rm) + 2|m| +
2.dm + 1} and the degree q1 is equal to max−k≤m≤k{4.deg(qdm)+ 2|m| + 2.dm}. (Note that 2.deg(qdm) ≤ deg(Rm).) �

The ultraproduct of the norms induces a topology both on
∏

V Mλ+1(C) (under which+ and . are continuous) and on U . A
basis of neighbourhoods Oε of 0 (in U) is given by Oε := {u ∈ U : ‖u‖ ≤ ε}, where ε ∈ R∗,+ − {0}. When we just consider
them as topological spaces, we will call them ?-normed spaces.
Then,wewill consider the following topological subspaces

∏
V GLλ+1(C) (dense in

∏
V Mλ+1(C)) and

∏
V SLλ+1(C)which

is a closed subspace of
∏

V Mλ+1(C).

Lemma 10.2 (See [9] Corollary 6.2.32). Let A, B ∈ Mλ(C), then || exp(A+ B)− exp(A)||λ ≤ ||B||λ exp(||B||λ) exp(||A||λ). So,
the exponential map is continuous on Mλ(C) and Lipschitz continuous on each compact subset of Mλ(C). �

Proposition 10.3. Consider the ?-normed spaces (U, ‖ · ‖) and (
∏

V Mλ+1(C), ‖ · ‖λ+1). The map EXP : U →
∏

V GLλ+1(C)
is continuous and maps bounded sets to bounded sets. The image EXP(U0) is an abelian subgroup of

∏
V GLλ+1(C) and

EXP(⊕m6=0Um) is included in
∏

V SLλ+1(C).
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Proof. The continuity is clear from Łos theorem and the preceding lemma.
Note that if the sequence Aλ+1 ∈ Mλ+1(C) is bounded, namely the sequence ‖Aλ+1‖λ+1 is bounded, then the correspond-

ing sequence ‖exp(Aλ+1)‖λ+1 is bounded. Indeed, by definition, exp(Aλ+1) =
∑
∞

k=0
Ak
λ+1
(k)! , so the norm ‖exp(Aλ+1)‖λ+1

≤ e‖Aλ+1‖λ+1 .
The last statement follows from Proposition 7.5. �

Note that a priori, EXP(U) is not a subgroup of
∏

V GLλ+1(C); we will denote by 〈EXP(U)〉 the subgroup generated by
EXP(U) in

∏
V GLλ+1(C). The Campbell–Baker–Hausdorff formula which expresses for two matrices A, B, exp(A) · exp(B) as

exp(C)where C is expressed as an infinite series in commutators in A and B, can be translated back with u and v in place of
A and B to express EXP(u) · EXP(v) in terms of an infinite series in u, v ([16] section 1.3).
Does 〈EXP(U)〉 have finite width with respect to EXP(U), namely does there exist a finite number k such that every

element of 〈EXP(U)〉 can be written as a product of k elements of EXP(U)?
We consider the fieldR := (R,+, ., 0, 1, ex), and we denote byR∗ a non-principal ultrapower ofRwith respect to the

ultrafilterV onω. Wewill extend the exponential map EXP to U⊗R∗ as follows. Let u ∈ U and s := [rλ]V ∈ R∗ with rλ ∈ R,
then EXP(u⊗ s) := Exp[rλ.θλ(u)]V = Exp[θλ(rλ.u)]V and EXP(

∑
i ui ⊗ si) := Exp[θλ(

∑
i ui.ri,λ)]V , where si := [ri,λ]V . Note

that
∑
i ui.ri,λ ∈ U . This is well defined.

We will say that a topological group G is ?-path connected if given any two elements h0, h1 ∈ G, there is a continuous
map g from [0; 1]∗ := R∗ ∩ [0; 1] to Gwith g(0) = h0 and g(1) = h1.

Proposition 10.4. The subgroups 〈EXP(U)〉 and EXP(U0) of
∏

V GLλ+1(C) (respectively 〈EXP(U ⊗ R∗)〉 and EXP(U0 ⊗ R∗) are
topological groups. Moreover, 〈EXP(U ⊗ R∗)〉 and EXP(U0 ⊗ R∗) are ?-path connected.

Proof. First note that
∏

V GLλ+1(C) is a topological group as an ultraproduct of topological groups. So, the subgroups
〈EXP(U)〉, EXP(U0), 〈EXP(U ⊗ R∗)〉 and EXP(U0 ⊗ R∗) are topological subgroups.
The groups 〈EXP(U ⊗ R∗)〉 and EXP(U0 ⊗ R∗) are ?-path connected. We only prove that 〈EXP(U ⊗ R∗)〉 is ?-path con-

nected. Let g0, g1 ∈ 〈EXP(U ⊗ R∗)〉. Then we can write g1 = EXP(u1) · . . . · EXP(un) and g0 = EXP(v1) · . . . · EXP(vm),
where u1, · · · , un, v1, · · · , vm ∈ U ⊗ R∗. So, g1 = g0 · EXP(y1) · . . . · EXP(yk), for some y1, · · · , yk ∈ U ⊗ R∗. Let t ∈
[0; 1]∗ and set g(t) = g0 · EXP(t · y1) · . . . · EXP(t · yk), so g(0) = g0 and g(1) = g1. Let us denote the set {g ∈ 〈EXP(U)〉 :
∃t ∈ [0; 1]∗ g = EXP(t · y1) · . . . · EXP(t · yk)} by Cg0,g1 .
First, let us check that the map from [0; 1]∗ to EXP(U), sending t to EXP(tu) is continuous at t1 ∈ [0; 1]∗.
Let ε ∈ [0; 1]∗, then we have to find η such that if |t0 − t1| < η, then ‖EXP(t0 · u) − EXP(t1 · u)‖ ≤ ε. We have

EXP(t0·u)−EXP(t1·u) = EXP(t1·u)·[EXP((t0−t1)·u)−1]. So, ‖EXP(t0·u)−EXP(t1·u)‖ ≤ ‖EXP(t1·u)‖·‖EXP((t0−t1)·u)−1]‖.
Now, ‖EXP((t0 − t1) · u)− 1]‖ ≤ |(t0 − t1)| · ‖u‖ · e‖((t0−t1)·u)‖.
Then we use the fact that the product (possibly non-commutative) of two continuous functions is continuous (∗). So, by

induction on n, we may deduce that the map sending t to EXP(t · y1) · EXP(t · y2) · . . . · EXP(t · yk) is also continuous.
Now suppose 〈EXP(U)〉 is the disjoint union of two open sets U1 and U2. Denote the intersection of U1 (respectively U2)

with Cg0,g1 by O1 (respectively O2). The inverse image of O1 and O2 gives rise to a partition of [0; 1]
∗, which is a contradiction.

For convenience of the reader, let us prove (∗). Let f (t), g(t) be two continuous maps on the interval [0; 1]∗ and assume
one of them is bounded. Then consider the map sending t to the product f (t) · g(t); let us show it is continuous at t1, assum-
ing that f is bounded. Estimate the difference: f (t) · g(t)− f (t1) · g(t1) = (f (t)− f (t1)) · g(t1)+ f (t) · (g(t)− g(t1)). So,
‖f (t) · g(t)− f (t1) · g(t1)‖ ≤ ‖(f (t)− f (t1))‖ · ‖g(t1)‖ + ‖f (t)‖.‖(g(t)− g(t1))‖. Note that the map sending t to EXP(tu)
is bounded. Indeed, ‖EXP(tu)‖ ≤ e‖t·u‖ ≤ e|t|·‖u‖ ≤ e‖u‖. �

11. The asymptotic cone

In the previous section, we embedded U in a ?-normed space, namely
∏

V Mλ+1(C). Here, we will embed U into
a complete metric space (with an R-valued metric) which will be the asymptotic cone associated with the family of
normed algebras Mλ+1(C), λ ∈ ω, and a non-principal ultrafilter V on ω. We will first endow each Mλ+1(C) with a
new norm scaled down by λ; this norm differs from the norms we previously introduced in the fact that the norms of
Θλ(x),Θλ(y),Θλ(c),Θλ(h)will be a multiple of λ (see Proposition 11.2).
Even though they did not name it asymptotic cone, it was introduced by van den Dries and Wilkie when they revisited

Gromov’s proof that a finitely generated group of polynomial growth is nilpotent-by-finite. Given a group of polynomial
growth, Gromov associated a converging sequence of discrete metric spaces scaled down by a sequence of well-chosen
natural numbers. Then, van den Dries and Wilkie associated with any finitely generated group G a limited ultraproduct of
discrete metric spaces quotient out by infinitesimals. This space is usually denoted by Cone(X,V), where X is a metric space
associated with G and V a non-principal ultrafilter on ω, note that Cone(X,V) may depend on V (see for instance [12,3]).
The advantage of using an ultraproduct construction is that one can easily transfer certain properties from the factors.
First, we introduce the map φ fromMλ+1(C) to N, sending A ∈ Mλ+1(C) to the number of non-zero coefficients of A. Of

course, φ(A) = 0 iff A = 0.
Let us check that

(1) φ(A+ B) ≤ φ(A)+ φ(B),
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(2) φ(A · B) ≤ φ(A) · φ(B).

We denote the ij coefficient of A+ B by (A+ B)ij. We have that if (A+ B)ij 6= 0, then either Aij 6= 0 or Bij 6= 0.
Let C := A · B, then Cij =

∑
k Aik · Bkj and so Cij 6= 0 implies that for some k, Aik 6= 0 and Bkj 6= 0. We prove the second

claim by induction on the number φ(C). For φ(C) = 1, it is clear. By induction suppose that for any 1 ≤ n ≤ m, if φ(C) = n,
then for some 2-tuple (k1, k2)with k1 ≥ 1, k2 ≥ 1, we have φ(A) ≥ k1 and φ(B) ≥ k2 and n ≤ k1 · k2.
Assume now that φ(C) = m+1, so there arem+1 tuples (i, j)with Cij 6= 0. For each of these tuples, there are two tuples

(i, k), (k, j) such that Aik 6= 0 and Bkj 6= 0. By induction corresponding to the first m non-zero tuples, we know that there
are k1 (respectively k2) non-zero coefficients of the matrix A (respectively of the matrix B) which are non-zero and such that
m ≤ k1.k2. Corresponding to the m + 1 non-zero coefficient of C , there exists another non-zero coefficient of either A or B
and so either φ(A) ≥ k1 + 1, or φ(B) ≥ k2 + 1, som+ 1 ≤ min{(k1 + 1) · k2, k1 · (k2 + 1)}.
So, this map φ defines a norm onMλ+1(C), that we will denote by ‖ · ‖c,λ+1.
In the ultraproduct

∏
V(Mλ+1(C),

‖·‖c,λ+1
λ

), we consider the set
∏
∗

V(Mλ+1(C),
‖·‖c,λ+1

λ
) of elements [aλ] such that for some

natural number N , we have {λ ∈ ω : ‖aλ‖c,λ ≤ N · λ} ∈ V . Then we quotient out this set by the equivalence relation ∼
defined by [aλ]V ∼ [bλ]V if (

‖aλ−bλ‖c,λ
λ

) →V 0. Let us denote the equivalence class of an element by [aλ]∼ and by st the
standard part of an element of

∏
V Rwhose absolute value is bounded by some natural number.

On XV :=
∏
∗

V(Mλ+1(C),
‖·‖c,λ+1

λ
)/ ∼, we define the following distance with values in R≥0.

Let a := [aλ]∼ and b := [bλ]∼, then d(a, b) := st([
‖aλ−bλ‖c,λ

λ
]).

Lemma 11.1. The space (XV(C), d) is an infinite-dimensional complete metric space.

Proof. The only thing which remains to be checked is the completeness of the space, but this follows from the countable
saturation of the ultraproduct (see [2] Theorem 6.1.1). �

We will say that (XV(C), d) is the asymptotic cone associated with {(Mλ+1(C),
‖·‖c,λ+1

λ
); λ ∈ N} and V .

Proposition 11.2. The universal enveloping Lie algebra U of sl2(C) embeds in (XV(C), d) via its embedding in the ultraproduct
of the matrix rings.

Proof. We proceed in two steps.
Firstly, we show that for any u ∈ U , [Θλ(u)] belongs to

∏
∗

V(Mλ+1(C),
‖·‖c,λ+1

λ
). This is direct by inspection of the proof

of Proposition 7.4.
Secondly, let u ∈ ⊕|j|≤mUj, then there exist d0, d1, . . . , dm, d−1, . . . , d−m such that for all λ ∈ N, φ(Θλ(u)) =

(λ − d0) +
∑m
j=1((λ − i) − di) = λ.m − (m(m + 1))/2 −

∑m
i=1 di −

∑
−m
i=−1 d−i. Again, this is seen by inspection of

the proof of Proposition 7.4.
So if [Θλ(u)] ∼ 0, then [Θλ(u)] = 0. �

We will denote the image of U in (XV(C), d) by U∼.

Definition 11.1. A matrix (aij) in Mλ+1(C) is called a m-band matrix if there exists m such that for any 1 ≤ i, j ≤ λ + 1,
we have aij 6= 0 implies that |i− j| ≤ m. (Namely, the non-zero entries of am-band matrix are confined to a diagonal band
comprising the main diagonal and the adjacentm diagonals on either side.) The band-width is equal to 2.m+ 1.

Proposition 11.3. Every element of U acts by left multiplication on the image U∼ of U in (XV(C), d), in a continuous way. More
generally, any element [aλ]V ∈

∏
V Mλ+1(C) acts by left multiplication on (XV(C), d), whenever there exists m independently of

λ such that aλ is a m-band matrix.

Proof. Let u, v ∈ U . Let us show that [Θλ(u)].[Θλ(v)]∼ is well defined. Namely, if [ελ] ∈
∏

V(Mλ+1(C)with [ελ] ∼ 0, then
Θλ(u) · ελ ∼ 0. Assume that u ∈ ⊕|j|≤mUj, soΘλ(u) is a band matrix of width≤ m. NamelyΘλ(u)ij = 0 unless |i− j| ≤ m.
So, if we denote by c the matrix in Mλ+1(C) which is the product Θλ(u) · ελ, then cij =

∑λ+1
k=1 Θλ(u)ik · εkj. If we fix the

matrix element εkj, then there are at most 2m indices i such that cij 6= 0. Now since [ελ] ∼ 0, lim
φ(ελ)

λ
= 0. We have that

φ(c) ≤ φ(ελ) · 2m, so lim
φ(c)
λ
≤ lim φ(ελ)

λ
· 2m = 0.

This action is continuous. Let ε > 0, choose η := ε.λ
φ(Θλ(u))

. Then for v1, v2 ∈ U∼, if d(v1, v2) ≤ η, then d(u.v1, u.v2) ≤ ε.
Indeed,we have ‖Θλ(u).Θλ(v1)−Θλ(u).Θλ(v2)‖c,λ = φ(Θλ(u).Θλ(v1)−Θλ(u).Θλ(v2)) = φ(Θλ(u).(Θλ(v1)−Θλ(v2))) ≤
φ(Θλ(u)).φ(Θλ(v1)−Θλ(v2)). �



1580 S. L’Innocente et al. / Annals of Pure and Applied Logic 161 (2010) 1565–1580

Acknowledgements

We thank Carlo Toffalori for his careful reading of the paper and his suggestions.
The first author was partially supported by MODNET Research Training Network in Model Theory.

References

[1] A. Baker, Matrix Groups: An introduction to Lie Group Theory, Springer-Verlag, 2002.
[2] C.C. Chang, H.J. Keisler, Model Theory, North-Holland, Amsterdam, 1973.
[3] Y. de Cornulier, Dimension of asymptotic cones of Lie Groups, Journal of Topology 1 (2008) 342–361.
[4] J. Dixmier, Enveloping Algebras, North Holland, 1977.
[5] K. Erdmann, M. Wildon, Introduction to Lie Algebras, in: SUMS series, Springer, 2006.
[6] Ju.L. Eršov, New examples of undecidable theories, Algebra i Logika Sem. 5 (5) (1966) 37–47 (in Russian).
[7] I. Herzog, The pseudo-finite dimensional representations of sl(2, k), Selecta Mathematica 7 (2001) 241–290.
[8] I. Herzog, S. L’Innocente, The nonstandard quantum plane, Annals of Pure and Applied Logic 156 (1) (2008) 78–85.
[9] R.A. Horn, C.R. Johnson, Topics in Matrix Analysis, Cambridge University Press, 1994.
[10] J. Humphreys, Introduction to Lie Algebras and Representation Theory, in: Graduate Texts in Mathematics, vol. 9, Springer, 1970.
[11] N. Jacobson, Structure of Rings, American Mathematical Society Colloquium Publications, 1964, p. 37.
[12] L. Kramer, K. Tent, Asymptotic cones and ultrapowers of Lie groups, The Bulletin of Symbolic Logic 10 (2) (2004) 175–185.
[13] S. L’Innocente, A. Macintyre, Towards decidability of the theory of pseudo-finite dimensional representations of sl2k; I, in: A. Ehrenfeucht, V.W.Marek,

M. Srebrny (Eds.), Andrzej Mostowski and Foundational Studies, IOS Press, 2007, pp. 235–260.
[14] S. L’Innocente, M. Prest, Rings of definable scalars of Verma modules, Journal of Algebra and its applications 6 (5) (2007) 779–787.
[15] A. Macintyre, Model theory of exponentials on Lie Algebras, Mathematical Structures in Computer Science 18 (2008) 189–204.
[16] W. Rossmann, Lie Groups: An Introduction through Linear Groups, Oxford University Press, 2002.
[17] J.P. Serre, Lie Algebras and Lie Groups: 1964 Lectures Given at Harvard University, Second Edition, in: LNM, vol. 1500, 1992.
[18] L. van den Dries, Exponential rings, exponential polynomials and exponential functions, Pacific Journal of Mathematics 113 (1) (1984) 51–66.


	Exponentiations over the universal enveloping algebra of  s l2 (C) 
	Introduction
	Preliminaries on formalism
	Axioms for semi-simple Lie algebras
	Exponential rings
	A natural exponential map over Mλ +1 (C)
	The universal enveloping algebra of sl2(C)
	Other exponential maps
	Exponentiations and ultraproducts
	Comparison with Serre's definition of an exponential map
	A -norm on the universal enveloping algebra of sl2(C)
	The asymptotic cone
	Acknowledgements
	References


