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ASYMPTOTIC THEORY OF MODULES

OF SEPARABLY CLOSED FIELDS

FRANÇOISE POINT∗

Abstract. We consider the reduct to the module language of certain theories of fields with a non

surjective endomorphism. We show in some cases the existence of a model companion. We apply our

results for axiomatizing the reduct to the theory of modules of non principal ultraproducts of separably

closed fields of fixed but non zero imperfection degree.

§1. Introduction. In [5], we described the theory of a separably closed field
of characteristic p and imperfection degree e (with e either finite or infinite) viewed
as a module over a skew polynomial ring where the action of ′′t′′ was interpreted as
the Frobenius map. We showed that in the reduct of the field language consisting
of an expansionby definition of the languageofmodules (we added the analogof the
p-components functions) the theory is still complete and recursively axiomatisable.
Now, we would like to describe the “asymptotic” theory in the module language
described above of the classes of separably closed fields either of characteristic pn
with pn ∈ P (P denotes the set of prime numbers), or of characteristic p with
the powers of the Frobenius maps x −→ xpn , fixing the imperfection degree. By
asymptotic theory, we mean that we want to identify the theory of non principal
ultraproducts of elements of that class. Note that the languages of different struc-
tures in the class we are considering are in general different, which is usually the
case when working with modules.
Anyway, we will consider ultraproducts K :=

∏

U Kn of separably closed fields
with Kn of characteristic pn and imperfection degree e, pn ∈ P , e ∈ ù ∪ {∞}.
Either, (pn)n∈ù is a strictly increasing sequence and K is an algebraically closed
field of characteristic zero. Or, K is a separably closed field of characteristic p,
of fixed finite imperfection degree e. In eachKn, we have the Frobenius maps either
x −→ xpn orx −→ xpn that give rise in the ultraproducts to non standardFrobenius
maps. In the characteristic zero case, the theory T of such ultraproducts, in the
field language augmented by a symbol for an endomorphism has been considered by
Chatzidakis and Hrushowski [3]. They showed that some expansion by definition
of T is model-complete.
Here, adopting the same point of view as in [5], we will consider those fields
in a reduct of the field language, namely the language of modules over a skew
polynomial ring of the form K0[t;α], where K0 is a subfield of K .
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We will first place ourselves in a general setting and then we will specialize to the
fields with non-standard Frobenius considered above.
We could have proceeded differently in considering those structures in a two-
sortedmodule language (see for instance [10] chapter 9) i.e., one sort for the module
and the other sort for the ring; so, one may quantify over the ring elements. One
advantage in adopting this point of view, is that then the theory of the structures
of the form (

∏

U Kn,
∏

U Rn), where U is a non principal ultrafilter on ù, is equal
to the set of sentences true in all but finitely many (Kn, Rn), n ∈ ù. In choosing
the ring Rn , we may either take the skew polynomial ring Kn(0)[t;αn ], where Kn(0)
is a certain subfield of Kn and αn an endomorphism of Kn(0) or we may take the
ring Kn(0)[t;αn ][ë] (see [1]). This last ring has the advantage that an ultraproduct
of indecomposable pure-injective remains so and that for p.p. formulas whose
only quantified variables are the module variables one still get positive quantifier
elimination, the drawback is that its ring structure is quite complicated. While,
the first ring has the advantage to be right Ore which is axiomatisable in the ring
language. But in both cases, the Diophantine theory of the ring is undecidable.
Indeed, one may define Fp[t] in Kn(0)[t;αn] (respectively in Kn(0)[t;αn][ë]) by the
atomic formula: v ∈ Fp[t] iff v.t = t.v; and the Diophantine theory of Fp[t] is
undecidable (see [7] Theorem A).

§2. Axiomatization of T (R). This section mainly consists in recalling facts, in
this particular setting, that were already proved in [5] (infinite imperfection degree
case) and in [6], section 4.
For S a ring, the language of right S-modules isLS = {+,−, 0, · r; r ∈ S}, where
for any r ∈ S and x an element in a right S-module M , (x) · r := x · r (scalar
multiplication by the ring element r). Let TS be the theory of all right S-modules
in this language.

Definition 2.1. Let K be an infinite field with an endomorphism α (note that it
is necessarily injective). We generalize the notion of ap-basis as follows. Anα-basis
of K is a basis of K viewed as a (left) vector-space over the subfield Kα . Fix such
a basis C and we will always assume that it contains 1.

Let (K0, α) be an infinite subfield of (K,α) (closed under α), containing C and
the subfield Fix (α) of elements of K fixed by α.
Consider the skewpolynomial ringR := K0[t;α] with the commutation rulek.t =
t.kα , k ∈ K0. Note that K is an R-module by interpreting the right multiplication
by t as the action of α on K .
The ring R is a right Euclidean domain and so right principal and right Ore, but
not left Ore unless α is an automorphism (see [4] Proposition 2.1.1 and Theorem
2.1.3). The center of R is the subfield Fix (α) of K0 fixed by α (express that an
element of the center commutes with t and with an element of K0 − K0α). In the
case whenK0 is a non principal ultraproduct of fields of non zero characteristic and
α is a non-standard Frobenius map, Fix (α) is a pseudo-finite field namely either
∏

U Fpn or
∏

U Fpn .

Notation 2.1. We will call an element q(t) of R, α-separable if q(0) 6= 0. Let X
be the set of α-separable elements. Note that in writing down an element of R, we
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will allow ourselves to either write it as q or q(t) when stressing the fact that it is
a polynomial in t.

In the case of α being the Frobenius map and interpreting multiplication by t by
applying the Frobenius, this coincides with the usual notion of separable polyno-
mials (see [5]).

Proposition 2.1. The set X forms a right denominator set in R i.e.,

∀r ∈ R ∀x ∈ X ∃s ∈ R ∃y ∈ X r.y = x.s.

Proof. See [11] and also Lemma 5.7 in [5]. a
Corollary 2.2. Any right R-module M has a module of fractions M.X−1 with
respect to the right denominator set X in which it embeds whenever it is X -torsion-
free. MoreoverM.X−1 is X -divisible (and X -torsion-free wheneverM is).

Proof. See Proposition 9.12 and Theorem 9.13 in [8]. a
LetM be an R-module and letMtor be the set of elements ofM annihilated by
some non zero element ofR; it is a submodule sinceR is right Ore and also a Fix (α)
vector-space. We will add new unary function symbols to generalize the fact that
any element of K has a unique decomposition along a basis of K over its subfield
Kα . These will beLR-definable in the theory TR.
Set ù∗ := ù − {0}. We enumerate all finite subsets of elements of C , which are
presented as finite tuples, denote this set by C (ù) =

⋃

n∈ù∗ C
n . We will expand the

usual module language by adding unary functions ëc̄i , where c̄ := (c0, . . . , cn−1) with
the convention that all elements in this tuple are distinct and i ∈ n = {0, . . . , n−1}.

Definition 2.2. LetL =LR ∪ {ëc̄i ; c̄ = (c0, . . . , n − 1) ∈ C (ù), i ∈ n, n ∈ ù∗},
where the ëc̄i ’s are unary functions.

Definition 2.3. Let T (R) be the followingL -theory:

1. TR the theory of all right R-modules,
2. ∀x(∨i∈n ëc̄i (x) 6= 0→ x =

∑

i∈n ë
c̄
i (x) · t · ci), for each c̄ ∈ C (ù).

3. ∀x∀(xi )i∈n
(

x =
∑

i∈n xi · t · ci →
∧

i∈n xi = ë
c̄
i (x)

)

, for each c̄ ∈ C n and
n ∈ ù∗.

4. ∃x 6= 0 x · q(t) = 0, q(t) ∈ X.
5. ∀x∃y x = y · q(t), where q(t) ∈ X.

Note that TR is r.e. whenever K0 is, as well as axiom schemes 4 and 5. Axiom
schemes 2 and 3 are r.e. whenever C is.
First, note that any model of T (R) satisfies the following set ofLR-sentences:

∀y0 . . . yn−1
∑

j∈n

yj .t.cj = 0→
∧

j∈n

yj = 0.

Second, since our expansion is not an abelian structure which is not very common
in the setting of modules, we will make a few comments on the functions ëc̄i , i ∈ n
where n = length (c̄). Those functions are defined in any model of T (R) by the
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followingLR-formula:

ëc̄i (x) = y ⇐⇒ (∃y0 . . . yn−1 x =
∑

j∈n

yj .t.cj and yi = y)

or (∀y0 . . . yn−1 x 6=
∑

j∈n

yj .t.cj and y = 0).

LetM |= T (R) and fix a tuple c̄ = (c0, . . . , cn−1); set

Ec̄ := {x ∈M :
∨

i∈n

ëc̄i (x) 6= 0} ∪ {0}.

Then Ec̄ is a Kα0 -vector subspace of M and the functions ë
c̄
i , i ∈ n, are additive

homomorphisms on this subspace, more precisely Kα0 -linear maps. Denote by E

the subspace generated by the subspaces Ec̄ with c̄ ∈ C (ù); the set of the subspaces
Ec̄ together with the maps ë

c̄
i , i ∈ n = length (c̄), forms a direct system and E can

be viewed as its direct limit.
A calculation analogous to the one in [5] (Lemma 4.2) shows that E is an R-
submodule ofM . Indeed, let k ∈ K andx ∈ Ec̄ , assumew.l.o.g. thatk =

∑

j k
α
j .cj .

Let n = length (c̄). Express each product ci .cj , 1 ≤ i, j ≤ n with respect to C .
Namely, let d̄ be a finite subset of C such that each product ci .cj , 1 ≤ i, j ≤ n
belongs to the Kα-subspace generated by d̄ . So, ci .cj =

∑n(i,j)
`=0 k

α
ij .d` . We obtain

(

∑

i

ëc̄i (x).t.ci
)

.
(

∑

j

kαj .cj

)

=
∑

i,j

ëc̄i (x).kj .t.ci .cj

=
∑

`

∑

i,j

ëc̄i (x).kj .kij .t.d` .

Remark 1. Note that applying the right Euclidean algorithm, we have that if
m 6= 0 and m.q(t) = 0 with q(t) a prime polynomial, then q(t) is minimal such
that m · q(t) = 0. We have that m.R ∼= m.K0 ⊕ m.t.K0 ⊕ · · · ⊕ m.tn−1.K0, where
n = deg(q(t)).

Notation 2.2. Let Tα be the theory consisting of axioms schemes 1 up to 3,
together with {∃x (x 6= 0)}.
Lemma 2.3. The theory Tα is consistent.

Proof. Note that we have taken C to be an α-basis of K . We consider the field
K0 (respectively K) as an R-module in interpreting (right) multiplication by t as
the application of the endomorphism α, and the unary function ëc̄i (k) is defined
on k ∈ K0 (respectively K) by taking the value 0 if k does not belong to the K0α
vector-space (respectively Kα) generated by the tuple c̄ = (c1, . . . , cn), otherwise k
can be written in a unique way as

∑

i α(ki ).ci and we define ë
c̄
i (k) = ki . a

Remark 2. In any modelM of Tα , the action of t is injective (by axiom 3) and
therefore any model where t is non surjective, is non superstable (see [6] Proposi-
tion 3.2). Note that as soon as C is not a singleton, the action of t is not surjective
(m1.t.c = m2.t.1 implies that m1 = m2 = 0.) Now, in the descending chain of sub-
groups M ⊇ M.t ⊇ M.t2 ⊇ · · · , the index of each subgroup is infinite in the
preceding one. Take n ∈M −M.t and consider the set of elements {n.kα; k ∈ K0}.
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Then if n.kα1 − n.kα2 ∈ M.t with k1 6= k2, then n ∈ M.t, which is a contradiction.
Since K0 is infinite and α a field morphism, the index of M.t in M is infinite as
well as the index of M.tk+1 in M.tk considering the elements n.tk ∈ M.tk+1, and
from this it follows that the theory of M is not superstable (see for instance [14]
Theorem 2.1 (3)).

The first point we want to make is that in models of Tα the torsion and the α-
separable torsion is the same. It is convenient to begin by introducing the following
notation.

Notation 2.3 (See Notation 3.2, Remark 2 and section 4 in [5]). Given q ∈ R,
we will define α

√
q and qα. First, for k =

∑

i k
α
i · ci ∈ K0, where the ki ’s belong

to K0 and ci ’s to C , set k1/α :=
∑

i ki · ci . (Observe that (kα)1/α = k, but unless
k ∈ K0α , (k1/α)α and k are distinct.) Then, for q =

∑n
i=0 t

j · kj ∈ R with kj ∈ K0,
set α
√
q :=

∑n
j=0 t

j · k1/αj . We also define qα as
∑n
i=0 t

j · kαj .
Iteration m times of α√ is denoted αm

√ .
Given q ∈ R, we write it as q = ∑

i qi .ci with the property that qi ∈ Kα0 [t;α]
e.g., qi =

∑

j t
jkαij , with kij ∈ K0. Therefore, we have that α

√
qi =

∑

j t
jkij , so

∑

i

α
√
qi .t.ci =

∑

i

∑

j

tjkij .t.ci =
∑

i

∑

j

tj+1kαij .ci = t.q.

As in the commutative case, we have on the elements q =
∑n
i=0 t

j · kj of R
a function deg taking its value in N and defined as deg (q) = n.

Lemma 2.4 (See Proposition 3.5 and section 4 in [5]). Let M be a model of Tα .
Assume that m ∈ Mtor with m · q = 0, for some q ∈ R − {0}. Then there exists
q′ ∈ X such thatm · q ′ = 0.
Proof. If q is not α-separable, we can write it as q = t.q ′ with q′ ∈ R. With the
above notation we have: m.t.q ′ = 0 =

∑

i m.
α
√

q′i .t.ci with

deg ( α
√

q′i ) ≤ deg (q′) < deg (q).

Applying axiom 3, we get that
∧

i m.
α
√

q′i = 0, if none of
α
√

q′i is α-separable, we
iterate the procedure. Note that it stops since the function deg takes its values
in N. a
Lemma 2.5. LetM be a model of Tα . Then,Mtor is anL -substructure.

Proof. Letm ∈Mtor, by the aboveLemma, there exists q ∈ X such thatm.q = 0.
Further we may assume that q is of the form (1− t.q ′). Therefore, using the above
notation, we get that m =

∑

i m.
α
√

q′i .t.ci . Since M is a model of Tα , we get that

ëc̄i (m) = m.
α
√

q′i and so it belongs to the R-submodule generated by m and so
toMtor. a
Notation 2.4. Let Tα

sep be the theory consisting of Tα together with axiom

scheme 5. Let (T sepα )
tf
be the theory of the class of the torsion-free models of T sepα .

(It is axiomatized by adding to T sepα the scheme of axioms

∀m (m.q(t) = 0→ m = 0),
for each q(t) ∈ X.
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Lemma 2.6. LetM be a model of T (R) and letM1 be a pure R-submodule ofM .
Then,M1 is anL -substructure ofM and a model of T

sep
α .

Proof. First note that once we have proved thatM1 is anL -substructure ofM ,
it will follow that it is a model of T sepα . Indeed, axiom schemes (2) and (3) are
universal and we already know that axiom scheme (5) holds inM1 since it is a pure
LR-submodule ofM .
To show thatM1 is anL -substructure, we will proceed in two steps. Let U be an

|R|-regular ultrafilter and consider the ultrapowerM ∗ :=
∏

U
M ofM (respectively

M∗
1 of M1). Then since M

∗
1 is a pure-injective pure LR-submodule of M

∗, it is
a direct summand ofM ∗: M∗ =M∗

1 ⊕N for someLR-submodule N ofM ∗. Let
x1 ∈ M∗

1 . Then in M
∗ either ëc̄i (x1) = 0 or x1 =

∑

i∈n ë
c̄
i (x1).t.ci . In the second

case, let us show that ëc̄i (x1) ∈ M∗
1 . Write ë

c̄
i (x1) = xi1 + xi2 with xi1 ∈ M∗

1 and
xi2 ∈ N , i ∈ n. Then

∑

i∈n xi2.t.ci = 0, so by axiom scheme (3), each xi2 = 0, so

ëc̄i (x1) ∈M∗
1 , i ∈ n.

Now, suppose that x ∈ M1 and assume that in M , ëc̄i (x) 6= 0. Then by the
above, M ∗

1 |= ∃x0 . . . ∃xn−1 x =
∑

i∈n xi .t.ci . Since M1 is an LR-elementary
substructure of M ∗

1 , the same formula holds in M1. So, by axiom scheme (3),
ëc̄i (x) = xi ∈M1. a
Lemma 2.7. LetM be a torsion-free rightR-module, which is a model ofTα . Then,

the corresponding module of fractionsM.X−1 is a model of (T sepα )
tf
.

Proof. See Proposition 9.12 in [8] and Proposition 8.8, chapter 1 in [13] and [6]
Proposition 4.3. The proof has two steps, first, one shows that one can define on
M.X−1 the functions ëc̄i ’s as in the above Lemma. Then, one has to show that there
is only one way to define them. a
Proposition 2.8. In Tα

sep, any positive primitive (p.p.) LR-formula is equivalent
to a positive quantifier-freeL -formula.

Proof. See [5] Proposition 7.2. This is based on a proposition which can be
found in [9] p. 176 in the commutative case and one has to check that it adapts to
right Euclidean rings. a
Corollary 2.9. LetM be a model of T sepα . Then,Mtor is a pure submodule.

Proposition 2.10. Given any two p.p. formulas ø → φ defining two distinct sub-
groups in TR. Then either in any model of (T

sep
α )

tf
the index [φ : ø] is infinite, or in

such a model the index is equal to 1.

Proof. See [5] Lemma 7.3. a
Let us state a corollary (see below) under the hypothesis that T (R) is consistent
(and Fix (α) infinite), which will be proved in the next section where we will show
that one can embed any model of Tα in a model of T (R).

Corollary 2.11. If T (R) is consistent and whenever Fix (α) is infinite, it is com-
plete and it admits quantifier elimination.

Proof. Let M1, M2 |= T (R). First, note that since the functions ëc̄i are LR-
definable, if we show that M1 is elementarily equivalent to M2 as LR-structures,
then they will be elementarily equivalent asL -structures.
As an LR-structure, M1 (respectively M2) is elementarily equivalent to a direct
sum N1 (respectively N2) of pure-injective indecomposable R-modules (see [14]
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Corollary 6.9). Therefore,N1 (respectivelyN2) can be expanded to anL -structure;
we will stress it by denoting the expanded structure N1L (respectively N2L ) and as
such is elementarily equivalent toM1 (respectivelyM2), in particular N1L (respec-
tively N2L ) is a model of T (R).
By Lemma 2.6, each LR-direct summand of N1L (respectively N2L ) is an L -
substructure ofN1L (respectively N2L ) and satisfy T

sep
α . (Even though, in general,

N1L is not a direct sum of those considered asL -substructures.)
We consider two cases, either such direct summand is torsion-free or contains
non-trivial torsion.
ByProposition 2.10, each torsion-freeLR-direct summandofN1L is elementarily
equivalent to a torsion-freeLR-direct summand of N2L .
So, it remains to consider the case where those pure-injective indecomposable
direct summands are of the formH (t0) where t0 is the type of a torsion element and
w.l.o.g. we assume that this element annihilates a prime (separable) polynomial.
The same proof as in [6] Lemma 3.11 goes through showing that the isomorphism
type of a pure-injectiveLR-indecomposable model ofT

sep
α is determined by the fact

that a non trivial element is annihilated by the same prime (separable) polynomial.
Since the setting is slightly different, let us outline the argument. Suppose that one
has two indecomposable types t1 and t2 which contains the formula x.r(t) = 0,
with r(t) ∈ R. If H (t1) were non isomorphic to H (t2), then there would be a p.p.
LR-formula strictly between x = 0 and x.r(t) = 0 which belongs to only one
of t1 or t2 (see [14] Lemma 7.10). By Proposition 2.8, any p.p. LR-formula is
equivalent to a positive quantifier-freeL -formula and the type of a torsion element
is determined by the polynomial of minimal degree it annihilates. So for any prime
separable polynomial r(t) we get that any two pure-injective indecomposables which
have non trivial r(t) torsion are isomorphic.
Nowgiven anypair of p.p. formulas (ø, φ)withTR |= ø → φ, which is non trivial
in a direct summand containing non-trivial torsion, we get that the index of the
corresponding p.p.definable subgroups is infinite, since Fix (α) is infinite. Indeed,
given any p.p. formula ÷(x), we have for all s ∈ Fix (α)− {0} that ÷(x)↔ ÷(x.s).
The quantifier elimination result follows from the two preceding propositions
and from the completeness result as in [5] Proposition 7.4. Let φ(x̄) be an
L -formula. Adding possibly new quantifiers and replacing the functions ëc̄i by
their LR-definitions, we get an equivalent LR- formula ø(x̄). By the Baur-Monk
quantifier elimination result, ø(x̄) is equivalent to a boolean combination of p.p.
LR-formulas ÷i (x̄) (in any given complete theory of R-modules). By Proposi-
tion 2.8, each of these LR-formulas ÷i (x̄) is equivalent (in any model of T (R)) to
a quantifier-freeL -formula. a

Corollary 2.12. AssumeT (R) is consistent and that the cardinality of the subfield
Fix (α) ofK is finite. Then, the different completions of T (R) are obtained specifying
the cardinalities of the annihilators of prime separable elements of R. Whether these
are finite or not only depends on the field (K,α) and when finite they are equal to some
multiple of a number which only depends on the field (K,α).

Proof. We apply Lemma 3.14 in [6] and the proofs of Lemmas 7.3 and 6.8 in [5].
Let φ(x) and ø(x) be two p.p. LR-formulas defining two subgroups with one
included in another in any modelM of T (R).
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We will distinguish two cases. Either φ(M ) is not included in an annihilator
of an element of R and this case corresponds to whether the co-rank of the matrix
associated to this p.p. formula is bigger than or equal to 1 (see Definition 8 and
Lemma 7.1 in [5]. So, in this case we may proceed as in the proofs of Lemmas 6.8
and 7.3 in [5]; and we show that if the two subgroups φ(M ) and ø(M ) are distinct,
then their index is infinite.
Or, φ(M ) is included in Mtor (co-rank 0 case). Denote by ann (q(t)), where
q(t) ∈ X , the set of elements b ofM such that b.q(t) = 0. So, φ(x) is equivalent to
x.r(t) = 0 andø(x) is equivalent to x.s(t) = 0, for some r(t), s(t) ∈ X andw.l.o.g.
r(t), s(t) are monic. Let v ∈ ann (r(t)) ∩ ann (s(t)), then using the Euclidean
algorithm and letting f(t) := gdc (r(t), s(t))), one has that v ∈ ann (f(t)). We
may write r(t) = f(t).r ′(t) and s(t) = f(t).s ′(t). By assumption, we have that
ann (s(t)) ⊆ ann (r(t)) in any model of T (R) and so ann (s(t)) = ann (f(t)),
but if s ′(t) has degree at least equal to 1, then taking a non zero element v in
ann (s ′(t)) and dividing it by f(t) we get v = w.f(t) and so w ∈ ann (s(t)) −
ann (f(t)), a contradiction. Therefore since s(t) is monic, we obtain that the
following decomposition of r(t) (respectively of s(t)) of the following form r(t) :=
q1(t). · · · .qn(t) and s(t) := q1. · · · .qm(t) with m ≤ n and qi(t), 1 ≤ i ≤ n, prime
separable in R.
The model M is elementarily equivalent to a direct sum of pure-injective in-
decomposable R-modules N . As in the proof of the previous corollary, we may
expand this direct sum to an L -structure and as such obtain a model of T (R).
The index [ann (r(t)) : ann (s(t))] in M is equal to the product of the indices in
each pure-injective indecomposable direct summands. So, to determine the differ-
ent completions of T (R), it suffices to determine the indices of such pairs in each
indecomposable summand. Note that applying Lemma 2.6, we obtain that such
N is an L -substructure and satisfies T sepα . Let E be the set of prime separable
polynomials with non trivial annihilators in N . It remains to determine on one
hand given an element of E which are the other ones and on the other hand the
size of the annihilator of one of its elements. We use now Lemma 3.14 in [6],
replacing the prime subfield Fp by Fix (α). There, we showed that the elements
of E are of the same degree say n and given q ∈ E , we have that q ′ ∈ E iff there
exist q1, q2 ∈ R of degree less than or equal to n − 1 such that (∗) q.q1 = q2.q′.
Moreover, for q, q ′ ∈ E , their annihilators inN are isomorphic as Fix (α)− vector
spaces. (This result is proved using the positiveL -quantifier elimination result for
p.p.LR-formulas and the fact that in any pure-injective indecomposable R-module
two non zero elements are linked by a p.p.LR-formula.) We apply the above result
to the case where q(t) = q ′(t), namely given an element a ∈ ann (q(t)) − {0} and
another element b ∈ ann (q(t)), there exist q1(t), q2(t) ∈ R of degree less than or
equal to n − 1 such that

q1(t).q(t) = q(t).q2(t)(∗)

and b = a.q1(t). Equation (∗) determines all possible q1(t) in the following
way. Set q(t) =

∑n
i=0 t

i .ai with an, a0 6= 0, q1(t) =
∑d
j=0 t

j .bj and q2(t) =
∑d
k=0 t

k .ck with ai , bj , ck ∈ K . First, we determine the coefficients ck in terms
of the coefficients bj and ai and then we find a linear system of n equations that
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b0, . . . , b
αn

0 , . . . , bd , . . . , b
αn

d satisfy.



































b0 0 . . . . . .
b1 bα0 0 . . . . . .

bd bαd−1 . . . . . . bα
d

0 0

0 bαd bα
2

d−1 . . . . . . bα
d+1

0 0

. . . . . . . . . . . . . . . . . . bα
n

0

. . . . . . . . . . . . . . . . . . bα
n

1

0 . . . . . . 0 . . . . . . bα
n

d











































































a0
a1
.
.
ad
ad+1
ad+2
.
.
.
.
an









































=









































a0 0 . . . . . . 0
a1 aα0 . . . . . . 0

. . . . . . . . . aα
d−1

0 0

ad aαd−1 . . . a
αd−1

1 aα
d

0

ad+1 a
α
d . . . . . . aα

d

1

. . .

an aαn−1 . . . . . . aα
d

n−d

0 aαn . . . . . .

0 . . . . . . aα
d−1

n aα
d

n−1

0 . . . 0 . . . aα
d

n





















































c0
c1
.
.
cd













Rewriting the first d + 1 lines of this matrix equation, we get:












b0 0 . . . 0
b1 bα0 . . . 0

bd bαd−1 . . . b
αd

0

























a0
a1
.
.
ad













=













a0 0 . . . 0
a1 aα0 . . . 0

ad aαd−1 . . . a
αd

0

























c0
c1
.
.
cd













Since the matrix in the right hand side is invertible (a0 6= 0), we can express the
elements ci ’s in terms of the elements bj ’s and ak ’s. So, we get a system of n
linear difference equations in the bj , 0 ≤ j ≤ d of order n with coefficients in K .
Its set of solutions will determine the structure of the annihilator of q(t) in any
pure-injectiveLR-indecomposable summand of a model of T (R). a

§3. Consistency of T (R). LetR be the class consisting of R-modules where the
action of t is injective.
From now on, for ease of notation, we will assume thatK = K0.

Definition 3.1. LetM ⊆ N belonging toR .
Let a ∈ N . Then, a is α-separable over M (respectively α-algebraic over M) if
there exists an α-separable (respectively a non zero) element q(t) of R such that
a.q(t) ∈M.
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N is an α-separable extension ofM if every m ∈ N is α-separable overM .
N is anα-algebraic extension ofM if every elementm ∈ N is α-algebraic overM .
Notation 3.1. We will use the notation n ≡M 0 and the expression “n is zero
moduloM” to mean that n ∈M .
M ⊆t N means that (n.t ∈ M implies that n ∈ M ), for any n ∈ N . Also, the
condition t injective inR means that 0 ⊆t M , for anyM ∈ R .
Lemma 3.1. LetM ⊆ N belonging toR and a ∈ N .
1. Suppose thatN is a model of Tα and thatM is anL -substructure of N . Then,
M ⊆t N .

2. Suppose that a.q(t) ∈M , with q(t) ∈ X , then theR-submodule ofN generated
by a is a finite-dimensionalK-vector-space moduloM . Moreover, if in addition
a.t ∈M , then a ∈M . So, if N is α-separable extension ofM , thenM ⊆t N .
Assume now that N is a model of Tα , then under the same hypothesis as
above, theL -substructure generated by a is a finite-dimensionalK-vector-space,
moduloM .

3. The set of elements ofN which are α-separable overM forms aK-vector-space
containingM .

Proof.

1. Let a.t = b ∈ M . Since N is a model of Tα , by axiom scheme 3, a = ë10(b).
SinceM is anL -substructure of N , we get that ë10(b) ∈M.
2. This is a straightforward verification (see Remark 1).
For the second assertion, we proceed as follows. Assume now that N |= Tα .
W.l.o.g., we may assume that q(t) = (t.q ′(t) − 1), so a(t.q′(t) − 1) = b ∈ M and
b =

∑

i a.
α
√

q′i .t.ci − a (see Notation 2.3). Since N is a model of Tα , either there
exist n ∈ ù and c̄ ∈ C n such that a = ∑

i ë
c̄
i (a).t.ci , or ∀n ∈ ù and ∀c̄ ∈ C n we

have that ëc̄i (a) = 0. In the last case, the L -substructure generated by a is equal
to the R-submodule generated by a and so we apply the first part of the statement.
In the first case, we get that ëc̄i (b) = a.

α
√

q′i − ëc̄i (a) and so ëc̄i (a) belongs to the
R-submodule generated by a modulo M and so the conclusion follows using the
first part of the statement.
3. Let a1, a2 be two elements of N which are α-separable over M . By hy-
pothesis, there exist p1(t), p2(t) ∈ X such that a1.p1(t), a2.p2(t) ∈ M . Since
X is a right denominator set of R, p1(t), p2(t) have a right common multiple:
p(t) = p1(t).p3(t) = p2(t).p4(t) where p3(t), p4(t) ∈ X . So,

(a1 + a2).p(t) = (a1.p1(t)).p3(t) + (a2.p2(t)).p4(t)) ∈M.
Let a ∈ N be α-separable over M and let k ∈ K , then a.k is α-separable over
M . By assumption on a, there exist ki ∈ K such that a +

∑

i>0 a.t
i .ki ≡M 0. So,

a.k(1 +
∑

i>0

ti .(k
αi
)
−1

.ki ) ≡M 0.
a

Definition 3.2. A set of elements (ci )i∈I of K is α-free in N overM , if for any
finite subset I0 of I

∀mi ∈ N (
∑

i∈I0

mi .t.ci ≡M 0 −→
∧

i∈I0

mi ≡M 0).
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Note that since the action of t on K is given by the action of the endomorphism
α, an α-basis of K is α-free in K over {0}. Also, ifM ⊆t N , then 1 is α-free in N
overM .

Lemma 3.2. The property: n1, . . . , ns are K-linearly independent over M implies
that n1.t, . . . , ns .t are K-linearly independent overM

is equivalent to:

there is an α-basis of K is α-free in N overM .

Proof.

(→) Let (ci ) be anα-basis ofK . Suppose that
∑l
i=1 ni .t.ci ≡M 0with ni ∈ N and

suppose that not all ni ≡M 0. Extract a maximal K-linearly independent subset,
w.l.o.g., we assume that it is: n1, . . . , ns and express the other elements in terms
of these. So, for l ≥ j > s , we have nj ≡M

∑s
i=1 ni .kij . We get

∑s
i=1 ni .t.(ci +

∑l
j=s+1 k

α
ij .cj) ≡M 0.Byhypothesis onN , we get that

∧s
i=1(ci+

∑l
j=s+1 k

α
ij .cj) = 0,

which is a contradiction.
Note that in fact we have shown that any α-basis of K is α-free in N overM .
(←) Let (ci ) be an α-basis of K which is α-free in N over M . Suppose that

∑

i ni .t.ki ≡M 0 with ki =
∑

j k
α
ij .cj and assume that not all ki 6= 0 and so

not all kij 6= 0. Then
∑

i ni .t.(
∑

j k
α
ij .cj) ≡M 0, ni ∈ N , ki ∈ K , equivalently

∑

i ni .(
∑

j kij .t.cj) =
∑

j(
∑

i ni .kij).t.cj ≡M 0. So,
∧

j

∑

i ni .kij ≡M 0. a
Proposition 3.3. LetM ⊆t N belong toR . Then,
N is α-algebraic overM and there is an α-basis ofK which remains α-free
in N (or equivalently any α-basis of K remains α-free in N )

iff

N is an α-separable extension ofM .

Therefore, ifM is a model of Tα and if N is an α-separable extension ofM , then N
can be expanded to a model of Tα .

Proof.

(→) Let (ci ) be an α-basis which remains α-free inN overM . Let b ∈ N −M be
such that b.t.p (t) belongs toM . Then, we have

∑

i b.
α
√
pi .t.ci ≡M 0 (see Notation

2.3.) By assumption on (ci ), it implies that
∧

i (b.
α
√
pi ≡M 0). If none of the α

√
pi

are α-separable, we iterate the procedure which eventually stops since deg ( α
√
pi ) ≤

deg (p).
(←) In this direction, using the preceding lemma, we will show that if b1, . . . , bn
are K-linearly independent elements of N overM , then the elements b1.t, . . . , bn.t
are also K-linearly independent overM . Let N0 be the K-subspace of N contain-
ing M , closed under the action of t and containing b1.t, . . . , bn.t. Since each
bi is α-separable (α-algebraic), this subspace N0 is finite-dimensional over M
(Lemma 3.2 (2)). Complete the set b1, . . . , bn to get a K-basis of N0 over M ,
say (bi)i≥1.
Let b ∈ N0. So, b ≡M

∑

bi .ki and so

b.tj ≡M
∑

bi .t
j .kα

j

i .(∗)
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Since b is α-separable, it belongs to the K-subspace containingM , closed under t
and generated by b.t, namely

b ≡M
∑

h>0

b.th .kh with kh ∈ K.(∗∗)

Now, (bi)i≥1 is a basis, so for each i, j ≥ 1 there exist r`j ∈ K such that
bi .t

j ≡M
∑

` b`r`j and so

bi .t
j+1 ≡M

∑

i

bi .t.r
α
ij .(∗∗∗)

Using (∗), (∗∗) and (∗∗∗) for j > 0, we get that b ≡M
∑

i bi .t.k
′
i , for some k

′
i ∈ K .

Therefore, the set of (bi .t)i≥1 is a K-generating subset of N0 modulo M and so it
remains K-linearly independent overM .
Now, suppose that M is a model of Tα and let b ∈ N −M . By the above,
there exists q(t) ∈ X such that b.q(t) = m ∈ M. W.l.o.g., we may assume that
q(t) = 1 − t.q′(t). So, b −∑

i b.
α
√

q′i (t).t.ci = m ∈ M . Either, there exists
(ci )i∈I0 ⊆ (ci )i∈I with I0 a finite subset of I such that m =

∑

i∈I0
ëc̄i (m).t.ci , and

so we set ëc̄i (b) := b.
α
√

q′i (t) + ë
c̄
i (m), or no such subset exist and for all i ∈ I

ëc̄i (m) = 0, in that latter case we set ë
c̄
i (b) = 0.

We have to check that N is a model of Tα . Let b ∈ N be such that ëc̄i (b) 6= 0.
Using the same notations as above, assume that b.q(t) ∈ M and q(t) ∈ X . We
defined ëc̄i (b) := b.

α
√

q′i (t) + ë
c̄
i (m) and we have that b =

∑

i ë
c̄
i (b).t.ci . Now

suppose that b =
∑

i di .t.ci = 0 for some elements di ∈ N. On the other hand
we have that b −∑

i b.
α
√

q′i (t).t.ci = m ∈ M . Since (ci ) is α-free we have that
∧

i di − b. α
√

q′i (t) ≡M 0. So, sinceM is a model of Tα , ëc̄i (m) = di − b. α
√

q′i (t). a
In the following, before proving the main result of this section (Proposition 3.8),
we will examine more closely this notion of α-freeness (Definition 3.2).

Notation 3.2. Let Kα
−1

be a field extending K , with an endomorphism α̃ equal
to α on K and generated by the α roots of elements of K more precisely it is
minimal with the property that ∀k ∈ K ∃` ` α̃ = k (see [4] chapter 2, paragraph 5,
Theorem 2).

Lemma 3.4. Let L belong to R . Then, there is a Kα
−1

-vector space belonging to
R in which L embeds, namely L.T−1.

Proof. The subset T := {1, t, t2, . . . } of R and check that it is a right denomi-
nator set (we have for any n ∈ ù, for any q ∈ R, tn .qαn = q.tn) (see Notation 2.3).
Then we form the ring of fractions R.T−1 of R with respect to this right de-
nominator set and consider the module of fractions L.T−1 of L with respect T .
Since the action of t is injective, L embeds in this R.T−1-module as an R-module.

Then, L.T−1 is naturally endowed with a structure of Kα
−1

-vector space. In-

deed, let kα
−1 ∈ Kα−1 , and n ∈ L.T−1, we define n.kα

−1

:= n.t.k.t−1. Let us
check that for an element n ∈ L and kα−1 ∈ K , this action coincides with the
action of K on L. If kα

−1 ∈ K , then there exists ` ∈ K such that `α = k, so
n.t.k.t−1=n.t.`α .t−1 and using the commutation rule in the skew polynomial ringR

we get that n.t.`α .t−1=n.`.t.t−1=n.`=n.kα
−1

(note that this is well-defined). Now,
L.T−1 is again T -torsion-free by Proposition 9.12 in [8]. a
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Notation 3.3. Let L belong to R . We will denote by L.Kα
−1

the Kα
−1

-vector
space of L.T−1 generated by L. So it is the set of all finite sums of the form

∑

i

ni .t.ki .t
−1 =

∑

i

ni .k
α−1

i .

Note that we have that
∑

i (ni .k).k
α−1

i =
∑

i ni .(k
α−1

i .k), for any k ∈ K . Indeed,
n.t.kα .t−1=n.k. So we have a map from L⊗K Kα

−1

to L.Kα
−1

.

Lemma 3.5. Suppose that N ∈ R . Then, M ⊆t N implies that for any ni ∈ N ,
ki ∈ K − {0}, the element

∑l
i=1 ni .k

α−1

i of N.Kα
−1

has the following property: if
∑l
i=1 ni .k

α−1

i .t ∈M then either all the ni ∈M or
∑l
i=1 ni .k

α−1

i = 0.

Proof. Suppose that
∑l
i=1 ni .k

α−1

i .t ∈M with ni ∈ N and ki ∈ K − {0}.
If l = 1, then n.kα

−1

.t ∈M implies that n.t.k ∈M and so n.t ∈M which implies
that n ∈M (sinceM ⊆t N ).
Suppose that not all ni ∈ M , since we have the property that (if n /∈ M , then
n.t /∈ M ), we may extract a non empty maximal subset from {n1.t, . . . , nl .t} of K-
linearly independent elements overM . W.l.o.g., assume that this subset is equal to
{n1.t, . . . , ns .t} with s ≥ 1.
If s = l , then

∑l
i=1 ni .k

α−1

i .t=
∑l
i=1 ni .t.ki ∈ M and so ni .t ∈ M which entails

that ni ∈M.
If 1 ≤ s < l , we express for l ≥ j > s nj .t ≡M

∑s
i=1 ni .t.kij with kij ∈ K − {0}.

So we get
∑l
i=1 ni .t.ki ≡M

∑s
i=1 ni .t.(

∑l
j=s+1 ki + kij .kj) ≡M 0. This implies that

∧s
i=1

∑l
j=s+1 ki + kij .kj = 0 and so

∑l
i=1 ni .t.ki = 0. Rewriting

∑l
i=1 ni .t.ki as

∑l
i=1 ni .k

α−1

i .t and applying the fact that L.T−1 ∈ R , we get that
l

∑

i=1

ni .k
α−1

i = 0.
a

In the following definition we haveM ⊆ N belonging toR and in what follows,
we will consider N embedded in N.T−1 and so its extension N.Kα

−1

endowed with
a structure of Kα

−1

-vector space.

Definition 3.3. N is linearly disjoint from Kα
−1

over M if any set of elements

of N which are K-linearly independent overM remains in the extension N.Kα
−1

,

Kα
−1

-linearly independent overM , namely

∀ni ∈ N
[(

∃kα−1i ∈ Kα−1 − {0}
∑

i

ni .k
α−1

i ≡M 0
)

−→

(

∃k′i ∈ K − {0}
∑

i

ni .k
′
i ≡M 0

)]

.

Lemma 3.6. LetM ⊆t N belong toR , then
N is linearly disjoint fromKα

−1

overM

iff the following property holds:

for all (ei ) ⊂ Kα
−1−{0} such that that ∃(li) ⊂ N−M with

∑

i li .ei ≡M 0,
there exist (ki ) ∈ K with ki 6= 0 for some i , such that

∑

i ki .ei = 0.
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Proof.

(→) Let (ei ) ⊂ Kα
−1 − {0} and (li ) ⊂ N −M and suppose that

∑

i li .ei ≡M 0.
Among the elements li , select a K-linearly independent subset modulo M , say
l1, . . . , lk and express the others as K-linear combinations modulo M , namely

lj ≡M
∑k
i=1 li .kij . So, we get that (

∑k
i=1 li .(ei +

∑

j>k kij .ej)) ≡M 0 and so by
hypothesis, we have that

∧k
i=1(ei +

∑

j>k kij .ej = 0).

(←) Suppose that∑i li .ei ≡M 0with (ei ) belonging toKα
−1−{0}. Let e1, . . . , ek

be a maximal subset of the (ei ) consisting of K-linearly independent elements. So,

for each j > k, there exist (kij) ∈ K such that ej =
∑k
i=1 ei .kij=

∑k
i=1 kij .ei since

Kα
−1

is a commutative field. We get that
∑k
i=1(li +

∑

j>k lj .kij ).ei ≡M 0. This
implies that ∧ki=1 (li +

∑

j>k lj .kij ≡M 0). a
Proposition 3.7. LetM ⊆t N belong toR . Then,
N andKα

−1

are linearly disjoint overM

iff

there is an α-basis of K which is α-free in N overM

iff

every α-basis of K is α-free in N overM .

Proof.

(1.→ 3.) Let (ci ) be an α-basis of K . Suppose that
∑

i li .t.ci ≡M 0, where
li ∈ N . Then, in N.T−1 we have

∑

i li .c
α−1

i .t ≡M 0 (definition of the action of
Kα

−1

on N ). So, by Lemma 3.5, either all the li belong toM and so we are done,

or
∑

i li .c
α−1

i = 0. In the second case using the preceding lemma, we get that there

exist ki ∈ K such that
∑

i ki .c
α−1

i =0. So,
∑

i k
α
i .ci=0, which contradicts the fact

that the ci ’s are α-free in K .
(1.← 2.) Assume that (ci ) is an α-basis of K which is α-free in N over M .
Suppose that

∑

li .ei ≡M 0 with li ∈ N , ei ∈ Kα
−1 − {0}. Applying t, we

get
∑

i li .t.e
α
i ≡M 0. Express eαi =

∑

j k
α
ij .cj with kij ∈ K − {0}. Then,

∑

i li .t.(
∑

j k
α
ij .cj) ≡M 0, so

∑

j(
∑

i li .kij ).t.cj ≡M 0. By hypothesis, we get
that

∧

j(
∑

i li .kij ≡M 0). (Note that in this direction we did not use the assumption
thatM ⊆t N .) a

Remark 3. WhenK is viewed with its full field structure, a well-known construc-
tion in order to add solutions to one variable difference equations is the construction
of the Picard-Vessiot extensions (see [12]).
Let us recall this construction below. First, we note the following: let p(t) ∈ X
of the form: tn + tn−1.an−1 + · · ·+ a0, with a0 6= 0.
To the formula:

v.(tn + tn−1.an−1 + · · ·+ a0) = 0,

we will associate the equation:

V.t = V.A,
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where A ∈ GLn(K) and V is the tuple (v v.t · · · v.tn−1)
(

v.t v.t2 · · · v.tn
)

=

(

v v.t · · · v.tn−1
)













0 0 0 . . . −a0
1 0 0 . . . −a1

0 . . . 0 1 −an−1













In the case where α is an automorphism, to the equation of the formm.p(t) = 0,
with p(t) ∈ X , corresponds a Picard-Vessiot extension of K (see [12] Chapter 1),
namely a simple difference K-algebra containing a solution of that equation and in
the case the field of constants is algebraically closed, minimal with this property.
(Recall that a difference ring is simply a ring with an endomorphism. A simple
difference ring is one without non-trivial difference ideals and a difference ideal is
a ring ideal with the additional property that if a ∈ I −→ a.t ∈ I , so it is simply an
R-submodule. Note also that in a simple difference ring the action of t is injective
(the kernel of t is a difference ideal).)
Now if α is an endomorphism and not necessarily an automorphism, we can
perform the same construction to obtain a simple difference K-algebra.
Indeed, one forms the K-algebra K [xij , 1/det ], where det is the determinant
of (xij) and we define the action of t by setting (xij).t = (xij).A and extend it by
linearity. We note that the radical of a difference ideal is again a difference ideal.
So, the quotient ofK [xij , 1/det ] by a maximal difference ideal is a simple difference
ring without nilpotent elements.

Now we are ready to consider extensions of K (viewed as an R-module) where
one increases the torsion submodules. We place ourselves in the general setting
of models of Tα .

Proposition 3.8. LetM be a model of Tα . ThenM can be embedded in a model
of T (R).

Proof. First, note that if L ∈ R is an α-separable extension ofM , then we may
expand L to an L -structure and this expansion becomes a model of Tα . Indeed,
by Lemma 3.1 (2), M ⊆t L and so we may apply Proposition 3.3. Denote by Xp
the set of prime separable elements of X .
SetM = L0, we will construct a chain of α-separable extensions Li+1 of Li inR
such that (∗) for every n ∈ Li , for every q(t) ∈ Xp, there exists m ∈ Li+1 such that
m.q(t) = n.
Set L :=

⋃

i∈ù Li . Then, L is an α-separable extension ofM as a union of such,
and so it can be expanded to an L -structure. Let us check that it satisfies axiom
schemes 4 and 5. Let n ∈ L, so n ∈ Li for some i ; let q(t) ∈ X and let q(t) =
q1(t). · · · .qs(t) be a decomposition of q(t) in prime factors qi (t) ∈ Xp. Set n := m0,
by construction, there existsmj ∈ Li+j such thatmj−1 = mj .qs−j+1(t), 1 ≤ j ≤ s .
We obtain that n = m0 = ms .q1(t). · · · .qs (t).
So, either Li satisfies property (∗), in this case we set Li+1 = Li , or we proceed
as follows.
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We will first explain how to construct an α-separable extension of Li belonging
toR and containing an element e0 with e0.q(t) = m ∈ Li , wherem was not already
divisible by q(t) ∈ Xp in Li .
More generally, we will assume that we already constructed an α-separable ex-
tension L′

i of Li inR and thatm ∈ Li is not divisible in L′
i by q(t) ∈ Xp.

Let q(t) =
∑d
i=0 t

i .ki with ki ∈ K and k0, kd 6= 0. Consider the following
extension of L′

i : the sum of L
′
i with a K-vector space of dimension d , namely

L̃′
i := L

′
i +(e0.K ⊕ e1.K ⊕ · · · ⊕ ed−1.K). We want to endow L̃′

i with anR-module

structure. Wefirst define the actionof t on the ei ’s and then extend it on L̃′
i as follows:

(l+
∑

i ei .ki ).t := l.t+
∑

i ei .t.k
α
i ,where l ∈ L′

i . We then define the action of r(t) =
∑

i t
i .k′i ∈ R with k′i ∈ K on each ej by

∑

i ej .t
i .k′i ; we extend it the same way as

before on L̃′
i . For 0 ≤ i ≤ d −2, set ei .t := ei+1 and ed−1.t := n0−

∑d−1
i=0 ei .ki . So,

e0.q(t) = n0 and L̃′
i is generated as an R-module by L

′
i and e0. Since q(t) is prime,

L̃′
i is a direct sum ofL

′
i with theK-vector space generated by {e0.t i ; 0 ≤ i ≤ d −1}.

Indeed, suppose that e0.p(t) ∈ L′
i and take such element p(t) ∈ R of minimal

degree strictly less than d . Applying the Euclidean algorithm, we get that q(t) =
p(t).r1(t) + r2(t) with r1(t), r2(t) ∈ R and deg (r2(t)) < deg (p(t)) < d . Since
e0.q(t) ∈ Li and e0.p(t) ∈ L′

i by the minimality assumption (on the degree of p(t))
we get that r2(t) = 0. But q(t) is prime, so we reach a contradiction.
Let us check that L̃′

i is α-separable over L
′
i (and so will be over Li ). It suffices

to prove that each ei = e0.t i , 0 ≤ i ≤ (d − 1), is α-separable over L′
i . Indeed, by

the fact thatX is a right denominator set, a sum of α-separable elements over L′
i is

α-separable over L′
i (see Lemma 3.1 (3)). Now, since t

i .qα
i

(t) = q(t).t i , we have

that ei .qα
i

(t) = n0.t i ∈ Li .
Finally, let us show that L̃′

i ∈ R . Suppose that a + e0.r(t) ∈ L̃′
i , with a ∈ L′

i

and deg (r(t)) < d , be such that (a + e0.r(t)).t ∈ L′
i , so (e0.r(t)).t ∈ L′

i . Using the
Euclidean division algorithm, since the degree of r(t).t is less than or equal to d ,
we get that q(t) = r(t).t.r1(t) + r2(t) with degree of r2(t) strictly less than d . Since
q(t) ∈ X , if r2(t) 6= 0, then r2(t) ∈ X . So, e0.q(t) = e0.r(t).t.r1(t) + e0.r2(t) ∈ L′

i ,
but we have shown above that this implies that r2(t) = 0. So, q(t) = r(t).t.r1(t),
which contradicts the fact that q(t) ∈ Xp.
Let {qã(t) : ã < ä} be an enumeration ofXp and let {mâ : â < ë} be an enumera-
tion of the elements of Li . We take the first element in the enumeration of Li which
is not divisible by an element of Xp and choose the first such element of Xp, saymâ
is not divisible by qã . We showed how to construct an α-separable extension in R
of Li of the form Li+ < eâ,ã >, where eâ,ã has the property that eâ,ã .qã (t) = mâ .
We denote such extension by Li,â,ã .
Then fixing â , we will look for the next element in the enumeration of Xp such
that mâ is not divisible by it in Li,â,ã . Then, we move to the next element of Li .
More precisely, we proceed as follows.
By induction on the ordinals, we define the following extensions of Li .
SetLi,0 := Li and for 0 < â < ë, defineLi,â+1 :=

⋃

ã<ä Li,â,ã , where for 0 ≤ â < ë
we have defined Li,â,ã as follows:

if ã = 0,
Li,â,0:=Li,â+< eâ,0 >, if mâ is not divisible in Li,â by q0(t) and
Li,â,0 := Li,â otherwise,
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if ã is successor,
Li,â,ã :=Li,â,ã−1+< eâ,ã >, if mâ is not divisible in Li,â,ã−1 by qã(t) and
Li,â,ã :=Li,â,ã−1 otherwise,

if ã is limit, define
Li,â,ã :=

⋃

í<ã Li,â,í+< eâ,ã >, ifmâ is not divisible inLi,â,í for some í < ã

by qã(t) and
Li,â,ã :=

⋃

í<ã Li,â,í otherwise.

Note that each Li,â,ã belongs toR and that it is α-separable, and so each Li,â has
those two properties.
Finally, for â a limit ordinal, we define Li,â :=

⋃

ñ<â Li,ñ.
Set Li+1 := Li,ë, and note that it is an α-separable extension of Li inR . a
Corollary 3.9. T (R) is consistent.

Proof. The additive structure (K,+, 0, α) of the field K with its endomorphism
α is a model of Tα and by the preceding proposition can be embedded in a model
of T (R). a
Corollary 3.10. Suppose that Fix (α) is infinite. Then, the theory T (R) is the
model completion of Tα .

Proof. Apply Proposition 3.8 and Corollary 2.11. a
In case Fix (α) is finite, one may obtain a similar statement for the different
completions of T (R), using Corollary 2.12.

§4. Ultraproducts of separably closed fields. Let Kn be a separably closed field
of characteristic pn and imperfection degree e, pn ∈ P , e ∈ ù ∪ {∞}. Let U
be a non principal ultrafilter on ù and consider the ultraproduct K :=

∏

U Kn.
Either, (pn)n∈ù is a strictly increasing sequence and K is an algebraically closed
field of characteristic zero. Or, K is a separably closed field of characteristic p,
of fixed finite imperfection degree e. In eachKn, we may consider the non standard
Frobenius maps either x −→ xpn or x −→ xpn .
Let α be the non-standard Frobenius map sending [xn]U to either [x

pn
n ]U or to

[xp
n

n ]U . In this case, we obtain as the subfield fixed by α, a pseudo-finite field either
∏

U Fpn or
∏

U Fpn .
Let us first consider the characteristic zero case. The characteristic p case is rather
similar, replacing pn by pn. In each Kn, we have a pn-basis Bn := {b1n , . . . , ben}.
Denote byMpn the corresponding set of pn-monomials. Let C be a basis ofK over
α(K) with α = [αn]. Let R be the skew polynomial ring K [t;α], with the usual
commutation rule k.t = t.kα , k ∈ K . Let Rn be the skew polynomial ringKn[t;αn]
with n ∈ ù − {0}.
Corresponding to this particular ring R, we may write as before a theory T (R).

Lemma 4.1. LetMn |= T (Rn), then any non-principal ultraproductM :=
∏

U Mn,
where U is a non-principal ultrafilter, is a model of the theory T (R). In particular,
K :=

∏

U Kn |= T (R).
Proof. Let {ej,n; j ∈ pen}= Mpn . The action of R on M :=

∏

U Mn is defined
by [mn].[rn] := [mn .rn], where [mn] ∈ M and [rn] ∈ R. Now if m =

∑

ci∈c̄
mi .t.ci

where c̄ is an `-tuple included in C , we define ëc̄i (m) = mi . Let us check it is
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well-defined (axiom scheme 3) i.e., suppose that
∑

ci∈c̄

[mn,i ].t.ci = 0.(∗)

Each ci ∈
∏

U Kn, so ci = [ci,n], where ci,n ∈ Kn −Kαnn . Write ci,n =
∑

j∈pen
kαnji .ej,n

with the kji ∈ Kn − {0}. In matrix notation, we have:








c1,n
c2,n
· · ·
c`,n









=









· · · kαnj1 · · ·

· · · kαnj` · · ·

















e1,n

epen ,n









.

Set

Aαn :=









· · · kαnj1 · · ·

· · · kαnj` · · ·









.

Since, for almost all n, the ci,n, 1 ≤ i ≤ ` are linearly independent over Kαnn , there
exist a permutation matrix P and an invertible matrix Q such that Qαn .Aαn .P is
equal to an upper triangular matrix with only non zero elements on its diagonal.
So, let us rewrite (∗) as

∑

i≤` [mn,i ].t.([
∑

j∈pen
kαnji .ej,n]) = 0. By interchanging the

two sums, we get
∑

j∈pen
(
∑

i≤` mn,i .kji ).t.ej,n = 0, for almost all n. The equality

(∗) holds iff N := {n ∈ ù :
∑

j∈pen
(
∑

i≤` mn,i .kji ).t.ej,n = 0} belongs to U . For
n ∈ N , since the {ej,n}j∈pen form a basis, we get that

∧

j∈pen

∑

i≤` mn,i .kji = 0,which

in matrix form gives:

(

m1,n · · · m`,n
)

.









· · · kj1 · · ·

· · · kj` · · ·









= 0.

Note thatQ.A.P is again a upper triangular matrix with only non zero elements on
its diagonal, say (B, 0) where B is upper triangular with only non zero elements on
its diagonal.
Now, (m1,n, . . . , m`,n).Q−1.B = 0, for any n ∈ N. So, [m1,n], . . . , [m`,n] are equal
to zero.
Let q(t) ∈ X of degree d , then q(t) = [qn(t)], where qn(t) belongs to Rn . Then
ann (q(t)) is non zero, since it is non zero in each Mn. To check axiom scheme 5,
we do it in eachMn using the fact that each one is a model of T (Rn).
To prove that K |= T (R), by the first part it suffices to prove that Kn |= T (Rn).
Note that in addition, we have that the annihilator of a polynomial qn(t) of degree
d is a vector space of dimension d over the finite field Fpn (respectively Fpn) and
this is equivalent to the set of solutions of a polynomial of degree pdn (respectively
(pn)d ) is a Fpn -vector-space (respectively a Fpn -vector-space) of dimension d . a
Corollary 4.2. T (R) admits quantifier elimination, is consistent, complete and
anymodel ofT (R) is elementarily equivalent to a non-principal ultraproductofmodels
of T (Rn).
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Proof. The field Fix (α) is a pseudo-finite field, isomorphic either to
∏

U Fpn or
to

∏

U Fpn and so infinite. So we may apply Corollary 2.10. The last assertions
follow from the preceding Lemma. a

§5. Decidability. In our context, it seems more adequate to use for the notion of
decidability, instead of the classical one, the notion developed by L. Blum, M. Shub
and S. Smale ([2], chapters 2 and 3). This last notion seems to be more natural in
the case where the ring R is uncountable since the cardinality of the ring does not
seem here to play any model-theoretic role. We will assume as in Corollary 2.11,
that Fix (α) is infinite. We replace a Turing machine by a BSS-machine where the
set of constants is the ring R and the basic operations are the ones given by the
languageL . It remains to check that T (R) and its complement in Rù are halting
sets over R.
First, given anL -formula, one constructs an equivalentLR-formula, replacing
the functions symbols ëc̄i by their LR-definitions. Then, we use the quantifier
elimination result in language L and its effectiveness (see Proposition 7.2 in [5])
and so using the p.p. elimination in theories of modules and noting that in T (R), if
the index of twop.p. formulas is strictly bigger than 1, then it is infinite (seeCorollary
2.11), it remains to check the validity of sentences of the form:

∃x
∨

`

[

∧

k

tk(x) = 0 ∧ s`(x) 6= 0
]

,

where tk(x), s` (x) are L -terms. Each L -term tk (respectively s`) is equivalent to
a term of the form

∑

ı̄ ë
c̄
ı̄ (x) · rı̄ (respectively

∑

̄ ë
c̄
̄ (x) · s̄), where rı̄, s̄ ∈ R − {0}

(see Lemma 4.1 in [5]). Notice that we may assume that the ë functions have the
same superscript c̄ ∈ C .
Each disjunct can be put in the form x̄.A = 0 ∧ x̄.c̄ 6= 0 ∧ x =

∑

i∈pen xi .t.mi ,

where A ∈Mpen×pen(R), c̄ ∈ R. Then we reduce the matrix A to a lower triangular
matrix in order to get the equivalent formula

∃z̄
[

z̄ = x̄.P−1 ∧ z̄.Ã = 0 ∧ z̄ .P.c̄ 6= 0 ∧ x =
∑

i∈pen

xi .t.mi
]

,

where Ã is a lower triangular matrix and P a permutation matrix; it is an effective
procedure (see Proposition 6.1 in [5]), it involves in particular repeated applications
of the Euclidean algorithm inR. Considering now the formula z̄.P.c̄ 6= 0, it remains
to apply Gauss elimination and so whether

∃x
(

x̄.A = 0 ∧ x̄.c̄ 6= 0 ∧ x =
∑

i∈pen

xi .t.mi
)

holds, is equivalent to check whether a coefficient of zj is non zero, where j is bigger

than the number of non zero columns of Ã.
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