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Abstract

This paper presents a self-contained introduction to a general conjoint measurement framework for the analysis of

nontransitive and/or incomplete binary relations on product sets. It is based on the use of several kinds of marginal

traces on coordinates induced by the binary relation.

This framework leads to defining three general families of models depending on the kind of trace that they use.

Contrary to most conjoint measurement models, these models do not involve an addition operation. This allows for a

simple axiomatic analysis at the cost of very weak uniqueness results.

� 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Conjoint measurement (Krantz et al., 1971; Wakker, 1989) studies binary relations defined on product

sets. There are many situations in which such binary relations are of central interest. Among them let us
mention:

• Multiple criteria decision making using a preference relation comparing alternatives evaluated on several

attributes (see Belton and Stewart, 2001; Keeney and Raiffa, 1976; Roy, 1996; von Winterfeldt and

Edwards, 1986).

• Decision under uncertainty using a preference relation comparing alternatives evaluated on several states

of nature (see Anscombe and Aumann, 1963; Fishburn, 1970b, 1988; Gul, 1992; Savage, 1954; Shapiro,

1979; Wakker, 1984, 1989).
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• Consumer theory manipulating preference relations for bundles of several goods (see Debreu, 1959).

• Intertemporal decision making using a preference relation between alternatives evaluated at several

moments in time (see Keeney and Raiffa, 1976; Koopmans, 1960, 1972).

• Inequality measurement comparing distributions of wealth across several individuals (see Atkinson, 1970;

Ben-Porath and Gilboa, 1994; Ben-Porath et al., 1997; Weymark, 1981).

Given a binary relation % on a set X ¼ X1 � X2 � � � � � Xn, the theory of conjoint measurement consists

in finding conditions under which it is possible to build a convenient numerical representation of % and to
study the uniqueness of this representation. Manipulating numbers is clearly much easier than manipu-

lating binary relations. Furthermore, in most cases, the proofs showing the existence of a numerical rep-

resentation gives very useful hints on how to build this representation and, thus, assess preferences. Finally,

the conditions on % guaranteeing the existence of a numerical representation can be subjected to empirical

tests (Krantz et al., 1971). This explains why conjoint measurement has attracted much attention in many

different fields of research.

In traditional models of conjoint measurement the binary relation studied is most often supposed to be

complete and transitive and the numerical representation is sought to be additive. The central model is the
additive utility model such that:
x%y ()
Xn

i¼1

uiðxiÞP
Xn

i¼1

uiðyiÞ; ð1:1Þ
where ui are real-valued functions on the sets Xi and it is understood that x ¼ ðx1; x2; . . . ; xnÞ and

y ¼ ðy1; y2; . . . ; ynÞ.
The axiomatic analysis of this model is now quite firmly established (see Debreu, 1960; Krantz et al.,

1971; Wakker, 1989) and additive utilities form the basis of many decision analysis techniques (see French,
1993; Keeney and Raiffa, 1976; von Winterfeldt and Edwards, 1986; Wakker, 1989). For recent advances

on this model we refer the reader to Fishburn (1992b), Gonzales (1996, 2000, 2003), Karni and Safra (1998),

K€obberling (2003) and Nakamura (2002).

This central model raises two types of difficulties. First it excludes all relations that would not be complete

or transitive whereas the reasonableness of this hypothesis has been challenged by many authors (see May,

1954; Roy, 1996; Tversky, 1969). Second, its axiomatic analysis raises subtle technical difficulties. When X is

finite (but of arbitrary cardinality), it is well-known (see Scott, 1964) that its characterization implies using a

system of axioms involving a denumerable number of cancellation conditions guaranteeing the existence of
solutions to a system of (finitely many) linear inequalities (Jaffray (1974) extends this approach to sets of

arbitray cardinality). Such an axiom system is hardly interpretable and testable. When X is infinite the

picture changes provided that conditions are imposed in order to guarantee that the structure of X is ‘‘close’’

to the structure ofR and that% behaves consistently in this continuum. This allows to consider only a limited

number of cancellation conditions on%. These necessary conditions however interact with the nonnecessary

structural assumptions imposed on X (e.g. solvability used in Krantz et al. (1971, Chapter 6)), which may

obscure their interpretation and test (see Krantz et al., 1971, Chapter 9; Furkhen and Richter, 1991).

Furthermore, the analysis of the n ¼ 2 case has then to be separated from that of the nP 3 case.
Several authors have forcefully argued in favor of studying conjoint measurement models that would

tolerate intransitive and incomplete binary relations (see Bouyssou and Pirlot, 2002d; Fishburn, 1990a,

1991a,b; May, 1954; Roy, 1996; Roy and Bouyssou, 1993; Tversky, 1969). The ones that we propose here

will allow us to capture nontransitive and/or incomplete binary relations while being rather simple to

analyze from an axiomatic point of view. In order to get a feeling for these various models, it is useful

to envisage the various strategies that are likely to be implemented when comparing objects differing

on several dimensions (see Dahlstrand and Montgomery, 1984; Montgomery, 1977; Montgomery and

Svenson, 1976; Russo and Dosher, 1983; Svenson, 1979; Tversky, 1969).
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Consider two alternatives x and y evaluated on a family of n attributes so that x ¼ ðx1; x2; . . . ; xnÞ and
y ¼ ðy1; y2; . . . ; ynÞ. A first strategy that can be used in order to decide whether or not it can be said that ‘‘x is
at least as good as y’’ consists in trying to measure the ‘‘worth’’ of each alternative on each attribute and

then to combine these evaluations adequately. Abandoning all idea of transitivity and completeness, this

suggests a model in which:
x%y () F ðu1ðx1Þ; u2ðx2Þ; . . . ; unðxnÞ; u1ðy1Þ; u2ðy2Þ; . . . ; unðynÞÞP 0; ð1:2Þ

where ui are real-valued functions on the Xi and F is a real-valued function on

Qn
i¼1 uiðXiÞ2. Additional

properties on F , e.g. its nondecreasingness (resp. nonincreasingness) in its first (resp. last) n arguments, will

give rise to a variety of models implementing this first strategy.

A second strategy relies on the idea of measuring ‘‘preference differences’’ separately on each attri-

bute and then combining these (positive or negative) differences in order to know whether the aggregation of

these differences leads to an advantage for x over y. More formally, this suggests a model in which:
x%y () Gðp1ðx1; y1Þ; p2ðx2; y2Þ; . . . ; pnðxn; ynÞÞP 0; ð1:3Þ

where pi are real-valued functions on X 2

i and G is a real-valued function on
Qn

i¼1 piðX 2
i Þ. Additional

properties on G (e.g. its oddness or its nondecreasingness in each of its arguments) or on pi (e.g. piðxi; xiÞ ¼ 0

or piðxi; yiÞ ¼ �piðyi; xiÞ) will give rise to a variety of models in line with the above strategy.

Of course these two strategies are not incompatible and one may well envisage to use the ‘‘worth’’ of

each alternative on each attribute to measure ‘‘preference differences’’. This suggests a model in which:
x%y () Hð/1ðu1ðx1Þ; u1ðy1ÞÞ;/2ðu2ðx2Þ; u2ðy2ÞÞ; . . . ;/nðunðxnÞ; unðynÞÞÞP 0; ð1:4Þ

where ui are real-valued functions on Xi, /i are real-valued functions on uiðXiÞ2 and H is a real-valued

function on
Qn

i¼1 /iðuiðXiÞ2Þ.
This paper is devoted to the analysis of several variants of (1.2)–(1.4). We shall provide a fairly complete

axiomatic analysis of these models and use them as a general framework allowing to understand the

characteristics and differences between several aggregation models.

It should be noted that the introduction of intransitivities in conjoint measurement models is not new.

Tversky (1969) was one of the first to propose such a model generalizing (1.1), known as the additive

difference model, in which:
x%y ()
Xn

i¼1

UiðuiðxiÞ � uiðyiÞÞP 0; ð1:5Þ
where Ui are increasing and odd functions. This model was axiomatized in Fishburn (1992a). More re-

cently, additive nontransitive models were proposed in Bouyssou (1986), Fishburn (1990a,b, 1991a, 1992c)

and Vind (1991). They are of the following general type:
x%y ()
Xn

i¼1

piðxi; yiÞP 0; ð1:6Þ
where the pi are real-valued functions on X 2
i and may have several additional properties (e.g. piðxi; xiÞ ¼ 0

for all i 2 f1; 2; . . . ; ng and all xi 2 Xi).

Comparing (1.2)–(1.4) with (1.5) or (1.6) shows that the main particularity of our models lies in the use

of a general class of functions instead of just addition and subtraction. This is quite reminiscent of the

extension of (1.1) introduced in Krantz et al. (1971, Chapter 7), known as the decomposable transitive

model, in which:
x%y () F ðu1ðx1Þ; u2ðx2Þ; . . . ; unðxnÞÞP F ðu1ðy1Þ; u2ðy2Þ; . . . ; unðynÞÞ; ð1:7Þ

where F is increasing in all its arguments.
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The use of very general functional forms, instead of additive ones, will greatly facilitate the axiomatic
analysis of our models. It mainly relies on the study of various kinds of traces induced by the preference

relation on coordinates and does not require a detailed analysis of tradeoffs between attributes.

The price to pay for such an extension of the scope of conjoint measurement is that the number of

parameters that would be needed to assess such models is quite high. Furthermore, none of them is likely to

possess any remarkable uniqueness properties. Therefore, although proofs are constructive, these results

will not give direct hints on how to devise assessment procedures. The general idea is to use numerical

representations as guidelines to understand the consequences of a limited number of cancellation condi-

tions, without imposing any transitivity or completeness requirement on the preference relation and any
structural assumptions on the set of objects. They are not studied for their own sake and our results are not

intended to provide clues on how to build them.

With few exceptions, this paper does not contain new results but synthesizes results scattered in

Bouyssou and Pirlot (1999) and Bouyssou and Pirlot (2002a,d,f); Bouyssou et al. (1997). The presentation

of the results is however new, emphasizing the underlying strategy and framework.

We shall suppose throughout the paper that binary relations are defined on countable (i.e. finite or

countably infinite) sets, referring the reader to the original papers for the study of the general case. Con-

trary to what happens with conjoint measurement models involving an addition operation, this restrictive
hypothesis will allow us to skip many technical details while maintaining the spirit of the results in the

general case.

This paper is organized as follows. Section 2 presents some background material: we introduce our

vocabulary concerning binary relations and recall some well-known facts on traces. Section 3 studies binary

relations defined on product sets and introduces various kinds of traces on coordinates. In Section 4 we

investigate models of type (1.2), using marginal traces on levels. Section 5 studies models of type (1.3) using

marginal traces on differences. Section 6 combines these two aspects with the study of models of type (1.4).

A final section discusses the results. Examples and technical details are relegated to Appendices A and B.
In order to make this paper self-contained, we only omit proofs that are elementary. Therefore, given the

variety of models studied, this paper is somewhat long. The reader willing to get a feeling of the results may

skip all proofs and remarks without loss of continuity.
2. Background

2.1. Binary relations

A binary relation % on a set A is a subset of A � A. We write a%b instead of ða; bÞ 2 %. A binary relation

% on A is said to be:

• reflexive if ½a%a
,
• complete if ½a%b or b%a
,
• symmetric if ½a%b
 ) ½b%a
,
• asymmetric if ½a%b
 ) Not½b%a
,
• transitive if ½a%b and b%c
 ) ½a%c
,
• Ferrers if

a%b
and

c%d

9=
; )

a%d
or

c%b;

8<
:
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• semi-transitive if

a%b
and

b%c

9=
; )

a%d
or

d%c;

8<
:

for all a; b; c; d 2 A.
The asymmetric (resp. symmetric) part of % is the binary relation � (resp. �) on A defined letting, for all

a; b 2 A, a � b () ½a%b and Not½b%a

 (resp. a � b () ½a%b and b%a
). A similar convention will hold
when % is subscripted and/or superscripted.

A weak order (resp. an equivalence relation) is a complete and transitive (resp. reflexive, symmetric

and transitive) binary relation. An interval order is a complete and Ferrers binary relation; a semi-order is a

semi-transitive interval order. If% is an equivalence on A, A=% will denote the set of equivalence classes of%

on A.
2.2. Traces of binary relations

The idea that any binary relation generates various reflexive and transitive binary relations called traces

dates back at least to the pioneering work of Luce (1956). The use of traces have proved especially useful in

the study of preference structures tolerating intransitive indifference such as semi-orders or interval orders

(see Aleskerov and Monjardet, 2002; Fishburn, 1985; Pirlot and Vincke, 1997).

Definition 2.1 (Traces of binary relations). Let % be a binary relation on a set A. We associate to % three

binary relations on A, called traces, letting, for all a; b 2 A:

Left trace a%þ b () ½b%c ) a%c
,
Right trace a%� b () ½c%a ) c%b
,
Trace a%� b () ½a%þ b and a%� b
.

Following our conventions, �þ and �þ will denote the symmetric and asymmetric parts of %þ, the same

holding for %� and %
�. Useful connections between % and its traces are summarized below for the ease

of future reference. All of them are straightforward consequences of the preceding definition.

Proposition 2.2 (Properties of traces)

(1) �þ, �� and �� are equivalence relations (reflexive, symmetric and transitive).
(2) %

þ, %� and %
� are reflexive and transitive binary relations.

(3) For all a; b; c; d 2 A:

½a%b; b%� c
 ) a%c; ð2:1Þ

½a%b; c%þ a
 ) c%b; ð2:2Þ

½d%� a; b%� c
 )
a%b ) d%c
and
a � b ) d � c;

8<
: ð2:3Þ

½d �� a; b �� c
 )
a%b () d%c
and
a � b () d � c:

8<
: ð2:4Þ
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The following proposition summarizes a number of well-known facts about traces (see Fishburn, 1985;
Monjardet, 1978; Pirlot and Vincke, 1997; Roubens and Vincke, 1985).

Proposition 2.3 (Completeness of global traces)

(1) %
þ is complete () %

� is complete () % is Ferrers.
(2) %

� is complete () % is Ferrers and semi-transitive.

For a detailed analysis of the rôle of traces in various domains of preference modelling we refer to

Aleskerov and Monjardet (2002), Doignon et al. (1988), Laslier (1997), Monjardet (1978), Pirlot and
Vincke (1997) and Roubens and Vincke (1985).

2.3. General numerical representations

We present here very general numerical representations of binary relations that will serve later as

guidelines. Although the ‘‘results’’ in this section are part of the folklore of binary relations (see Ebert,

1985), we outline their proof, the logic of which being useful in the sequel.

Let % be a binary relation on a countable (i.e. finite or countably infinite) set A. It is clearly always
possible to build a, trivial, numerical representation of % such that:
a%b () Tða; bÞP 0; ðTÞ
where T is a real-valued function on A2 defined letting, for all a; b 2 A:
Tða; bÞ ¼
þ1 if a%b;

�1 otherwise:

	

It is possible to even further specify the trivial numerical representation (T) as shown below.

Proposition 2.4 (Trivial numerical representation). Let % be a binary relation on a countable set A. There is
a real-valued function u on A and a real-valued function F on uðAÞ2 such that, for all a; b 2 A:
a%b () FðuðaÞ; uðbÞÞP 0: ðF0Þ
Proof. The relation �� is an equivalence. Since A is countable (in fact, as soon as the cardinality of A= �� is

not ‘‘too large’’), there is a real-valued function u on A such that, for all a; b 2 A:
a �� b () uðaÞ ¼ uðbÞ: ð2:5Þ
Take any function u satisfying (2.5) and define F letting, for all a; b 2 A:
FðuðaÞ; uðbÞÞ ¼ þ1 if a%b;
�1 otherwise:

	
ð2:6Þ
We have to show that F is well-defined, i.e. that [uðaÞ ¼ uðcÞ and uðbÞ ¼ uðdÞ] implies ½a%b () c%d
.
This follows from (2.4). h

Remark 2.5 (Uniqueness). The reader will have noticed that the above proof shows a little more than the

mere statement of Proposition 2.4. We have in fact shown that there always exists a representation in model

ðF0Þ in which u represents ��. This is by no means necessary however. In fact, since A is countable there is

a one-to-one function v between A and some countable subset of R. Any such one-to-one function v may
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clearly be used instead of a function u representing ��. Since in that case [vðaÞ ¼ vðcÞ and vðbÞ ¼ vðdÞ]
implies [a ¼ c and b ¼ d], using (2.6) always leads to a well-defined function F. This trivial representation

is therefore defiantly irregular (see Roberts, 1979, Chapter 2). Observe finally that any function G assigning

arbitrary nonnegative values to ordered pairs ðuðaÞ; uðbÞÞ such that a%b and arbitrary negative values

otherwise may be used instead of F.

It is not difficult to extend the above trivial representation to the general uncountable case. All that is

required is that the cardinal of A should not be ‘‘too large’’, i.e. there should be enough real numbers to
distinguish elements of A that have to be distinguished. This will be the case as soon as there is a one-to-one

correspondence between A= �� and some subset of R.

We now consider nontrivial numerical representations obtained imposing additional constraints on the

trivial model ðF0Þ.

Proposition 2.6 (General models). The function F in model ðF0Þ can be chosen so that, for all x; y 2 X ,

(1) FðuðxÞ; uðxÞÞP 0 iff % is reflexive (model ðF1Þ).
(2) FðuðxÞ; uðyÞÞ ¼ �FðuðyÞ; uðxÞÞ iff % is complete (model ðF2Þ).
(3) F is increasing in its first argument and decreasing in its second argument iff % is Ferrers and semi-tran-

sitive (model ðF3Þ).
(4) FðuðxÞ; uðyÞÞ ¼ �FðuðyÞ; uðxÞÞ and F is nondecreasing in its first argument and nonincreasing in its

second argument iff % is a semi-order (model ðF4Þ).
(5) FðuðxÞ; uðyÞÞ ¼ �FðuðyÞ; uðxÞÞ and F is increasing in its first argument and decreasing in its second

argument iff % is a weak order (model ðF5Þ). In this case, it is always possible to take
Fða; bÞ ¼ a � b (model ðU0Þ).

Proof. Part 1 is obvious in view of Proposition 2.4.

Part 2. The necessity of completeness is clear. In order to show sufficiency, take any function u satisfying

(2.5) and define F letting, for all a; b 2 A:
FðuðaÞ; uðbÞÞ ¼
þ1 if a � b;
0 if a � b;
�1 otherwise:

8<
: ð2:7Þ
Using the completeness of % and (2.4), it is easy to see that F is well-defined and skew symmetric.

Part 3. The necessity of Ferrers and semi-transitivity is easily established using the properties of F. Let

us, for instance, show that % is semi-transitive. Suppose that a%b and b%c. Hence FðuðaÞ; uðbÞÞP 0 and

FðuðbÞ; uðcÞÞP 0. If uðbÞP uðdÞ then FðuðaÞ; uðdÞÞPFðuðaÞ; uðbÞÞP 0 so that a%d. Otherwise we have

uðdÞ > uðbÞ, which implies FðuðdÞ; uðcÞÞ > FðuðbÞ; uðcÞÞP 0 so that d%c.
In order to show sufficiency, remember from part 2 of Proposition 2.3 that, when % is Ferrers and semi-

transitive, %� is a weak order. Since A is countable, there is a real-valued function u such that, for all

a; b 2 A:
a%� b () uðaÞP uðbÞ: ð2:8Þ

Using any function u satisfying (2.8), define F letting, for all a; b 2 A,
FðuðaÞ; uðbÞÞ ¼
þ expðuðaÞ � uðbÞÞ if a%b;

� expðuðbÞ � uðaÞÞ otherwise:

	
ð2:9Þ
That F is well-defined follows from (2.4). Its monotonicity properties follow from (2.3) and its defi-

nition.
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Part 4. The necessity of completeness, Ferrers and semi-transitivity is easily established. We show suf-
ficiency. Since % is Ferrers and semi-transitive and A is countable, there is a function u satisfying (2.8).

Using any such function u, define F as in (2.7). That F is well-defined and skew symmetric follows from

(2.4), since �� is the symmetric part of %�. The monotonicity properties of F follow from (2.3).

Part 5. Necessity. Suppose that a%b and b%c. Hence FðuðaÞ; uðbÞÞP 0 and FðuðbÞ; uðcÞÞP 0. Since F
is skew symmetric, we know that FðuðcÞ; uðbÞÞ6 0. Using the increasingness of F, FðuðaÞ; uðbÞÞP 0 and

FðuðcÞ; uðbÞÞ6 0 imply uðaÞP uðcÞ. Since FðuðaÞ; uðaÞÞ ¼ 0, because F is skew symmetric, we have

FðuðaÞ; uðcÞÞP 0 so that a%c. Hence, % is transitive.

Sufficiency. Since % is a weak order and A is countable, there is a function u such that, for all a; b 2 A:
a%b () uðaÞP uðbÞ:

Using any such function u, define F letting, for all a; b 2 A, FðuðaÞ; uðbÞÞ ¼ uðaÞ � uðbÞ. The well-defin-

edness of F easily follows from the fact that % is a weak order. h

Remark 2.7 (Uniqueness). A word on the uniqueness of the representations in Proposition 2.6 is in order.

Observe that in parts 1 and 2, any one-to-one function v between A and some countable subset of R may be
used instead of u representing ��. The only difference between the two parts being in the flexibility for the

choice of F.

For parts 3 and 4, we have shown that u may always be chosen so as to represent %�. Again, this is by

no means necessary. Any real-valued function v on A such that, for all, a; b 2 A,
a �� b ) vðaÞ > vðbÞ; ð2:10Þ

may also clearly be used with the same function F as in the above proof.

For part 5, the uniqueness depends on whether one wishes a representation in model ðF5Þ or in model

ðU0Þ. The uniqueness properties of u in model ðU0Þ are well-known. Clearly, model ðF5Þ offers much more

flexibility. Observe that (2.10) is a necessary condition for u to be used in such a representation. It is no

more sufficient however since it might happen that a �� b and a � c. In such a situation, we must guarantee

that uðaÞ ¼ uðbÞ otherwise the increasingness of F would lead to c � b or b � c (depending on whether

uðbÞ < uðaÞ or uðbÞ > uðaÞ) whereas a �� b and a � c imply, using (2.4), b � c.
In all parts, the possible degrees of freedom in the choice of F are obvious.
Again, the extension to the general uncountable case should be clear. For parts 1 and 2, it suffices to

require that there is a one-to-one correspondence between A= �� and some subset of R. For all other parts,

it is necessary and sufficient to require that the weak order %� has a numerical representation (i.e. A must

have a countable order dense subset w.r.t. %�) since the weak order induced by u refines %�.

The numerical representations envisaged so far are summarized in Table 1.
3. Binary relations on product sets

In the rest of this paper, we consider a countable set X ¼
Qn

i¼1 Xi with nP 2. Elements x; y; z; . . . of X will

be interpreted as alternatives evaluated on a set N ¼ f1; 2; . . . ; ng of attributes. A typical binary relation of

X is still denoted as % with � and � as symmetric and asymmetric parts. Again, a similar convention holds

when % is superscripted and/or subscripted. It is useful to interpret % as an ‘‘at least as good as’’ preference

relation between multi-attributed alternatives.

For any nonempty subset J of the set of attributes N , we denote by XJ (resp. X�J ) the set
Q

i2J Xi (resp.Q
i62J Xi). With customary abuse of notation, ðxJ ; y�J Þ will denote the element w 2 X such that wi ¼ xi if i 2 J

and wi ¼ yi otherwise. When J ¼ fig we shall simply write X�i and ðxi; y�iÞ. We say that % is marginally



Table 1

General numerical representations

Models Definition Conditions

ðTÞ a%b () Tða; bÞP 0

m £

ðF0Þ a%b () FðuðaÞ; uðbÞÞP 0

ðF1Þ ðF0Þ with Fða; aÞP 0 refl.

ðF2Þ ðF0Þ with Fða;bÞ ¼ �Fðb; aÞ cpl.

ðF3Þ ðF0Þ with Fð%%;&&Þ Ferrers and semi-transitivity

ðF4Þ ðF2Þ with Fð%;&Þ Semi-order

ðF5Þ ðF2Þ with Fð%%;&&Þ
m Weak order

ðU0Þ a%b () uðaÞP uðbÞ
% means nondecreasing, & means nonincreasing, %% means increasing, && means decreasing, refl. means reflexive, cpl. means

complete.
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complete for i 2 N if ðxi; a�iÞ% ðyi; a�iÞ or ðyi; a�iÞ% ðxi; a�iÞ for all xi; yi 2 Xi and all a�i 2 X�i, i.e. if no

incomparability occurs when comparing alternatives differing only on attribute i 2 N .

3.1. Independence and marginal preferences

In conjoint measurement, one starts with a preference relation % on X . It is then important to investigate

how this information enables to define preference relations on attributes or subsets of attributes. Let J � N
be a nonempty set of attributes. We define the marginal relation %J induced on XJ by % letting, for all

xJ ; yJ 2 XJ :
xJ %J yJ () ðxJ ; z�JÞ% ðyJ ; z�J Þ for all z�J 2 X�J
with asymmetric (resp. symmetric) part �J (resp. �J ). Note that if % is reflexive (resp. transitive), the same

will be true for %J . This is clearly not true for completeness however.
We define two other binary relations induced by % on XJ , letting for all xJ ; yJ 2 XJ ,
xJSJ yJ () ðxJ ; z�J Þ% ðyJ ; z�J Þ for some z�J 2 X�J
and
xJPJ yJ () ðxJ ; z�J Þ � ðyJ ; z�J Þ for some z�J 2 X�J :
Definition 3.1 (Independence and separability). Consider a binary relation % on a set X ¼
Qn

i¼1 Xi and let

J � N be a nonempty subset of attributes. We say that % is:

(1) independent for J if SJ � %J ,
(2) separable for J if PJ is asymmetric.

If % is independent (resp. separable) for all nonempty subsets of N , we say that % is independent (resp.

separable). If % is independent (resp. separable) for all subsets containing a single attribute, we say that % is

weakly independent (resp. weakly separable).

Independence is a classical notion in conjoint measurement. It states that common evaluations on some

attributes do not influence preference. Whereas independence implies weak independence, it is well-know

that the converse is not true (see Wakker, 1989).
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Independence implies separability but not vice versa. Separability is a weakening of independence that
can be motivated considering aggregation models based on ‘‘Max’’ or ‘‘Min’’. It forbids strict reversals of

preference when varying common evaluations on some attribute.

Remark 3.2 (Completeness of %i). Let us observe that when % is complete and independent for i 2 N then

%i is clearly complete. It is not difficult to see that %i is complete if and only if % is marginally complete and

weakly separable for i 2 N . The marginal preference relation %i reflects the comparison of xi and yi when

they are adjoined with the same evaluations on X�i. This does not exploit all the information contained

in %. The marginal traces on levels will do so.

Remark 3.3 (Terminology). Weak independence is called ‘‘weak separability’’ in Wakker (1989). Other

authors (see Blackorby et al., 1978; F€are and Primont, 1981; Mak, 1984) use ‘‘separability’’ instead of

independence and ‘‘weak separability’’ instead of separability.
3.2. Marginal traces on levels

The definitions and results from Section 2.2 clearly apply when % is a binary relation on a product set
X ¼

Qn
i¼1 Xi. Hence, the binary relation % has a left trace (resp. right trace and trace) %þ (resp. %� and %

�)

that is reflexive and transitive.

Consider an attribute i 2 N . Sticking to the notation introduced above, %þ
i (resp. %�

i and %
�
i ) will

denote the marginal preference relation induced on Xi by %
þ (resp. %� and %

�), i.e.
xi%
þ
i yi () ½ðxi; z�iÞ%þ ðyi; z�iÞ for all z�i 2 X�i
;

xi%
�
i yi () ½ðxi; z�iÞ%� ðyi; z�iÞ for all z�i 2 X�i
;

xi%
�
i yi () ½ðxi; z�iÞ%� ðyi; z�iÞ for all z�i 2 X�i
:
Since, by construction, %þ, %� and %
� are reflexive and transitive, the same is true for %þ

i , %
�
i and %

�
i . As

shown in the following lemma, %þ
i (resp. %�

i and %
�
i ), the marginal relation induced on Xi; i 2 N , by the

global trace %þ (resp. %�
i and %

�
i ) can also be usefully interpreted as a marginal trace on levels on attribute

i 2 N .
Lemma 3.4 (Marginal traces on levels induced by traces). For all i 2 N , all xi; yi 2 Xi, all a�i 2 X�i and all
z 2 X :

(1) xi%
þ
i yi () ½ðyi; a�iÞ% z ) ðxi; a�iÞ% z
,

(2) xi%
�
i yi () ½z% ðxi; a�iÞ ) z% ðyi; a�iÞ
,

(3) xi%
�
i yi ()

ðyi; a�iÞ% z ) ðxi; a�iÞ% z
and
z% ðxi; a�iÞ ) z% ðyi; a�iÞ:

8<
:

Proof. We give the proof of part 1, the proof of the other parts being similar. By definition we have:

xi%
þ
i yi () ½ðxi; a�iÞ%þ ðyi; a�iÞ for all a�i 2 X�i
 () ½ðyi; a�iÞ% z ) ðxi; a�iÞ% z for all a�i 2 X�i and all

z 2 X 
. h

Remark 3.5 (Marginal traces on levels and marginal preferences). The above result should clarify the

similarities and differences between the marginal traces on levels %�
i and the marginal preferences %i. They

are both defined on Xi. However marginal traces use all information contained in % in order to compare xi
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with yi including how they compare, when adjoined with the same evaluations on X�i, with every other

alternatives. On the contrary the definition of %i only relies on the comparison between xi with yi when

adjoined with the same evaluations on X�i. No other alternative is involved here.

As before, the symmetric and asymmetric parts of %þ
i are respectively denoted �þ

i and �þ
i , the same

convention applying to %
�
i and %

�
i (although it is clearly possible to define marginal traces on a subset of

attributes other than singletons, we do not envisage this possibility in this paper).

As in Proposition 2.2, there are many interesting connections between marginal traces and %. We list
some of them in the following lemma, leaving its easy proof as an exercise for the reader.

Lemma 3.6 (Properties of marginal traces on levels). For all i 2 N and x; y; z;w 2 X :
½x%y; zi%
þ
i xi
 ) ðzi; x�iÞ%y; ð3:1Þ

½x%y; yi%
�
i wi
 ) x% ðwi; y�iÞ; ð3:2Þ

½zi%�
i xi; yi%

�
i wi
 )

x%y ) ðzi; x�iÞ% ðwi; y�iÞ
and
x � y ) ðzi; x�iÞ � ðwi; y�iÞ;

8<
: ð3:3Þ

½zi ��
i xi; yi ��

i wi for all i 2 N 
 )
x%y () z%w
and
x � y () z � w:

8<
: ð3:4Þ
It is clear that the marginal traces %þ
i , %

�
i and %

�
i need not be complete. Interesting consequences will arise

when this is the case. This is explored in Section 4.
3.3. Marginal traces on differences

Wakker (1988, 1989) has powerfully shown how the consideration of induced relations comparing

‘‘preference differences’’ on each attribute may illuminate the analysis of conjoint measurement models.

We follow the same path in this section.

Given a binary relation % on X , we define the binary relation %
�
i on X 2

i letting, for all xi; yi; zi;wi 2 Xi,
ðxi; yiÞ%�
i ðzi;wiÞ iff ½for all a�i; b�i 2 X�i; ðzi; a�iÞ% ðwi; b�iÞ ) ðxi; a�iÞ% ðyi; b�iÞ
:
Intuitively, if ðxi; yiÞ%�
i ðzi;wiÞ, it seems reasonable to conclude that the preference difference between xi and

yi is not smaller than the preference difference between zi and wi. Notice that, by construction, %�
i is reflexive

and transitive.
Contrary to our intuition concerning preference differences, the definition of %�

i does not imply that the

two ‘‘opposite’’ differences ðxi; yiÞ and ðyi; xiÞ are linked. Henceforth we introduce the binary relation %
��
i on

X 2
i letting, for all xi; yi; zi;wi 2 Xi,
ðxi; yiÞ%��
i ðzi;wiÞ iff ½ðxi; yiÞ%�

i ðzi;wiÞ and ðwi; ziÞ%�
i ðyi; xiÞ
:
It is easy to see that %��
i is reflexive, transitive and reversible, i.e. ðxi; yiÞ%��

i ðzi;wiÞ () ðwi; ziÞ%��
i ðyi; xiÞ.

The relations %�
i and %

��
i both appear to capture the idea of comparison of preference differences be-

tween elements of Xi induced by the relation %. For the sake of easy reference, we note a few useful

connections between %
�
i , %

��
i and % in the following lemma.
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Lemma 3.7 (Properties of marginal traces on differences). For all x; y 2 X and all zi;wi 2 Xi,
% is independent iff ðxi; xiÞ ��
i ðyi; yiÞ for all i 2 N ; ð3:5Þ

½x%y and ðzi;wiÞ%�
i ðxi; yiÞ
 ) ðzi; x�iÞ% ðwi; y�iÞ; ð3:6Þ

½ðzi;wiÞ ��
i ðxi; yiÞ for all i 2 N 
 ) ½x%y () z%w
; ð3:7Þ

½x � y and ðzi;wiÞ%��
i ðxi; yiÞ
 ) ðzi; x�iÞ � ðwi; y�iÞ; ð3:8Þ

½ðzi;wiÞ ���
i ðxi; yiÞ for all i 2 N 
 )

½x%y () z%w

and
½x � y () z � w
:

8<
: ð3:9Þ
Proof. (3.5). It is clear that [% is independent] () [% is independent for N n fig for all i 2 N ]. Observe that
[% is independent for N n fig for all i 2 N ] () [ðxi; a�iÞ% ðxi; b�iÞ () ðyi; a�iÞ% ðyi; b�iÞ for all xi; yi 2 Xi

and all a�i; b�i 2 X�i] () [ðxi; xiÞ ��
i ðyi; yiÞ for all xi; yi 2 Xi].

(3.6) is obvious from the definition of %�
i . By induction, (3.7) is immediate.

(3.8). Using (3.6), we know that ðzi; x�iÞ% ðwi; y�iÞ. Suppose that ðwi; y�iÞ% ðzi; x�iÞ. Since ðzi;wiÞ%��
i ðxi; yiÞ

implies ðyi; xiÞ%�
i ðwi; ziÞ, (3.6) implies y%x, a contradiction. (3.9) is immediate from (3.8). h

It is clear that the marginal traces on differences %�
i and %

��
i need not be complete. Interesting conse-

quences will arise when this is the case. This is explored in Section 5.
3.4. Relations between traces on levels and traces on differences

All the marginal traces envisaged up to this point (%þ
i , %

�
i , %

�
i , %

�
i and %

��
i ) are induced by the same

relation %. Clearly they are not unrelated. The following lemma shows that they relate exactly as could be
expected.

Lemma 3.8 (Relations between marginal traces). For all i 2 N and all xi; yi 2 Xi,

(1) xi%
þ
i yi () ½ðxi;wiÞ%�

i ðyi;wiÞ for all wi 2 Xi
,
(2) xi%

�
i yi () ½ðwi; yiÞ%�

i ðwi; xiÞ for all wi 2 Xi
,
(3) xi%

�
i yi () ½ðxi;wiÞ%��

i ðyi;wiÞ for all wi 2 Xi
,
(4) ½‘i%þ

i xi and ðxi; yiÞ%�
i ðzi;wiÞ
 ) ð‘i; yiÞ%�

i ðzi;wiÞ,
(5) ½yi%

�
i ‘i and ðxi; yiÞ%�

i ðzi;wiÞ
 ) ðxi; ‘iÞ%�
i ðzi;wiÞ,

(6) ½zi%þ
i ‘i and ðxi; yiÞ%�

i ðzi;wiÞ
 ) ðxi; yiÞ%�
i ð‘i;wiÞ,

(7) ½‘i%�
i wi and ðxi; yiÞ%�

i ðzi;wiÞ
 ) ðxi; yiÞ%�
i ðzi; ‘iÞ,

(8) ½xi �þ
i zi and yi ��

i wi
 ) ðxi; yiÞ ��
i ðzi;wiÞ,

(9) ½xi ��
i zi and yi ��

i wi
 ) ðxi; yiÞ ���
i ðzi;wiÞ,

Proof. Part 1. By definition, ½xi%
þ
i yi
 () ½ðyi; a�iÞ% z ) ðxi; a�iÞ% z
 () ½ðxi; ziÞ%�

i ðyi; ziÞ for all zi 2 Xi
.
The proof of part 2 is similar. Part 3 easily follows from parts 1 and 2.

Part 4. By definition, ðxi; yiÞ%�
i ðzi;wiÞ iff ½ðzi; a�iÞ% ðwi; b�iÞ ) ðxi; a�iÞ% ðyi; b�iÞ
. Since ‘i%

þ
i xi,

ðxi; a�iÞ% ðyi; b�iÞ ) ð‘i; a�iÞ% ðyi; b�iÞ. Therefore ð‘i; yiÞ%�
i ðzi;wiÞ. The proof of parts 5, 6 and 7 is similar.

Part 8 easily follows from parts 4, 5, 6, 7 since %
�
i is reflexive. Part 9 is immediate from part 8. h
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3.5. Trivial numerical representations on product sets

Arbitrary binary relations on product sets have trivial numerical representations of many different kinds

(see Bouyssou and Pirlot, 2002a,d,f). We present three of them below that will be easily compared with the

general representations introduced above. We often abuse notation in the sequel, writing ½uiðxiÞ
 instead of

ðu1ðx1Þ; u2ðx2Þ; . . . ; unðxnÞÞ. This should not cause confusion.

Proposition 3.9 (Trivial representations on product sets). Let % be a binary relation on a countable set
X ¼

Qn
i¼1 Xi.

(1) There are real-valued functions ui on Xi and a real-valued function F on ½
Qn

i¼1 uiðXiÞ
2 such that, for all
x; y 2 X ,

x%y () F ð½uiðxiÞ
; ½uiðyiÞ
ÞP 0: ðL0Þ
(2) There are real-valued functions pi on X 2

i and a real-valued function G on
Qn

i¼1 piðX 2
i Þ such that, for all

x; y 2 X ,

x%y () Gð½piðxi; yiÞ
ÞP 0: ðD0Þ
(3) There is a real-valued function ui on Xi, a real-valued function /i on uiðXiÞ2 and a real-valued function H onQn

i¼1 /iðuiðXiÞ2Þ such that, for all x; y 2 X ,

x%y () Hð½/iðuiðxiÞ; uiðyiÞÞ
ÞP 0: ðL0D0Þ
Proof. Part 1. Let i 2 N . By construction, ��
i is an equivalence being a reflexive, symmetric and transitive

binary relation. Since Xi is countable, we know that there is a real-valued function ui on Xi such that, for all

xi; yi 2 Xi:
xi ��
i yi () uðxiÞ ¼ uiðyiÞ: ð3:10Þ
On each i 2 N , take any function ui satisfying (3.10). Define F on ½
Qn

i¼1 uiðXiÞ
2 letting:
F ð½uiðxiÞ
; ½uiðyiÞ
Þ ¼
þ1 if x%y;
�1 otherwise:

	
ð3:11Þ
The well-definedness of F follows from (3.4).

Part 2. Let i 2 N . By construction, ���
i is an equivalence being a reflexive, symmetric and transitive

binary relation. Since Xi is countable, we know that there is a real-valued function pi on X 2
i such that, for all

xi; yi; zi;wi 2 Xi:
ðxi; yiÞ ���
i ðzi;wiÞ () piðxi; yiÞ ¼ piðzi;wiÞ: ð3:12Þ
On each i 2 N , take any function pi satisfying (3.12). Define G on
Qn

i¼1 piðX 2
i Þ letting:
Gð½piðxi; yiÞ
Þ ¼
þ1 if x%y;
�1 otherwise:

	
ð3:13Þ
Using (3.9), it is easy to show that G is well-defined.

Part 3. Take any function ui satisfying (3.10) and any function pi satisfying (3.12). Define /i on uiðXiÞ2
letting, for all xi; yi 2 Xi,
/iðuiðxiÞ; uiðyiÞÞ ¼ piðxi; yiÞ: ð3:14Þ
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Let us show that /i is well-defined i.e. that uiðxiÞ ¼ uiðziÞ and uiðyiÞ ¼ uiðwiÞ imply piðxi; yiÞ ¼ piðzi;wiÞ. By
construction, we have xi ��

i zi and yi ��
i wi so that, by part 9 of Lemma 3.8, ðxi; yiÞ ���

i ðzi;wiÞ. Therefore
we have piðxi; yiÞ ¼ piðzi;wiÞ, as required.

Define H on
Qn

i¼1 /iðuiðXiÞ; uiðXiÞÞ letting:
Table

Trivia

Mo

ðL0Þ
m
ðD0
m
ðL0D
Hð½/iðuiðxiÞ; uiðyiÞÞ
Þ ¼
þ1 if x%y;
�1 otherwise:

	
ð3:15Þ
Using (3.7), it is easy to show that H is well-defined. h

Remark 3.10 (Uniqueness). As was the case in Section 2.3, these various trivial representations are defiantly

irregular. A word on uniqueness may clarify things and avoid misunderstandings.
Consider first model ðL0Þ. Since Xi is countable, consider any one-to-one correspondence vi between Xi

and some countable subset of R. Any such correspondence on each attribute may be used instead of the

functions ui representing ��
i used in the above proof. Clearly any F assigning arbitrary nonnegative values

to 2n-tuples ð½uiðxiÞ
; ½uiðyiÞ
Þ such that x%y and arbitrary negative values otherwise is an acceptable choice.

In model ðD0Þ any one-to-one function qi between X 2
i and some countable subset of R may clearly be

used instead of the functions pi representing ���
i used in the above proof. Notice that, in the particular case

in which, for all i 2 N and all xi; yi 2 Xi, ðxi; xiÞ ���
i ðyi; yiÞ, it is always possible to use a skew symmetric

function qi (i.e. qiðxi; yiÞ ¼ �qiðyi; xiÞ for all xi; yi 2 Xi) on each attribute. Clearly any function G assigning
arbitrary nonnegative values to n-tuples ½piðxi; yiÞ
 such that x%y and arbitrary negative values otherwise,

is an acceptable choice.

If possible, the representation is even more irregular in model ðL0D0Þ. Any one-to-one correspondence vi

between Xi and some countable subset of R may be used instead of ui representing ��
i used in the above

proof. Furthermore any one-to-one correspondence ui between viðXiÞ2 and some countable subset of Rmay

be used instead of /i representing ���
i as done in the above proof. Note, in particular, that it is always

possible to choose ui in such a way that it is increasing in its first argument and decreasing in its second

argument. Furthermore, as above, if, for all i 2 N and all xi; yi 2 Xi, ðxi; xiÞ ���
i ðyi; yiÞ it is always possible to

choose a skew symmetric representation ui (i.e. uiðuiðxiÞ; uiðyiÞÞ ¼ �uiðuiðyiÞ; uiðxiÞÞ). Again, any function H
assigning arbitrary nonnegative values to n-tuples ½/iðuiðxiÞ; uiðyiÞÞ
 such that x%y and arbitrary negative

values otherwise, is an acceptable choice.

Remark 3.11 (Extension to the general case). The above results easily extend to the general uncountable

case. In each case, it suffices to require that there are enough real numbers to distinguish the elements that

have to be distinguished. This amounts to requiring for model ðD0Þ that there is a one-to-one corre-

spondence between X 2
i = ���

i and some subset of R. For the other two models, the, stronger, requirement
that there is a one-to-one correspondence between Xi= ��

i and some subset of R is clearly necessary and

sufficient.

We summarize the various trivial models envisaged to this point in Table 2.
2

l numerical representations on product sets

dels Definition

x%y () F ð½uiðxiÞ
; ½uiðyiÞ
ÞP 0

Þ x%y () Gð½piðxi; yiÞ
ÞP 0

0Þ x%y () Hð½/iðuiðxiÞ; uiðyiÞÞ
ÞP 0
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Our strategy in the sequel is quite similar to the one used in Section 2.3. We shall start with each one of
the three trivial models ðL0Þ, ðD0Þ or ðL0D0Þ and study the consequences of imposing additional constraints

on these models. We start with model ðL0Þ.
4. Models using marginal traces on levels 1

4.1. Complete marginal traces on levels

As was the case with the Ferrers and semi-transitivity conditions when studying traces, we envisage here

conditions that will guarantee that marginal traces on levels are complete and, hence, weak orders. As with

interval orders and semi-orders, these conditions will prove useful to analyze the underlying structures and

to build numerical representations.

Definition 4.1 (Conditions AC1, AC2 and AC3). Let % be a binary relation on a set X ¼
Qn

i¼1 Xi. For i 2 N ,

this relation is said to satisfy:

AC1i if
1 Th
x%y
and

z%w

9=
; )

ðzi; x�iÞ%y
or

ðxi; z�iÞ%w;

8<
:

AC2i if
x%y
and

z%w

9=
; )

x% ðwi; y�iÞ
or

z% ðyi;w�iÞ;

8<
:

AC3i if
z% ðxi; a�iÞ
and

ðxi; b�iÞ%y

9=
; )

z% ðwi; a�iÞ
or

ðwi; b�iÞ%y

8<
:

for all x; y; z;w 2 X , all a�i; b�i 2 X�i and all xi;wi 2 Xi.

We say that % satisfies AC1 (resp. AC2, AC3) if it satisfies AC1i (resp. AC2i, AC3i) for all i 2 N . We
sometimes write AC123 as shorthand for AC1, AC2 and AC3.

These three conditions are transparent variations on the theme of the Ferrers (AC1 and AC2) and semi-

transitivity (AC3) conditions that are made possible by the product structure of X . The rationale for the

name ‘‘AC’’ is that these conditions are ‘‘intrA-attribute Cancellation’’ conditions.

Condition AC1i suggests that the elements of Xi (instead of the elements of X had the original Ferrers

condition been invoked) can be linearly ordered considering ‘‘upward dominance’’: if xi ‘‘upward domi-

nates’’ zi then ðzi; c�iÞ%w entails ðxi; c�iÞ%w. Condition AC2i has a similar interpretation considering now

‘‘downward dominance’’. Condition AC3i ensures that the linear arrangements of the elements of Xi

obtained considering upward and downward dominance are not incompatible.
is section is based on Bouyssou and Pirlot (2002f).
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Conditions AC1, AC2 and AC3 were first introduced in Bouyssou and Pirlot (1999), Bouyssou et al.
(1997) and later used in Greco et al. (2002). The strong links between AC1, AC2, AC3 and marginal traces

are noted in the following:
Lemma 4.2 (Completeness of marginal traces on levels). We have:

(1) %
þ
i is complete iff AC1i holds,

(2) %
�
i is complete iff AC2i holds,

(3) ½Not½xi%
þ
i yi
 ) yi%

�
i xi
 iff AC3i holds,

(4) %
�
i is complete iff AC1i;AC2i and AC3i hold,

(5) For a binary relation % on X ¼
Qn

i¼1 Xi, completeness, AC1i;AC2i and AC3i are independent conditions.

Proof. Part 1 is proved observing that the negation of AC1i is equivalent to the negation of the completeness
of %þ

i . The proof of part 2 is similar.

Part 3. Suppose that Not½xi%
þ
i yi
 so that z% ðxi; a�iÞ and Not½z% ðyi; a�iÞ
, for some z 2 X and some

a�i 2 X�i. If ðxi; b�iÞ%w then AC3i implies ðyi; b�iÞ%w or z% ðyi; a�iÞ. Since, by hypothesis, Not½z% ðyi; a�iÞ
,
we must have ðyi; b�iÞ%w, so that yi%

�
i xi. The reverse implication is proved observing that the negation of

AC3i is equivalent to Not½yi%
þ
i xi
 and Not½xi%

�
i yi
 for some xi; yi 2 Xi. Part 4 immediately results from parts

1, 2 and 3.

Part 5: see Examples A.1–A.3 in Appendix A.1. h

Comparing Lemma 4.2 with Proposition 2.3 shows an important difference between traces and marginal

traces on levels: in the latter case, the right trace may be complete without implying the completeness of the

left trace. Hence, the use of three conditions (AC1, AC2 and AC3) when studying marginal traces on levels

instead of the two classical conditions (Ferrers and semi-transitivity) used when studying traces.

The combination of our three conditions (AC1, AC2 and AC3) implies that the marginal traces on levels

induced by % are weak orders. Unsurprisingly, this implies that marginal relations %i do have special

properties even when they differ from marginal traces (which is the general case). We summarize them in the

following:
Proposition 4.3 (Properties of marginal preferences)

(1) If % is reflexive and either AC1i or AC2i holds then % is marginally complete and weakly separable for
i 2 N .

(2) If % is reflexive and either AC1i or AC2i holds then %i is an interval order.
(3) If, in addition, % satisfies AC3i then %i is a semi-order.

Proof. Part 1. We give the proof using AC1i, the proof using AC2i being similar. Using the reflexivity of %,
we know that ðxi; a�iÞ% ðxi; a�iÞ and ðyi; a�iÞ% ðyi; a�iÞ. Since AC1i holds, %

þ
i is complete so that xi%

þ
i yi or

yi%
þ
i xi. If xi%

þ
i yi then, using (3.1), we have ðxi; a�iÞ% ðyi; a�iÞ. Similarly if yi%

þ
i xi then ðyi; a�iÞ% ðxi; a�iÞ.

Hence, % is marginally complete for i 2 N .

Suppose now that % is not weakly separable for i 2 N . Then we have ðxi; a�iÞ � ðyi; a�iÞ and

ðyi; b�iÞ � ðxi; b�iÞ, for some xi; yi 2 Xi and some a�i; b�i 2 X�i. Since % is reflexive, we have ðyi; a�iÞ% ðyi; a�iÞ
and ðxi; b�iÞ% ðxi; b�iÞ. This would imply Not½xi%

þ
i yi
 and Not½yi%

þ
i xi
, violating AC1i. Hence, % is weakly

separable for i 2 N .

Part 2. We know from part 1 that % is marginally complete and weakly separable for i 2 N . Hence, %i is
complete. It remains to prove that %i is Ferrers. Suppose that xi%i yi and zi%i wi. Since AC1i holds, we know

that either xi%
þ
i zi or zi%

þ
i xi. If xi%

þ
i zi, zi%i wi implies, using the definition of %i and part 1 of Lemma 3.4,

xi%i wi. Similarly if zi%
þ
i xi, xi%i yi implies zi%i yi. Hence, %i is Ferrers. The proof using AC2i is similar.
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Part 3. In view of part 2 above, all we have to show is that %i is semi-transitive. Suppose that xi%i yi and
yi%i zi. Using AC1i, we know that either wi%

þ
i yi or yi �þ

i wi. If wi%
þ
i yi, yi%i zi implies, using the definition of

%i and part 1 of Lemma 3.4, yi%i zi. Suppose now that yi �þ
i wi. Using AC3i and part 3 of Lemma 4.2, we

know that wi%
�
i yi. Using the definition of %i and part 2 of Lemma 3.4, xi%i yi and wi%

�
i yi imply xi%i wi.

Hence, %i is semi-transitive. The proof using AC2i is similar. h

4.2. Strict responsiveness to traces on levels

Keeping in mind the classical constant threshold numerical representation for finite semi-orders (see
Pirlot and Vincke, 1997; Scott and Suppes, 1958), it is clear that, in general, in a semi-order we may have

x%y, y �� z and x � z. Hence, % may not be strictly responsive to �� even when % and %
� are complete.

Indeed, it is easy to see that a semi-order for which
½x%y and y �� z
 ) x � z; ð4:1Þ

must be a weak order.

Considering marginal traces on levels, it is now possible to envisage binary relations that are strictly

responsive to each of their marginal traces without implying that they are (semi-)transitive or Ferrers.

Definition 4.4 (Conditions TAC1, TAC2). We say that % satisfies:

TAC1i if
ðxi; a�iÞ%y

and

y% ðzi; a�iÞ
and

ðzi; b�iÞ%w

9>>>>>>=
>>>>>>;

) ðxi; b�iÞ%w;
TAC2i if
ðxi; a�iÞ%y

and

y% ðz�i; a�iÞ
and

w% ðxi; b�iÞ

9>>>>>>=
>>>>>>;

) w% ðzi; b�iÞ
for all xi; zi 2 Xi, all a�i; b�i 2 X�i and all y;w 2 X .

We say that % satisfies TAC1 (resp. TAC2) if it satisfies TAC1i (resp. TAC2i) for all i 2 N . We sometimes

write TAC12 instead of TAC1 and TAC2.
The first two conditions in the premise of TAC1i and TAC2i (the rationale for the names being that TAC1

and TAC2 are ‘‘intrA-attribute Cancellation’’ involving Three conditions in their premise) suggest that the

level xi is not worse than the level zi. TAC1i (resp. TAC2i) then implies than xi should upward dominate (resp.

downward dominate) zi.

Lemma 4.5 (Strict responsiveness to marginal traces on levels). If % is a complete binary relation on
X ¼

Qn
i¼1 Xi then:

(1) TAC1i ) ½AC1i and AC3i
.
(2) TAC2i ) ½AC2i and AC3i
.
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(3) TAC1i is equivalent to the completeness of %þ
i and the following condition:

½x%y and zi �þ
i xi
 ) ðzi; x�iÞ � y: ð4:2Þ

(4) TAC2i is equivalent to the completeness of %�
i and the following condition:

½x%y and yi ��
i wi
 ) x � ðwi; y�iÞ: ð4:3Þ

(5) If TAC1i or TAC2i hold then % is independent for fig and %i is a weak-order. Furthermore when TAC12i

holds then %i ¼ %
�
i .

(6) In the class of complete relations, TAC1 and TAC2 are independent conditions.
(7) There are weakly independent semi-orders verifying TAC1 and TAC2 that are not weak orders.

Proof. Part 1. Let us first show that when % is complete, TAC1i ) AC1i. Suppose that AC1i is violated so

that ðxi; a�iÞ%y, ðzi; b�iÞ%w, Not½ðzi; a�iÞ%y
 and Not½ðxi; b�iÞ%w
. Since % is complete, we know that

y% ðzi; a�iÞ. Using TAC1i, ðxi; a�iÞ%y, y% ðzi; a�iÞ and ðzi; b�iÞ%w imply ðxi; b�iÞ%w, a contradiction. Hence

AC1i holds and %
þ
i is complete.

Similarly suppose that AC3i is violated so that z% ðxi; a�iÞ, ðxi; b�iÞ%y, Not½z% ðwi; a�iÞ
 and

Not½ðwi; b�iÞ%y
. Since % is complete, we know that ðwi; a�iÞ% z. Using TAC1i, ðwi; a�iÞ% z, z% ðxi; a�iÞ and
ðxi; b�iÞ%y imply ðwi; b�iÞ%y, a contradiction. The proof of part 2 is similar.

Part 3. ½)
. We know from part 1 that AC1i holds so that %þ
i is complete. Suppose now, in contradiction

with (4.2) that x%y, zi �þ
i xi and y% ðzi; x�iÞ. We know that Not½xi%

þ
i zi
, so that ðzi; a�iÞ%w and

w � ðxi; a�iÞ, for some w 2 X and some a�i 2 X�i. Using TAC1i, x%y, y% ðzi; x�iÞ and ðzi; a�iÞ%w imply

ðxi; a�iÞ%w, a contradiction.

½(
. Suppose that TAC1i is violated so that ðxi; a�iÞ%y, y% ðzi; a�iÞ ðzi; b�iÞ%w and w � ðxi; b�iÞ. This
implies Not½xi%

þ
i zi
. Since %

þ
i is complete, we have zi �þ

i xi. Using (4.2), ðxi; a�iÞ%y and zi �þ
i xi would

imply ðzi; a�iÞ � y, a contradiction.

The proof of part 4 is similar.

Part 5. We give the proof using TAC1i, the proof using TAC2i being similar. Suppose that ðxi; a�iÞ% ðyi; a�iÞ
and Not½ðxi; b�iÞ% ðyi; b�iÞ
, for some xi; yi 2 Xi and some a�i; b�i 2 X�i. Since % is complete, we know that

ðyi; b�iÞ% ðyi; b�iÞ. Thus, since we know from part 1 that%þ
i is complete, we have yi �þ

i xi. Using (4.2), yi �þ
i xi

and ðxi; a�iÞ% ðyi; a�iÞ would imply ðyi; a�iÞ � ðyi; a�iÞ, a contradiction. Hence, % is independent for fig.
Using the reflexivity of %, and (3.1), we have: xi%

þ
i yi ) xi%i yi. Let us show that xi �þ

i yi ) xi �i yi,

which will complete the proof since %
þ
i is complete. Suppose that xi �þ

i yi. Since % is reflexive, we have

ðyi; a�iÞ% ðyi; a�iÞ for all a�i 2 X�i. Using (4.2), we obtain ðxi; a�iÞ � ðyi; a�iÞ for all a�i 2 X�i. We thus have

xi �i yi. Note that when both TAC1i and TAC2i hold, the above reasoning shows that %�
i ¼ %i.

Parts 6 and 7: see Examples A.4 and A.5 in Appendix A.1. h

As soon as % is complete, the conjunction of TAC1i and TAC2i is therefore exactly what is needed to

ensure the strict responsiveness of % with respect to ��
i . It also implies that % is independent for fig and

that %i is a weak order that is identical to %
�
i . It does not imply however that % is (semi-)transitive or

Ferrers. Using (4.2) and (4.3) will facilitate the test of TAC1i and TAC2i.

4.3. Marginal traces on levels and numerical representations

4.3.1. Marginal traces and numerical representations

In model ðL0Þ, the rôle of ui is merely to attach a number to each equivalence class of Xi= ��
i while F

passively recodes as þ1�s and �1�s the presence or absence of % for every possible combination of elements

of Xi= ��
i . Clearly, as was the case in Section 2.3, the situation changes as soon as additional properties

are imposed on F .
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Starting from the trivial model ðL0Þ in which:
Table

Model

ðL0Þ
ðL1Þ
ðL2Þ

ðL3Þ
ðL4Þ

ðL5Þ
ðL6Þ

ðL7Þ
ðL8Þ

Fig. 1

ments.
x%y () F ð½uiðxiÞ
; ½uiðyiÞ
ÞP 0;
we envisage:

• ðL1Þ adding to ðL0Þ the fact that F ð½uiðxiÞ
; ½uiðxiÞ
ÞP 0,

• ðL2Þ adding to ðL1Þ the fact that F ð½uiðxiÞ
; ½uiðyiÞ
Þ ¼ �F ð½uiðyiÞ
; ½uiðxiÞ
Þ.

Furthermore, in each of ðL0Þ, ðL1Þ and ðL2Þ, we envisage here the consequences of supposing that F is

nondecreasing (resp. increasing) in its first n arguments and nonincreasing (resp. decreasing) in its last n
arguments. These eight models are defined in Table 3.

The implications between these various models are clear from their definitions. They are summarized in

Fig. 1.

Lemma 4.6 (Necessary conditions)

(1) Model ðL1Þ implies that % is reflexive,
(2) Model ðL2Þ implies that % is complete,
(3) Model ðL3Þ implies AC1, AC2, AC3,
(4) Model ðL8Þ implies TAC1 and TAC2.

Proof. Parts 1 and 2 are obvious.

Part 3. The fact that AC1, AC2 and AC3 hold is easily shown using the properties of F . We take the case of

AC3. Suppose that ðxi; a�iÞ%y and w% ðxi; b�iÞ so that, abusing notation, F ð½uiðxiÞ; ðujðajÞÞj6¼i
; ½uiðyiÞ
ÞP 0

and F ð½uiðwiÞ
; ½uiðxiÞ; ðujðbjÞj 6¼iÞ
ÞP 0.
3

s involving traces on levels

x%y () F ð½uiðxiÞ
; ½uiðyiÞ
ÞP 0

ðL0Þ with F ð½uiðxiÞ
; ½uiðxiÞ
ÞP 0

ðL0Þ with F ð½uiðxiÞ
; ½uiðyiÞ
Þ ¼ �F ð½uiðyiÞ
; ½uiðxiÞ
Þ

ðL0Þ with F nondecreasing, nonincreasing

ðL0Þ with F increasing, decreasing

ðL1Þ with F nondecreasing, nonincreasing

ðL1Þ with F increasing, decreasing

ðL2Þ with F nondecreasing, nonincreasing

ðL2Þ with F increasing, decreasing

. Implication between models involving traces on levels. ð%%;&&Þ: increasing (resp. decreasing) in first (resp. last) n argu-

ð%;&Þ: nondecreasing (resp. nonincreasing) in first (resp. last) n arguments.
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If uiðziÞ > uiðxiÞ then F ð½uiðziÞ; ðujðajÞj 6¼iÞ
; ½uiðyiÞ
ÞP 0 so that ðzi; a�iÞ%y. Otherwise uiðxiÞP uiðziÞ leads
to F ð½uiðwiÞ
; ½uiðziÞ; ðujðbjÞj 6¼iÞ
ÞP 0 so that w% ðzi; b�iÞ.

Part 4. Suppose that ðxi; a�iÞ%y, y% ðzi; a�iÞ, ðzi; b�iÞ%w and Not½ðxi; b�iÞ%w
. Using the increasingness

of F in its first n arguments, the last two conditions imply that uiðziÞ > uiðxiÞ. But ðxi; a�iÞ%y and

uiðziÞ > uiðxiÞ imply ðzi; a�iÞ � y, a contradiction. Hence the necessity of TAC1. The necessity is TAC2
is proved similarly. h

We are now in position to characterize all our models involving traces on levels.

Theorem 4.7 (Models using traces on levels). Let % be a binary relation on a countable set X ¼
Qn

i¼1 Xi.

(1) Model ðL1Þ holds iff % is reflexive.
(2) Model ðL2Þ holds iff % is complete.
(3) Model ðL4Þ holds iff % satisfies AC1, AC2 and AC3.
(4) Model ðL6Þ holds iff % is reflexive and satisfies AC1, AC2 and AC3.
(5) Model ðL7Þ holds iff % is complete and satisfies AC1, AC2 and AC3.
(6) Model ðL8Þ holds iff % is complete and satisfies TAC1 and TAC2.

Proof. For all parts, necessity results from Lemma 4.6 and the implications between our models. We show

sufficiency.

Part 1 is immediate from part 1 of Proposition 3.9.
Part 2. Take, on each i 2 N , a function ui satisfying (3.10) and define F on ½

Qn
i¼1 uiðXiÞ
2 letting:
F ð½uiðxiÞ
; ½uiðyiÞ
Þ ¼
þ1 if x � y;
0 if x � y;
�1 otherwise:

8<
: ð4:4Þ
The well-definedness of F follows from (3.4).

Part 3. Since AC1, AC2 and AC3 hold, we know from part 4 of Lemma 4.2 that %�
i is a weak order. Since

Xi is countable, there is a real-valued function ui on Xi such that, for all xi; yi 2 Xi:
xi%
�
i yi () uiðxiÞP uiðyiÞ: ð4:5Þ
Take, on each i 2 N , a function ui satisfying (4.5) and define F on ½
Qn

i¼1 uiðXiÞ
2 letting:
F ð½uiðxiÞ
; ½uiðyiÞ
 ¼
þ exp

Pn
i¼1 ðuiðxiÞ � uiðyiÞÞ

� 

if x%y;

� exp
Pn

i¼1 ðuiðyiÞ � uiðxiÞÞ
� 


otherwise:

	
ð4:6Þ
The well-definedness of F results from (3.4). The monotonicity properties of F follow from (3.3) and its

definition. The proof of part 4 is immediate from part 3.
Part 5. Take, on each i 2 N , a function ui satisfying (4.5) and define F on ½

Qn
i¼1 uiðXiÞ
2 letting:
F ð½uiðxiÞ
; ½uiðyiÞ
Þ ¼
þ exp

Pn
i¼1 ðuiðxiÞ � uiðyiÞÞ

� 

if x � y;

0 if x � y;
� exp

Pn
i¼1 ðuiðyiÞ � uiðxiÞÞ

� 

otherwise:

8<
: ð4:7Þ
The well-definedness of F results from (3.4). It is skew symmetric by construction since % is complete. Let
us show that F is nondecreasing in its first n arguments. Suppose that uiðziÞ > uiðxiÞ so that zi ��

i xi. If x � y,
we know, using (3.3), that ðzi; x�iÞ � y and the conclusion follows from the definition of F . If x � y, we
have, using (3.3), ðzi; x�iÞ%y and the conclusion follows from the definition of F . If Not½x%y
 we have either
ðzi; x�iÞ � y, ðzi; x�iÞ � y, or Not½ðzi; x�iÞ%y
. In either case, the conclusion follows from the definition of F .
The proof that F is nonincreasing in its last n argument is similar and is omitted.
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Part 6. In view of the proof of part 5 above, since TAC1 and TAC2 imply AC1, AC2 and AC3 when % is
complete, sufficiency follows from Lemma 4.5. h

Corollary 4.8 (Links between models)

(1) Models ðL4Þ and ðL3Þ are equivalent.
(2) Models ðL6Þ and ðL5Þ are equivalent.
(3) Model ðL7Þ ) Model ðL6Þ.

Proof. All parts directly results from Lemma 4.6 and Theorem 4.7. h

4.3.2. Remarks

Remark 4.9. A somewhat weaker form (using nondecreasingness and nonincreasingness) of part 4 of

Theorem 4.7 was noted in Greco et al. (2002) using our conditions AC1, AC2 and AC3.

Remark 4.10 (Skew symmetry and the rôle of 0). It should be observed that increasingness and nonde-

creasingness are equivalent in our models except in the case of a ‘‘skew symmetric’’ function F (i.e. such
that F ð½uiðxiÞ
; ½uiðyiÞ
Þ ¼ �F ð½uiðyiÞ
; ½uiðxiÞ
Þ). When F is skew symmetric, the value ‘‘0’’ plays a special rôle.

This leads to distinguish the increasing case from the nondecreasing one, as in Proposition 2.6 with semi-

orders and weak orders. This will often be the case below.

Remark 4.11 (Uniqueness). It should be clear that the numerical representations envisaged in this section

(see Theorem 4.7) do not possess any remarkable uniqueness properties. It is not difficult however to

analyze them. We take the case of model ðL4Þ.

Our proof shows that it is always possible to use functions ui such that:
xi%
�
i yi () uiðxiÞP uiðyiÞ: ð4:8Þ
This defines what could be called a regular representation of ðL4Þ. From the proof of Theorem 4.7, it is clear

that any ui satisfying (4.8) may be used, i.e. we may apply, independently on each attribute, any increasing

transformation to the functions ui without altering the representation.

Other choices for ui are possible however. Let us show that any function ui such that:
xi ��
i yi ) uiðxiÞ > uiðyiÞ; ð4:9Þ
can be used in a representation of model ðL4Þ.
The necessity of (4.9) is clear since xi ��

i yi implies either xi �þ
i yi or xi ��

i yi. In the first case, we know

that ðxi; a�iÞ% z and Not½ðyi; a�iÞ% z
, for some z 2 X and some a�i 2 X�i. In the second case, we obtain

w% ðyi; b�iÞ and Not½w% ðxi; b�iÞ
, for some w 2 X and some b�i 2 X�i. Using the increasingness of F , either
case implies uiðxiÞ > uiðyiÞ.

Conversely, it is clear that if ui satisfies (4.9) then
uiðxiÞ ¼ uiðyiÞ ) xi ��
i yi; ð4:10Þ
so that defining F using (4.6) as in the proof of Theorem 4.7 leads to a well-defined function being

increasing in its first n arguments and decreasing in its last n arguments.

It should be noted that any nonnegative (resp. negative) real-valued function f (resp. g) on R2n that is

increasing in its first n arguments and decreasing in its last n arguments when restricted to ½
Qn

i¼1 uiðXiÞ
2 may
be used to define F letting F ð½uiðxiÞ
; ½uiðyiÞ
Þ ¼ f ð½uiðxiÞ
; ½uiðyiÞ
Þ if x%y and F ð½uiðxiÞ
; ½uiðyiÞ
Þ ¼
gð½uiðxiÞ
; ½uiðyiÞ
Þ otherwise. It is not difficult to see that only such functions may be used.
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We have therefore described the set of all possible numerical representations in model ðL4Þ. It is not
difficult to adapt the above reasoning to cover all the models envisaged in this section (see Bouyssou and

Pirlot, 2002f, for details).

Remark 4.12 (Weak orders). When % is a weak order, marginal traces on levels are confounded with

marginal preferences. Hence, the above results can be greatly simplified. It is easy to see that, in this case,

• [% is weakly separable] () [% satisfies AC1] () [% satisfies AC2] () [% satisfies AC3],
• [% is weakly independent] () [% satisfies TAC12].

Using these observations, it is easy to show that, when % is a weak order on a countable set X ¼
Qn

i¼1 Xi, it

always has a representation such that:
x%y () Uðu1ðx1Þ; . . . ; unðxnÞÞPUðu1ðy1Þ; . . . ; unðynÞÞ: ðU1Þ
Furthermore, U can be chosen so that it is nondecreasing in all its arguments (resp. increasing) if and only

if % is weakly separable (resp. weakly independent).

Whereas the increasing case is well-known (Krantz et al., 1971, Theorem 7.1), the result in the non-

decreasing case generalizes a result obtained in Blackorby et al. (1978) in the case in which X � Rn.

Remark 4.13 (Extension to the general case). Most of our results are technically simple. Their extension to
the general case (i.e. removing the hypothesis that X is countable) do not raise any serious difficulty beyond

the well-known one of guaranteeing that equivalences and/or weak orders have a numerical representation

(see Bouyssou and Pirlot, 2002f).

Remark 4.14 (Left and right traces on levels). For the sake of conciseness, we do not investigate here all

possible models involving marginal traces on levels. Let us simply mention that the case in which AC1 and

AC2 hold but not AC3 is of particular interest. The similarity of this case with that of interval orders (see

Fishburn, 1970a, 1973, 1985) should be clear at this point. Most of our results can easily be modified to
cover this case using a representation of the type:
x%y () F ð½viðxiÞ
; ½wiðyiÞ
ÞP 0;
leaving room for relations in which the marginal traces %þ
i and %

�
i may not be compatible.

Remark 4.15 (Other extensions). We restricted our attention in this paper to the analysis of conditions

AC1i, AC2i, AC3i, TAC1i and TAC2i when imposed on all i 2 N . As observed in Greco et al. (2002), this
might be overly restrictive. It is not difficult however to study the, rather awkward, models that obtain when

these conditions are only imposed on some, but not all attributes. They amount to supposing that F is

increasing (resp. decreasing) in some, but not necessarily all, of its n first (resp. last arguments).

Similarly, it is easy to generalize our conditions to subsets of attributes more general than a singleton.

The study of the resulting models certainly deserves attention. In fact, when aggregating attributes, it might

well happen that attributes interact in such a way that weak separability is violated (remember the famous

example of the choice a dinner involving two attributes: the main course and the wine). This would forbid
the use of AC1 or AC2 as done here. Imposing these conditions on the groups of ‘‘strongly interacting’’

attributes might however lead to useful models. Such models would be in the spirit of the process of

‘‘building criteria’’ by sub-aggregation as described in Bouyssou (1990) and Roy (1996).

The main results in this section are summarized in Table 4 and Fig. 2.



Fig. 2. Implication between models resulting from Theorem 4.7.

Table 4

Main results using traces on levels

Models Definition Conditions

ðL0Þ x%y () F ð½uiðxiÞ
; ½uiðyiÞ
ÞP 0 £

ðL1Þ ðL0Þ with F ð½uiðxiÞ
; ½uiðxiÞ
Þ ¼ 0 refl.

ðL2Þ ðL1Þ with F ð½uiðxiÞ
; ½uiðyiÞ
Þ ¼ �F ð½uiðyiÞ
; ½uiðxiÞ
Þ cpl.

ðL3Þ () ðL4Þ ðL0Þ with F ð%%;&&Þ AC123
ðL5Þ () ðL6Þ ðL1Þ with F ð%%;&&Þ refl., AC123
ðL7Þ ðL2Þ with F ð%;&Þ cpl., AC123
ðL8Þ ðL2Þ with F ð%%;&&Þ cpl., TAC12

% means nondecreasing, & means nonincreasing, %% means increasing, && means decreasing, refl. means reflexive, cpl. means

complete.
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5. Models using marginal traces on differences 2

This section follows the same path as in Section 4 replacing marginal traces on levels by marginal traces

on differences.

5.1. Complete marginal traces on differences

Definition 5.1 (Conditions RC1 and RC2). Let % be a binary relation on a set X ¼
Qn

i¼1 Xi. For i 2 N , this
relation is said to satisfy:

RC1i if
2 Th
ðxi; a�iÞ% ðyi; b�iÞ
and

ðzi; c�iÞ% ðwi; d�iÞ

9=
; )

ðxi; c�iÞ% ðyi; d�iÞ
or

ðzi; a�iÞ% ðwi; b�iÞ;

8<
:

RC2i if
ðxi; a�iÞ% ðyi; b�iÞ
and

ðyi; c�iÞ% ðxi; d�iÞ

9=
; )

ðzi; a�iÞ% ðwi; b�iÞ
or

ðwi; c�iÞ% ðzi; d�iÞ

8<
:

is section is based on Bouyssou and Pirlot (2002d).
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for all xi; yi; zi;wi 2 Xi and all a�i; b�i; c�i; d�i 2 X�i. We say that % satisfies RC1 (resp. RC2) if it satisfies
RC1i (resp. RC2i) for all i 2 N . We sometimes write RC12 as shorthand for RC1 and RC2.

Condition RC1i suggests that either ðxi; yiÞ is a larger preference difference than ðzi;wiÞ or vice versa.

Indeed, it is easy to see that supposing Not½ðxi; yiÞ%�
i ðzi;wiÞ
 and Not½ðzi;wiÞ%�

i ðxi; yiÞ
 leads to a violation of
RC1i. Hence, RC1i is equivalent to supposing the completeness of %�

i . Similarly, RC2i suggests that the two

opposite differences ðxi; yiÞ and ðyi; xiÞ are linked. In terms of the relation %
�
i , it says that if the prefer-

ence difference between xi and yi is not at least as large as the preference difference between zi and wi

then the preference difference between yi and xi should be at least as large as the preference difference

between wi and zi. We summarize these observations in the following lemma; we omit its straightforward

proof.
Lemma 5.2 (Complete Traces on differences). We have:

(1) ½%�
i is complete
 () RC1i,

(2) RC2i () ½for all xi; yi; zi;wi 2 Xi;Not½ðxi; yiÞ%�
i ðzi;wiÞ
 ) ðyi; xiÞ%�

i ðwi; ziÞ
,
(3) ½%��

i is complete
 () ½RC1i and RC2i
.

Condition RC1 was introduced in Bouyssou (1986) under the name ‘‘weak cancellation’’. Technically

RC1i amounts to defining a biorder, in the sense of Ducamp and Falmagne (1969) and Doignon et al.

(1984), between the sets X 2
i and X 2

�i. The extension of condition RC1 to subsets of attributes is central in

Vind (1991) where this condition is called ‘‘independence’’. Condition RC2 was first proposed in Bouyssou

et al. (1997). We note below a number of other important facts about RC1 and RC2.
Lemma 5.3 (Consequences of RC1 and RC2)
(1) If % satisfies RC1i then it is weakly separable for i 2 N ,
(2) If % satisfies RC2 then it is independent and either reflexive or irreflexive,
(3) Reflexivity, independence and RC1 are independent conditions,
(4) In the class of complete relations, RC1 and RC2 are independent conditions.

Proof. Part 1. Suppose that ðxi; a�iÞ � ðxi; b�iÞ and ðyi; b�iÞ � ðyi; a�iÞ. This implies ðxi; a�iÞ% ðxi; b�iÞ
and ðyi; b�iÞ% ðyi; a�iÞ so that RC1i implies either ðyi; a�iÞ% ðyi; b�iÞ or ðxi; b�iÞ% ðxi; a�iÞ, a contradic-

tion.

Part 2. If ðxi; a�iÞ% ðxi; b�iÞ, RC2i implies ðyi; a�iÞ% ðyi; b�iÞ for all yi 2 Xi so that % is independent. It is
clear that an independent relation is either reflexive or irreflexive.

Part 3. In order to show that these three properties are completely independent, we need 23 ¼ 8 examples.

It is easy to build a relation % that does not satisfy RC1 and is neither reflexive nor independent (e.g. take

X ¼ fa; bg � fz;wg and let % be an empty relation on X except that ða; zÞ% ðb; zÞ and ðb;wÞ% ða;wÞ). Any

relation % satisfying the additive utility model satisfies the three properties. The other six examples are

provided in Appendix A.2.

Part 4. Any relation % satisfying the additive utility model is complete and satisfies both RC1 and RC2.
We provide in Appendix A.2 the three remaining examples. h
5.2. Strict responsiveness to traces on differences

Definition 5.4 (Condition TC). Let % be a binary relation on a set X ¼
Qn

i¼1 Xi. For i 2 N , this relation is

said to satisfy:
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TCi if
ðxi; a�iÞ% ðyi; b�iÞ
and

ðzi; b�iÞ% ðwi; a�iÞ
and

ðwi; c�iÞ% ðzi; d�iÞ

9>>>>>=
>>>>>;

) ðxi; c�iÞ% ðyi; d�iÞ
for all xi; yi; zi;wi 2 Xi and all a�i; b�i; c�i; d�i 2 X�i. We say that % satisfies TC if it satisfies TCi for all

i 2 N .

Condition TCi (Triple Cancellation) is a classical cancellation condition that has been often used (see

Krantz et al., 1971; Wakker, 1989) in the analysis of the additive utility model (1.1). As shown below, it
implies both RC1 and RC2 when % is complete. We refer to Wakker (1988, 1989) for a detailed analysis

of TC including its interpretation in terms of difference of preference.

As soon as % is complete, the following lemma shows that TCi is exactly what is needed to ensure the

strict responsiveness of % w.r.t. %��
i .
Lemma 5.5 (Strict responsiveness to marginal traces on differences)

(1) If % is complete, TCi implies RC1i and RC2i,
(2) If TCi holds and % is complete, ½x%y and ðzi;wiÞ ���

i ðxi; yiÞ
 ) ðzi; x�iÞ � ðwi; y�iÞ.

Proof. Part 1. In contradiction with RC1i, suppose that ðxi; a�iÞ% ðyi; b�iÞ, ðzi; c�iÞ% ðwi; d�iÞ, Not½ðzi; a�iÞ%
ðwi; b�iÞ
 and Not½ðxi; c�iÞ% ðyi; d�iÞ
. Since % is complete, we have ðwi; b�iÞ � ðzi; a�iÞ. Using TCi,

ðxi; a�iÞ% ðyi; b�iÞ, ðwi; b�iÞ � ðzi; a�iÞ and ðzi; c�iÞ% ðwi; d�iÞ imply ðxi; c�iÞ% ðyi; d�iÞ, a contradiction.

Similarly suppose, in contradiction with RC2i that ðxi; a�iÞ% ðyi; b�iÞ, ðyi; c�iÞ% ðxi; d�iÞ,
Not½ðzi; a�iÞ% ðwi; b�iÞ
 and Not½ðwi; c�iÞ% ðzi; d�iÞ
. Since % is complete, we know that ðwi; b�iÞ � ðzi; a�iÞ.
Using TCi, ðwi; b�iÞ � ðzi; a�iÞ, ðxi; a�iÞ% ðyi; b�iÞ and ðyi; c�iÞ% ðxi; d�iÞ imply ðwi; c�iÞ% ðzi; d�iÞ, a contra-

diction.
Part 2. Using (3.6), we get ðzi; x�iÞ% ðwi; y�iÞ. Suppose that ðwi; y�iÞ% ðzi; x�iÞ. From part 1 and Lemma

5.2, we know that %
��
i is complete. We thus have ðzi;wiÞ ���

i ðxi; yiÞ () Not½ðxi; yiÞ%��
i ðzi;wiÞ
 ()

Not½ðxi; yiÞ%�
i ðzi;wiÞ
 or Not½ðwi; ziÞ%�

i ðyi; xiÞ

� �

. In the first case we have Not½ðxi; c�iÞ% ðyi; d�iÞ
 and

ðzi; c�iÞ% ðwi; d�iÞ, for some c�i; d�i 2 X�i. Using TCi, x%y, ðwi; y�iÞ% ðzi; x�iÞ and ðzi; c�iÞ% ðwi; d�iÞ imply

ðxi; c�iÞ% ðyi; d�iÞ, a contradiction. The other case is similar. h
5.3. Marginal traces on differences and numerical representations

Starting from the trivial model ðD0Þ, introduced in Section 3.5, in which:
x%y () Gð½piðxi; yiÞ
ÞP 0;
we envisage:

• model ðD1Þ adding to ðD0Þ the fact that piðxi; xiÞ ¼ 0, for all i 2 N and all xi 2 Xi,

• model ðD2Þ adding to ðD1Þ the skew symmetry of each pi, i.e. piðxi; yiÞ ¼ �piðyi; xiÞ, for all i 2 N and all
xi; yi 2 Xi,

• model ðD3Þ adding to ðD2Þ the oddness of G, i.e. GðxÞ ¼ �Gð�xÞ, abusing notation in an obvious way.
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As before, we furthermore envisage the consequences of supposing that in each of the above four models
(ðD0Þ, ðD1Þ, ðD2Þ and ðD3Þ), G is nondecreasing or increasing in each of its arguments. This leads to a total

of 12 different models, the definition of which being summarized in Table 5.

The implications between these various models are clear from their definitions. They are summarized in

Fig. 3. The following lemma takes note of the relations between these models and our conditions involving

traces on differences.

Lemma 5.6 (Necessary conditions)

(1) Model ðD1Þ implies that % is independent,
(2) Model ðD3Þ implies that % is complete,
(3) Model ðD4Þ implies RC1,
(4) Model ðD6Þ implies RC2,
(5) Model ðD11Þ implies TC.

Proof. Part 1. In model ðD1Þ, we have piðxi; xiÞ ¼ 0, so that ðxi; a�iÞ% ðxi; b�iÞ () Gð0; ðpjðaj; bjÞÞj 6¼iÞP
0 () ðyi; a�iÞ% ðyi; b�iÞ. Hence % is independent.

Part 2. By definition of model ðD3Þ, Not½x%y
 () Gð½piðxi; yiÞ
Þ < 0 so that, using the skew symmetry of
the pi�s and the oddness of G, Gð½piðyi; xiÞ
Þ > 0 which implies y%x. Hence % is complete.

Part 3. Suppose that ðxi; a�iÞ% ðyi; b�iÞ and ðzi; c�iÞ% ðwi; d�iÞ. Using model ðD4Þ we have:� 
 � 

Fig. 3

decrea

Table

Model

ðD0
ðD1
ðD2
ðD3

ðD4
ðD8

ðD5
ðD9

ðD6
ðD1

ðD7
ðD1
G piðxi; yiÞ; ðpjðaj; bjÞÞj 6¼i P 0 and G piðzi;wiÞ; ðpjðcj; djÞÞj 6¼i P 0:
. Implication between models involving traces on differences. inc. means increasing in all arguments, nondec. means non-

sing in all arguments, sk-sym. means skew symmetric.

5

s involving traces on differences

Þ x%y () Gð½piðxi; yiÞ
ÞP 0

Þ ðD0Þ with piðxi; xiÞ ¼ 0

Þ ðD1Þ with piðxi; yiÞ ¼ �piðyi; xiÞ
Þ ðD2Þ with G odd

Þ ðD0Þ with G nondecreasing

Þ ðD0Þ with G increasing

Þ ðD1Þ with G nondecreasing

Þ ðD1Þ with G increasing

Þ ðD2Þ with G nondecreasing

0Þ ðD2Þ with G increasing

Þ ðD3Þ with G nondecreasing

1Þ ðD3Þ with G increasing
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If piðxi; yiÞP piðzi;wiÞ, then using the nondecreasingness of G, we have Gðpiðxi; yiÞ; ðpjðcj; djÞÞj 6¼iÞP 0 so that

ðxi; c�iÞ% ðyi; d�iÞ. If piðzi;wiÞ > piðxi; yiÞ, we have Gðpiðzi;wiÞ; ðpjðaj; bjÞÞj 6¼iÞP 0 so that ðzi; a�iÞ% ðwi; b�iÞ.
Therefore RC1 holds.

Part 4. Suppose that ðxi; a�iÞ% ðyi; b�iÞ and ðyi; c�iÞ% ðxi; d�iÞ. Using model ðD6Þ we have:
G
�
piðxi; yiÞ; ðpjðaj; bjÞÞj 6¼i



P 0 and G

�
piðyi; xiÞ; ðpjðcj; djÞÞj6¼i



P 0:
If piðxi; yiÞP piðzi;wiÞ, the skew symmetry of pi implies piðwi; ziÞP piðyi; xiÞ so that ðwi; c�iÞ% ðzi; d�iÞ using
the nondecreasingness of G. Similarly, if piðzi;wiÞ > piðxi; yiÞ we have, using the nondecreasingness of G,
ðzi; a�iÞ% ðwi; b�iÞ. Therefore, RC2 holds.

Part 5. Suppose that ðxi; a�iÞ% ðyi; b�iÞ, ðzi; b�iÞ% ðwi; a�iÞ, ðwi; c�iÞ% ðzi; d�iÞ and Not½ðxi; c�iÞ% ðyi; d�iÞ
.
Using model ðD11Þ we know that:
G
�
piðxi; yiÞ; ðpjðaj; bjÞÞj6¼i



P 0;

G
�
piðzi;wiÞ; ðpjðbj; ajÞÞj6¼i



P 0;

G
�
piðwi; ziÞ; ðpjðcj; djÞÞj 6¼i



P 0 and

G
�
piðxi; yiÞ; ðpjðcj; djÞÞj 6¼i



< 0:
Using the oddness of G, its increasingness and the skew symmetry of the pi�s, the first two inequalities imply

piðxi; yiÞP piðwi; ziÞ whereas the last two imply that piðxi; yiÞ < piðwi; ziÞ, a contradiction. h

We are now in position to characterize our models involving traces on differences.

Theorem 5.7 (Models using traces on differences). Let % be a binary relation on a countable set X ¼
Qn

i¼1 Xi.

(1) Model ðD2Þ holds iff % is independent,
(2) Model ðD3Þ holds iff % is complete and independent,
(3) Model ðD8Þ holds iff % satisfies RC1,
(4) Model ðD9Þ holds iff % is independent and satisfies RC1,
(5) Model ðD10Þ holds iff % satisfies RC1 and RC2,
(6) Model ðD7Þ holds iff % is complete and satisfies RC1 and RC2,
(7) Model ðD11Þ holds iff % is complete and satisfies TC.

Proof. Necessity of all parts results from Lemma 5.6 and the implications between our models. We show

sufficiency.
Part 1. Since % is independent, we know that, for all i 2 N and all xi; yi 2 Xi, ðxi; xiÞ ��

i ðyi; yiÞ and, thus,
ðxi; xiÞ ���

i ðyi; yiÞ. Since, Xi is countable, there is a one-to-one correspondence pi between

X 2
i n fðxi; xiÞ : xi 2 Xig and some countable subset of R. It can always be chosen so that, for all xi; yi 2 Xi,

piðxi; yiÞ ¼ �piðyi; xiÞ. Let piðxi; xiÞ ¼ 0 for all xi 2 Xi. By construction, pi is skew symmetric. Furthermore,

we have:
piðxi; yiÞ ¼ piðzi;wiÞ ()
xi ¼ yi and zi ¼ wi

or

xi ¼ zi and yi ¼ wi:

8<
: ð5:1Þ
Consider, on all i 2 N , a function pi satisfying (5.1) and define G on
Qn

i¼1 piðX 2
i Þ letting:
Gð½piðxi; yiÞ
Þ ¼
þ1 if x%y;
�1 otherwise:

	
ð5:2Þ
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Since, by hypothesis, ðxi; xiÞ ��
i ðyi; yiÞ, it is easy to see that that G is well-defined.

Part 2. Consider functions pi defined as in part 1 and define G on
Qn

i¼1 piðX 2
i Þ letting:
Gð½piðxi; yiÞ
Þ ¼
þ1 if x � y;
0 if x � y;
�1 otherwise:

8<
: ð5:3Þ
Since, by hypothesis, ðxi; xiÞ ��
i ðyi; yiÞ, it is easy to see that G is well-defined. It is odd since % is complete.

Part 3. Since RC1 holds, we know that %�
i is a weak order. Since Xi is countable, there is a real-valued

function pi on X 2
i such that:
ðxi; yiÞ%�
i ðzi;wiÞ () piðxi; yiÞP piðzi;wiÞ: ð5:4Þ
Given such a particular numerical representation pi of %
�
i for i ¼ 1; 2; . . . ; n, define G on piðX 2

i Þ as follows:
Gð½piðxi; yiÞ
Þ ¼
þ exp

Pn
i¼1 piðxi; yiÞ

� 

if x%y;

� exp �
Pn

i¼1 piðxi; yiÞ
� 


otherwise:

	
ð5:5Þ
The well-definedness of G follows from (3.7) and the definition of the pi�s. To show that G is increasing,

suppose that piðzi;wiÞ > piðxi; yiÞ, i.e. that ðzi;wiÞ ��
i ðxi; yiÞ. If x%y, we know from (3.6) that

ðzi; x�iÞ% ðwi; y�iÞ and the conclusion follows from the definition of G. If Not½x%y
 we have either

Not½ðzi; x�iÞ% ðwi; y�iÞ
 or ðzi; x�iÞ% ðwi; y�iÞ. In either case, the conclusion follows from the definition of G.
Part 4 immediately follows from part 3. Indeed, when % is independent, ðxi; xiÞ ��

i ðyi; yiÞ, for all i 2 N
and all xi; yi 2 Xi. It is therefore always possible to choose a function pi satisfying (5.4) so that piðxi; xiÞ ¼ 0.

Part 5. Since RC1i and RC2i hold, we know from Lemma 5.3 that %��
i is complete so that it is a weak

order. This implies that %�
i is a weak order and, since Xi is countable, there is a real-valued function qi on X 2

i

satisfying (5.4). Given a particular numerical representation qi of %
�
i , let piðxi; yiÞ ¼ qiðxi; yiÞ � qiðyi; xiÞ. It is

obvious that pi is skew symmetric and represents %��
i . Define G as in (5.5). Its well-definedness results from

(3.9). To show that G is increasing, suppose that piðzi;wiÞ > piðxi; yiÞ, i.e. that ðzi;wiÞ ���
i ðxi; yiÞ. By con-

struction, this implies ðzi;wiÞ%�
i ðxi; yiÞ. The increasingness of G is therefore proved as in part 3 using (3.6).

Part 6. Define the functions pi as in part 5 and define G letting:
Gð½piðxi; yiÞ
Þ ¼
þ exp

Pn
i¼1 piðxi; yiÞ

� 

if x � y;

0 if x � y;
� exp �

Pn
i¼1 piðxi; yiÞ

� 

otherwise:

8<
: ð5:6Þ
Since % is complete, G is odd. It is well-defined in view of (3.9) and the definition of the pi�s. Its non-

decreasingness follows from (3.6) and (3.8).

Part 7. Since TC holds and % is complete, we know from part 1 of Lemma 5.5 that RC1 and RC2 hold.

Define pi and G as in part 6. The increasingness of F follows from part 2 of Lemma 5.5. h

Corollary 5.8 (Links between models)

(1) Models ðD1Þ and ðD2Þ are equivalent.
(2) Models ðD4Þ and ðD8Þ are equivalent.
(3) Models ðD5Þ and ðD9Þ are equivalent.
(4) Models ðD6Þ and ðD10Þ are equivalent.
(5) Model ðD7Þ ) Model ðD10Þ.

Proof. All parts result directly from Lemma 5.6 and Theorem 5.7. h
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5.4. Remarks

Remark 5.9 (Goldstein, 1991). Models ðD8Þ and ðD4Þ were introduced by Goldstein (1991) as particular

cases of his ‘‘decomposable thresholds models’’. He already noted their equivalence.

Remark 5.10 (Equivalence between models). Some care must be exercised when adding additional condi-

tions to equivalent models. These additions may turn equivalent models into distinct ones. An example of

this situation occurred in Theorem 5.7. While models ðD1Þ and ðD2Þ are equivalent, this is no more the case
when it is required that G is nondecreasing in all its arguments. Models ðD5Þ and ðD6Þ are indeed distinct.

Remark 5.11 (Marginal preferences). The nontransitivity and/or noncompleteness of % combined with that

of %i may obscure some features of models involving traces on differences. For the sake of completeness,

we sum up a few useful observations in the following proposition.

Proposition 5.12 (Properties of models using differences). Let % be a binary relation on X ¼
Qn

i¼1 Xi and
J � N .

(1) If % satisfies model ðD5Þ then: ½xi �i yi for all i 2 J � N 
 ) Not½yJ %J xJ 
.
(2) If % satisfies model ðD6Þ then:
• %i is complete,
• ½xi �i yi for all i 2 J � N 
 ) ½xJ �J yJ 
.
(3) If % satisfies model ðD11Þ then:

• ½xi%i yi for all i 2 J � N 
 ) ½xJ %J yJ 
,
• ½xi%i yi for all i 2 J � N ; xj �j yj for some j 2 J 
 ) ½xJ �J yJ 
.
Proof. Part 1. Using obvious notation, xi �i yi implies Not½yi%i xi
 so that Gðpiðyi; xiÞ; 0Þ < 0. Since Gð0ÞP 0,

we know that piðyi; xiÞ < 0, using the nondecreasingness of G. Select any j 2 J . Starting from

Gðpjðyj; xjÞ; 0Þ < 0, using the nondecreasingness of G and the fact that piðyi; xiÞ < 0, for all i 2 J , we obtain
Gððpjðyj; xjÞÞi2J ; 0Þ < 0. This implies Not½yJ %J xJ 
.

Part 2. Not½xi%i yi
 and Not½yi%i xi
 imply Gðpiðxi; yiÞ; 0Þ < 0 and Gðpiðyi; xiÞ; 0Þ < 0. Since Gð0ÞP 0 and G
is nondecreasing, this implies piðxi; yiÞ < 0 and piðyi; xiÞ < 0, which contradicts the skew symmetry of pi.

Hence %i is complete.

Observe that xi �i yi is equivalent to Gðpiðxi; yiÞ; 0ÞP 0 and Gðpiðyi; xiÞ; 0Þ < 0. Since Gð0ÞP 0, we know

that piðyi; xiÞ < 0, using the nondecreasingness of G. The skew symmetry of pi implies piðxi; yiÞ > 0 >
piðyi; xiÞ and the desired property easily follows using the nondecreasingness of G.

Part 3. Since G is increasing and odd, we have xi%i yi () piðxi; yiÞP 0. The desired properties easily

follow from the increasingness of G and Gð0Þ ¼ 0. h

Except for model ðD11Þ, the monotonicity properties of our models linking % and %i may seem dis-

appointing. Such properties should however be analyzed keeping in mind that we are dealing with possibly

nontransitive and/or incomplete preferences. In such a framework, some ‘‘obvious properties’’ may not

always be desirable. For example, when the relations �i are not transitive, it may not be reasonable to

impose that:
½xi �i yi for all i 2 J 
 ) ½xJ �J yJ 
;
which would forbid any interaction between separately nonnoticeable differences on each attribute (on this

point see Gilboa and Lapson (1995) or Pirlot and Vincke (1997)). Clearly, if nice monotonicity properties

are looked for, one should use traces (see Lemmas 3.7 and 5.5).
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Remark 5.13 (Interpretation of TC). It is not difficult to show that, when % is complete, [RC1, RC2 and

ðx � y and ðzi;wiÞ ���
i ðxi; yiÞ ) ðzi; x�iÞ � ðwi; y�iÞÞ] () TC. This offers an additional interpretation of TC

and shows that the only difference between ðD11Þ and ðD7Þ is the possible failure in ðD7Þ of ‘‘strict

monotonicity’’ with respect to ���
i for pairs such that x � y.

Remark 5.14 (Uniqueness). As in Section 4.3, the uniqueness properties of the representations exhibited in

Theorem 5.7 are very weak. Again, numerical representations are only used here as guidelines to investigate

the consequences of some particular conditions on % and not as a basis to derive assessment procedures.

Let us analyze the uniqueness properties of model ðD8Þ. Our proof shows that it is always possible to use

functions pi such that:
ðxi; yiÞ%�
i ðzi;wiÞ () piðxi; yiÞP piðzi;wiÞ: ð5:7Þ
This could be called a regular representation of model ðD8Þ. From the proof of Theorem 5.7, it is clear that

any pi satisfying (5.7) may be used, i.e. we may apply, independently on each attribute, any increasing

transformation to the functions pi without altering the representation.

Other choices for pi are possible however. Let us show that any function pi such that:
ðxi; yiÞ ��
i ðzi;wiÞ ) piðxi; yiÞ > piðzi;wiÞ; ð5:8Þ
can be used in a representation of model ðD8Þ.
The necessity of (5.8) is clear since ðxi; yiÞ ��

i ðzi;wiÞ implies ðxi; a�iÞ% ðyi; b�iÞ and Not½ðzi; a�iÞ% ðwi; b�iÞ
,
for some a�i; b�i 2 X�i. Using the increasingness of G in model ðD8Þ this implies piðxi; yiÞ > piðzi;wiÞ.

Conversely, it is clear that if pi satisfies (5.8) then
piðxi; yiÞ ¼ piðzi;wiÞ ) ðxi; yiÞ ��
i ðzi;wiÞ; ð5:9Þ
so that defining G using (5.5) as in the proof of Theorem 5.7 leads to a well-defined function being

increasing in its arguments.

It should be noted that any function f (resp. g) from Rn into ½0;þ1Þ (resp. ð�1; 0Þ) that is increasing in
all arguments when restricted to

Qn
i¼1 piðX 2

i Þ may be used in order to define G letting:
Gð½piðxi; yiÞ
Þ ¼
f ð½piðxi; yiÞ
Þ if x%y;

gð½piðxi; yiÞ
Þ otherwise:

	
ð5:10Þ
It is furthermore clear that only such functions may be used.

We have therefore described the set of all possible numerical representations in model ðD8Þ. We shall

need below the exact statement of the degrees of freedom we have for choosing the functions pi in our

models. This is summarized in the next lemma.

Lemma 5.15 (Uniqueness of pi)

(1) Let % satisfy model ðD8Þ. A real-valued function pi on X 2
i may be used in the representation of % in model

ðD8Þ iff

ðzi;wiÞ ��
i ðxi; yiÞ ) piðzi;wiÞ > piðxi; yiÞ: ð5:11Þ

(2) Let % satisfy model ðD9Þ. A real-valued function pi on X 2
i may be used in the representation of % in model

ðD9Þ iff

piðxi; xiÞ ¼ 0 and ð5:12Þ

ðzi;wiÞ ���
i ðxi; yiÞ ) piðzi;wiÞ > piðxi; yiÞ: ð5:13Þ
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(3) Let % satisfy model ðD7Þ or ðD10Þ. A real-valued function pi on X 2
i may be used in the representation of %

in model ðD7Þ or ðD10Þ iff

piðxi; yiÞ ¼ �piðyi; xiÞ and ð5:14Þ

ðzi;wiÞ ���
i ðxi; yiÞ ) piðzi;wiÞ > piðxi; yiÞ: ð5:15Þ

(4) Let % satisfy model ðD11Þ. A real-valued function pi on X 2
i may be used in the representation of % in model

ðD11Þ iff

piðxi; yiÞ ¼ �piðyi; xiÞ; ð5:16Þ

ðzi;wiÞ ���
i ðxi; yiÞ ) piðzi;wiÞ > piðxi; yiÞ and ð5:17Þ

ðzi;wiÞ ���
i ðxi; yiÞ and

9 a�i; b�i 2 X�i s:t: ðxi; a�iÞ � ðyi; b�iÞ

�
) piðzi;wiÞ ¼ piðxi; yiÞ: ð5:18Þ

Proof. The observations preceding the statement of the lemma prove part 1. The proof of parts 2 and 3

follows from that of part 1.

Part 4. The necessity of (5.16) and (5.17) is clear. Suppose that (5.18) is violated. One would then have

ðzi;wiÞ ���
i ðxi; yiÞ, ðxi; a�iÞ � ðyi; b�iÞ for some a�i; b�i 2 X�i and piðzi;wiÞ 6¼ piðxi; yiÞ. Since G is strictly

increasing, Gðpiðzi;wiÞ; ðpjðaj; bjÞÞj 6¼iÞ 6¼ 0 while ðzi; a�iÞ � ðwi; b�iÞ, a contradiction.

Sufficiency. Consider, on each i 2 N , any function pi satisfying (5.16)–(5.18) and define G as in (5.6). The

well-definedness of G follows from (5.16) and (3.9) since piðzi;wiÞ ¼ piðxi; yiÞ ) ðzi;wiÞ ���
i ðxi; yiÞ. For

proving increasingness, suppose piðzi;wiÞ > piðxi; yiÞ. This implies that ðzi;wiÞ%��
i ðxi; yiÞ. If x � y, (3.8) im-

plies ðzi; x�iÞ � ðwi; y�iÞ and the conclusion follows from the definition of G. If x � y we have

Gð½piðxi; yiÞ
Þ ¼ 0. Consider two cases. If ðzi;wiÞ ���
i ðxi; yiÞ, then part 2 of Lemma 5.5 implies

ðzi; x�iÞ � ðwi; y�iÞ and the conclusion follows from the definition of G. If ðzi;wiÞ ���
i ðxi; yiÞ then, by (3.9) we

obtain ðzi; x�iÞ � ðwi; y�iÞ, violating (5.18). Finally, the case Not½x%y
 is dealt with like as in the proof of
Theorem 5.7. This completes the proof. h

Remark 5.16 (n ¼ 2 case). It is easy to see that RC1i amounts to defining a biorder (see Doignon et al.,

1984; Ducamp and Falmagne, 1969) between the sets X 2
i and X 2

�i. Therefore RC1i on its own implies, when

X is finite or countably infinite, the existence of two real-valued functions pi and P�i respectively on X 2
i and

X 2
�i such that, for all x; y 2 X , x%y iff piðxi; yiÞ þ P�iðx�i; y�iÞP 0 (see Ducamp and Falmagne, 1969, Prop-

osition 3). Therefore models using traces on differences closely relate to ordinal measurement when n ¼ 2.

In a similar vein, Bouyssou (1986, Theorem 1) noted an interesting implication of TCi on its own. When

X is countable, TCi implies the existence of two real-valued skew symmetric functions pi and P�i respectively

on X 2
i and X 2

�i such that, for all x; y 2 X , x%y () piðxi; yiÞ þ P�iðx�i; y�iÞP 0. This result can easily be

extended to sets of arbitrary cardinality (see Remark 5.18). When n ¼ 2 this offers an alternative to

Fishburn (1991a, Theorem B).

Remark 5.17 (Extensions to subsets). The obvious extension of RC1 to subsets of attributes is the main

necessary condition used by Vind (1991) together with topological assumptions on X to axiomatize a model
such that:
x%y ()
Xn

i¼1

piðxi; yiÞP 0 ð5:19Þ
with piðxi; xiÞ ¼ 0.
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Similarly, it is easy to see that the extension of TC to subsets of attributes is necessary for a model of type
(5.19) with all pi�s being skew symmetric. A complete axiomatic treatment of this model may be found in

Fishburn (1990a,b, 1991a).

It should be noted that our use here of a function G instead of a sum allows to considerably simplify our

analysis. Clearly as soon as additivity is required, axioms involve either a denumerable scheme of condi-

tions guaranteeing the existence of solutions to a set of linear equations or a limited number of conditions

together with unnecessary structural assumptions on the set of alternatives (e.g. solvability). We refer to

Bouyssou and Pirlot (2002d) for a thorough comparison between models involving traces on differences and

their additive specializations as well as an evaluation of the contribution of Theorem 5.7 to the general
theory of conjoint measurement.

Remark 5.18 (The general case). The results in this section can easily be extended to cover the general case.

This requires the addition of, necessary, conditions guaranteeing that the equivalences and weak orders

encountered in this section have a numerical representation.

The main results in this section are summarized in Table 6 and Fig. 4.
Table 6

Main results using traces on differences

Models Definition Conditions

ðD0Þ x%y () Gð½piðxi; yiÞ
ÞP 0 £

ðD1Þ ðD0Þ with piðxi; xiÞ ¼ 0

m ind.

ðD2Þ ðD0Þ with pi skew symmetric

ðD3Þ ðD0Þ with pi skew symmetric and G odd cpl., ind.

ðD8Þ () ðD4Þ ðD0Þ with Gð%%Þ RC1
ðD9Þ () ðD5Þ ðD1Þ with Gð%%Þ RC1, ind.
ðD10Þ () ðD6Þ ðD2Þ with Gð%%Þ RC12
ðD7Þ ðD3Þ with Gð%Þ cpl., RC12
ðD11Þ ðD3Þ with Gð%%Þ cpl., TC

% means nondecreasing, %% means increasing, cpl. means completeness, ind. means independence.

Fig. 4. Implication between models resulting from Theorem 5.7.
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6. Models using marginal traces on levels and on differences 3

This section studies models based on traces on differences in which the magnitude of differences may

be modelled through traces on levels. We have already encountered the trivial model ðL0D0Þ in which:
3 Th
x%y () Hð½/iðuiðxiÞ; uiðyiÞÞ
ÞP 0: ðL0D0Þ

This model may be seen as a particular case of model ðD0Þ in which the term piðxi; yiÞ is substituted with the
term /iðuiðxiÞ; uiðyiÞÞ. Alternatively it may be seen as a generalization of the additive difference model (1.5)

replacing addition and subtraction by more general functions.

To each of the 12 models ðD0Þ to ðD11Þ studied in Section 5 corresponds a model in which the term

piðxi; yiÞ is substituted with /iðuiðxiÞ; uiðyiÞÞ. This defines models ðL0D0Þ to ðL0D11Þ.
In order to bring the functions /i ‘‘closer’’ to a subtraction, we envisage two variants of each of these

models. In the first one, we impose that /i are nondecreasing in their first argument and nonincreasing in

their second argument. This defines models ðL1D0Þ to ðL1D11Þ. In the other variant we impose that /i are

increasing in their first argument and decreasing in their second argument. This defines models ðL2D0Þ to
ðL2D11Þ. The definition of all these models is summarized in Table 7. We have thus defined a total of

3�12 ¼ 36 models involving differences and levels. We study them in this section.

6.1. Models ðL0D1Þ to ðL0D11Þ

These 12 models ðL0D0Þ to ðL0D11Þ correspond to models ðD0Þ to ðD11Þ involving differences in which

the term piðxi; yiÞ is substituted with the term /iðuiðxiÞ; uiðyiÞÞ with no monotonicity property required for

the functions /i. These models are easily analyzed using the following elementary observation.

Lemma 6.1 (Numerical representation of a weak order on pairs). Let %A be a weak order on a countable set
A2. Consider any real-valued function f on A2 representing %

A, i.e. such that, for all a; b; c; d 2 A,
ða; bÞ%A ðc; dÞ () f ða; bÞP f ðc; dÞ: ð6:1Þ

There is a real-valued function u on A and a real-valued function g on uðAÞ � uðAÞ such that, for all a; b 2 A,
f ða; bÞ ¼ gðuðaÞ; uðbÞÞ: ð6:2Þ
Proof. Define the binary relation E on A letting, for all a; b 2 A,
aEb () ða; cÞ �A ðb; cÞ and ðc; bÞ �A ðc; aÞ for all c 2 A; ð6:3Þ

where �A denotes the symmetric part of %A. Since �A is an equivalence, it is easy to show that E is an

equivalence. Therefore, since A is countable, there is a real-valued function u on A such that, for all a; b 2 A,
aEb () uðaÞ ¼ uðbÞ: ð6:4Þ

Take any function f such that (6.1) holds and define g on uðAÞ � uðAÞ letting, for all a; b 2 A,
gðuðaÞ; uðbÞÞ ¼ f ða; bÞ. We have to show that g is well-defined, i.e. that uðaÞ ¼ uðcÞ and uðbÞ ¼ uðdÞ imply

f ða; bÞ ¼ f ðc; dÞ. By construction, we have aEc and bEd. This implies ða; ‘Þ �A ðc; ‘Þ and ð‘0; bÞ �A ð‘0; dÞ,
for all ‘; ‘0 2 A. Taking ‘ ¼ b and ‘0 ¼ c implies ða; bÞ �A ðc; bÞ and ðc; bÞ �A ðc; dÞ. Using the transitivity of

�A we obtain ða; bÞ �A ðc; dÞ so that f ða; bÞ ¼ f ðc; dÞ, as required. h
is section is based on Bouyssou and Pirlot (2002a).



Table 7

Models involving traces on levels and on differences

ðL0D0Þ x%y () Hð½/iðuiðxiÞ; uiðyiÞÞ
ÞP 0

ðL0D1Þ ðL0D0Þ with /iðuðxiÞ; uiðxiÞÞ ¼ 0

ðL0D2Þ ðL0D1Þ with /i skew symmetric

ðL0D3Þ ðL0D2Þ with H odd

ðL0D4Þ ðL0D0Þ with H nondecreasing

ðL0D5Þ ðL0D0Þ with H increasing

ðL0D6Þ ðL0D1Þ with H nondecreasing

ðL0D7Þ ðL0D1Þ with H increasing

ðL0D8Þ ðL0D2Þ with H nondecreasing

ðL0D9Þ ðL0D2Þ with H increasing

ðL0D10Þ ðL0D3Þ with H nondecreasing

ðL0D11Þ ðL0D3Þ with H increasing

Models ðL1DxÞ correspond to models ðL0DxÞ with /ið%;&Þ.
Models ðL2DxÞ correspond to models ðL0DxÞ with /ið%%;&&Þ.
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Theorem 6.2 (Models ðL0D0Þ to ðL0D11Þ). Models ðL0D0Þ to ðL0D11Þ are respectively equivalent to models
ðD0Þ to ðD11Þ.

Proof. Consider any representation of models ðD0Þ to ðD11Þ and apply Lemma 6.1 to the weak order on X 2
i

induced by pi. h

Models ðL0D0Þ to ðL0D11Þ are therefore nothing more than a different presentation of models ðD0Þ to
ðD11Þ. Clearly, the equivalences between models ðD0Þ to ðD11Þ noted in Corollary 5.8 carry over to models
ðL0D0Þ to ðL0D11Þ. The relations between these models is therefore given by Fig. 4 replacing Dk by L0Dk,
for k ¼ 0; 1; . . . ; 11.

6.2. Models ðL1D0Þ–ðL1D3Þ, ðL2D0Þ–ðL2D3Þ

We first take up the case of models ðL1D0Þ to ðL1D3Þ and ðL2D0Þ to ðL2D3Þ in which H has no particular

monotonicity properties. Substituting piðxi; yiÞ with /iðuiðxiÞ; uiðyiÞÞ, /i being nondecreasing in its first

argument and nonincreasing in its second argument is likely to have little impact since the monotonicity
properties of /i can be ‘‘absorbed’’ by H . A similar reasoning applies if /i is supposed to be increasing in its

first argument and decreasing in its second argument. As already mentioned in Remark 3.10, this is indeed

the case.

Theorem 6.3 (Models ðL1D0Þ–ðL1D3Þ and ðL2D0Þ–ðL2D3Þ)
(1) ðD0Þ () ðL1D0Þ () ðL2D0Þ,
(2) ðD1Þ () ðL1D1Þ () ðL2D1Þ () ðD2Þ () ðL1D2Þ () ðL2D2Þ,
(3) ðD3Þ () ðL1D3Þ () ðL2D3Þ.

Proof. Part 1. By construction, ðL2D0Þ ) ðL1D0Þ ) ðD0Þ. We show that ðD0Þ ) ðL2D0Þ.
Consider any one-to-one correspondence ui between Xi and a subset of the set of integers P 2. Define /i

letting, for all xi; yi 2 Xi,
/iðuiðxiÞ; uiðyiÞÞ ¼ uiðxiÞ þ
1

uiðyiÞ
: ð6:5Þ
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By construction, /i is increasing in its first argument and decreasing in its second argument. Observe that
/iðuiðxiÞ; uiðyiÞÞ ¼ /iðuiðziÞ; uiðwiÞÞ ) xi ¼ zi and yi ¼ wi: ð6:6Þ

Define H on

Qn
i¼1 /iðuiðXiÞ; uiðXiÞÞ letting:
Hð½/iðuiðxiÞ; uiðyiÞÞ
Þ ¼
þ1 if x%y;
�1 otherwise:

	
ð6:7Þ
We have to show that H is well-defined. This is obvious in view of (6.6).

Part 2. We know from Corollary 5.8 that ðD2Þ () ðD1Þ. By construction ðL2D2Þ ) ðL1D2Þ ) ðD2Þ and
ðL2D1Þ ) ðL1D1Þ ) ðD1Þ. We show that ðD1Þ ) ðL2D2Þ.

Consider on each Xi any function /i satisfying (6.5) and define ui letting, for all xi; yi 2 Xi,
uiðuiðxiÞ; uiðyiÞÞ ¼ /iðuiðxiÞ; uiðyiÞÞ � /iðuiðyiÞ; uiðxiÞÞ: ð6:8Þ

By construction, ui is skew symmetric, increasing in its first argument and decreasing in its second argu-

ment. We clearly have:
uiðuiðxiÞ; uiðyiÞÞ ¼ uiðuiðziÞ; uiðwiÞÞ )
xi ¼ zi and yi ¼ wi

or

xi ¼ yi and zi ¼ wi:

8<
: ð6:9Þ
Define H on
Qn

i¼1 uiðuiðXiÞ; uiðXiÞÞ letting:
Hð½uiðuiðxiÞ; uiðyiÞÞ
Þ ¼
þ1 if x%y;
�1 otherwise:

	
ð6:10Þ
Since model ðD1Þ holds, we know that % is independent so that ðxi; xiÞ ��
i ðyi; yiÞ. In view of (6.9), it is then

clear that H is well-defined.

Part 3. By construction, ðL2D3Þ ) ðL1D3Þ ) ðD3Þ. We show that ðD3Þ ) ðL2D3Þ. Define, on each

i 2 N , a function ui using (6.8). Define H on
Qn

i¼1 uiðuiðXiÞ; uiðXiÞÞ letting:
Hð½uiðuiðxiÞ; uiðyiÞÞ
Þ ¼
þ1 if x � y;
0 if x � y;
�1 otherwise:

8<
: ð6:11Þ
Since % is complete, H is odd. Its well-definedness is proved as in part 2. h
6.3. Models ðL1D4Þ to ðL1D11Þ

These eight models are the counterparts of models ðD4Þ to ðD11Þ in which the term piðxi; yiÞ is substituted
with the term /iðuiðxiÞ; uiðyiÞÞ, /i being nondecreasing in its first argument and nonincreasing in its second

argument. In all models ðD4Þ to ðD11Þ, the function G is nondecreasing in all its arguments. Therefore, it is

clear that imposing that /i is nondecreasing in its first argument and nonincreasing in its second argument

is no more innocuous. The conditions that were used to analyze models using traces on levels reappear here.

The least constrained of the models considered here, ðL1D4Þ, already implies all of these conditions.

Lemma 6.4 (Necessity of AC1, AC2 and AC3). If % has a representation in model ðL1D4Þ then it satisfies
AC1, AC2 and AC3.

Proof. In model ðL1D4Þ, we have:
x%y () Hð½/iðuiðxiÞ; uiðyiÞÞ
ÞP 0
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with H being nondecreasing in all its arguments and all /i being nondecreasing in their first argument and

nonincreasing in their second argument. The proof that AC1, AC2 and AC3 hold easily follows from the

numerical representation. We show that AC1 holds. The premise of AC1i yields in terms of model ðL1D4Þ:

Hð/iðuiðxiÞ; uiðyiÞÞ; ð/jðujðxjÞ; ujðyjÞÞÞj6¼iÞP 0 and Hð/iðuiðziÞ; uiðwiÞÞ; ð/jðujðzjÞ; ujðwjÞÞÞj 6¼iÞP 0:
We have either uiðziÞP uiðxiÞ or uiðxiÞP uiðziÞ. In the first case, the monotonicity of H and /i, implies:
Hð/iðuiðziÞ; uiðyiÞÞ; ð/jðujðxjÞ; ujðyjÞÞÞj6¼iÞP 0:
In the second case, we have:
Hð/iðuiðxiÞ; uiðwiÞÞ; ð/jðujðzjÞ; ujðwjÞÞÞj6¼iÞP 0:
Hence, AC1i holds. The proof for AC2i and AC3i is similar. h

As was the case in Section 6.1, a simple lemma on the numerical representation of a weak order on ordered

pairs will allow us to analyze all our models. This will require some new vocabulary however.

Definition 6.5 (Strong linearity). Let %A be a binary relation on a set A2. We say that:

(1) %
A is right linear iff ½Not½ðb; cÞ%A ða; cÞ
 ) ða; dÞ%A ðb; dÞ
,

(2) %
A is left linear iff ½Not½ðc; aÞ%A ðc; bÞ
 ) ðd; bÞ%A ðd; aÞ
,

(3) %
A is strongly linear iff ½Not½ðb; cÞ%A ða; cÞ
 or Not½ðc; aÞ%A ðc; bÞ

 ) ½ða; dÞ%A ðb; dÞ and ðd; bÞ%A ðd; aÞ
,

for all a; b; c; d 2 A.

Lemma 6.6 (Numerical representation of a weak order on pairs). Let %A be a weak order on a countable set
A2. Let f be any real-valued function on A2 such that, for all a; b; c; d 2 A,
ða; bÞ%A ðc; dÞ () f ða; bÞP f ðc; dÞ: ð6:12Þ
There is a real-valued function u on A and a real-valued function g on uðAÞ � uðAÞ nondecreasing in its first
argument, nonincreasing in its second argument, such that for all a; b; c; d 2 A,
f ða; bÞ ¼ gðuðaÞ; uðbÞÞ ð6:13Þ
iff %A is strongly linear.

Proof. Necessity of strong linearity is easily shown. Suppose that Not½ðb; cÞ%A ða; cÞ
 or Not½ðc; aÞ%A ðc; bÞ
.
This implies gðuðbÞ; uðcÞÞ < gðuðaÞ; uðcÞÞ or gðuðcÞ; uðaÞÞ < gðuðcÞ; uðbÞÞ. In either case, the monotonicity
properties of g imply uðaÞ > uðbÞ. Starting now from gðuðbÞ; uðdÞÞ and using the nondecreasingness of g
in its first argument, we obtain gðuðaÞ; uðdÞÞP gðuðbÞ; uðdÞÞ and, hence, ða; dÞ%A ðb; dÞ. The proof that

ðd; bÞ%A ðd; aÞ holds is similar.

Sufficiency. Define the binary relation T on A letting:
aT b () ½ða; cÞ%Aðb; cÞ and ðc; bÞ%Aðc; aÞ for all c 2 A
:
It is clear that T is reflexive and transitive. An easy proof shows that it is complete if and only if %A is

strongly linear.

Since A is countable and T is a weak order, there is a real-valued function u on A such that, for all

a; b 2 A,
aT b () uðaÞP uðbÞ: ð6:14Þ
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Let f be any real-valued function on A2 such that (6.12) holds. Define the real-valued function g on uðAÞ2
letting, for all a; b; c; d 2 A,
gðuðaÞ; uðbÞÞ ¼ f ða; bÞ:
Using the definition of T , it is routine to show that g is well-defined, nondecreasing in its first argument and

nonincreasing in its second argument. h

The following lemma interprets conditions AC1, AC2 and AC3 in terms of linearity properties of %�
i .

Lemma 6.7 (AC1i, AC2i, AC3i and strong linearity). Let % be a binary relation on X ¼
Qn

i¼1 Xi.

(1) AC1i holds iff %�
i is right linear,

(2) AC2i holds iff %�
i is left linear,

(3) AC3i holds iff ½Not½ðxi; ziÞ%�
i ðyi; ziÞ
 for some zi 2 Xi
 ) ðwi; xiÞ%�

i ðwi; yiÞ for all wi 2 Xi,
(4) AC1i, AC2i and AC3i hold iff %�

i is strongly linear iff %��
i is strongly linear.

Proof. Part 1. We show equivalently that Not½AC1i
 iff for some xi; yi; zi;wi 2 Xi, Not½ðzi; yiÞ%�
i ðxi; yiÞ
 and

Not½ðxi;wiÞ%�
i ðzi;wiÞ
. This last statement means, by definition of %�

i , that for some a�i; b�i; c�i; d�i 2 X�i,

we have
½ðxi; a�iÞ% ðyi; b�iÞ
 and Not½ðzi; a�iÞ% ðyi; b�iÞ
; and

½ðzi; c�iÞ% ðwi; d�iÞ
 and Not½ðxi; c�iÞ% ðwi; d�iÞ
;
which is exactly Not½AC1i
. The proof of part 2 is similar.
Part 3. We show that Not½AC3i
 () ½Not½ðxi; ziÞ%�

i ðyi; ziÞ
 and Not½ðwi; xiÞ%�
i ðwi; yiÞ

, for some

zi;wi 2 Xi. The last expression means that, for some a�i; b�i; c�i; d�i 2 X�i, we have
½ðyi; a�iÞ% ðzi; b�iÞ
 and Not½ðxi; a�iÞ% ðzi; b�iÞ
;
½ðwi; c�iÞ% ðyi; d�iÞ
 and Not½ðwi; c�iÞ% ðxi; d�iÞ
;
which is exactly Not½AC3i
.
Part 4. Combining the equivalences in parts 1, 2 and 3 leads to the equivalence between AC1i;AC2i

and AC3i with the strong linearity of %�
i . By construction this also shows that %��

i is strongly linear. h

We are now in position to characterize models ðL1D4Þ to ðL1D11Þ.

Theorem 6.8. Let % be a binary relation on a countable set X ¼
Qn

i¼1 Xi.

(1) Model ðL1D8Þ holds iff % satisfies RC1, AC1, AC2 and AC3.
(2) Model ðL1D9Þ holds iff % is independent and satisfies RC1, AC1, AC2 and AC3.
(3) Model ðL1D10Þ holds iff % satisfies RC1, RC2, AC1, AC2 and AC3.
(4) Model ðL1D7Þ holds iff % is complete and satisfies RC1, RC2, AC1, AC2 and AC3.
(5) Model ðL1D11Þ holds iff % is complete and satisfies TC, AC1, AC2 and AC3.

Proof. The necessity of all parts follows from Theorem 5.7 and Lemma 6.4.

Observe that in the proof of parts 3 to 7 of Theorem 5.7, we have exhibited a regular representation, i.e. a

representation in which pi represents %
�
i in models ðD8Þ and ðD9Þ and %

��
i in models ðD10Þ, ðD7Þ and ðD11Þ.

The sufficiency of each part therefore follows applying Lemma 6.6 to the weak order induced on X 2
i by the

function pi used in the proof of Theorem 5.7. h
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Corollary 6.9 (Links between models)

(1) Model ðL1D4Þ and ðL1D8Þ are equivalent.
(2) Model ðL1D5Þ and ðL1D9Þ are equivalent.
(3) Models ðL1D6Þ and ðL1D10Þ are equivalent.
(4) Model ðL1D7Þ ) Model ðL1D10Þ.

Remark 6.10 (Independence of axioms). We refer to Bouyssou and Pirlot (2002a) for a complete analysis of

the independence of the axioms used in Theorem 6.8. It turns out that conditions implying the completeness
of marginal traces on levels (AC1, AC2 and AC3) are completely independent from the conditions implying

that marginal traces on differences are complete (RC1 and RC2). In order not to multiply examples, we

simply show in Appendix A.3 that, in the class of complete relations, conditions TC, AC1, AC2 and AC3 are

independent.
6.4. Models ðL2D4Þ to ðL2D11Þ

Except for the most constrained model ðL2D11Þ, it turns out that no additional constraint is brought into
the picture supposing that /i increases in its first arguments and decreases in its second argument. We

summarize our results below.

Theorem 6.11. Let % be a binary relation on a countable set X ¼
Qn

i¼1 Xi.

(1) Models ðL2D8Þ and ðL1D8Þ are equivalent.
(2) Models ðL2D9Þ and ðL1D9Þ are equivalent.
(3) Models ðL2D10Þ and ðL1D10Þ are equivalent.
(4) Models ðL2D7Þ and ðL1D7Þ are equivalent.
(5) Model ðL2D11Þ holds iff % is complete and satisfies TC, TAC1 and TAC2.

In the proof of Theorem 6.8 the strategy was to consider the underlying models involving differences and

to factorize the function pi using Lemma 6.6 using the fact that it is always possible to build a regular
representation. Hence in all the representations used in Theorem 6.8 the functions /i represent %

�
i or %��

i

depending on the model. Our strategy here is rather different and amounts to exploiting the fact, already

stressed, that there is no need for the functions pi in models involving differences to represent %�
i or %

��
i . We

use this degree of freedom to modify nondecreasing/nonincreasing functions /i into increasing and

decreasing functions ui.

The following lemma states the conditions under which a function f that is nondecreasing in its first

argument and nonincreasing in its second argument, can be appropriately transformed into a strictly

monotonic function g.
Consider a function f : U � U ! R, with U a countable subset of R and suppose that f is nondecreasing

in its first argument and nonincreasing in its second argument. There are two types of situations that may

cause the lack of strict monotonicity of f . We denote by S, the set of values r of f for which either there are

a; b; c 2 U such that:
f ða; cÞ ¼ f ðb; cÞ ¼ r with a > b ð6:15Þ
or there are a; c; d 2 U such that:
f ða; cÞ ¼ f ða; dÞ ¼ r with c > d: ð6:16Þ
Clearly, f is strictly monotonic iff S is empty.
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Lemma 6.12 (Modifying a nondecreasing function). Let U be a countable subset of the ð0; 1Þ interval and
f : U � U ! R a function that is nondecreasing in its first argument and nonincreasing in its second argument.

There exists a function g : U � U ! R that is increasing in its first argument and decreasing in its second
argument and such that, for all u; v; u0; v0 2 U ,
½f ðu; vÞ > f ðu0; v0Þ
 ) ½gðu; vÞ > gðu0; v0Þ
 and ð6:17Þ

½f ðu; vÞ ¼ f ðu0; v0Þ
 ) ½gðu; vÞ ¼ gðu0; v0Þ
 iff f ðu; vÞ 62 S: ð6:18Þ

If, in addition, f vanishes on the diagonal (f ðu; uÞ ¼ 0, for all u 2 U ) (resp. is skew symmetric) there exists a
function g satisfying (6.17) and (6.18) that vanishes on the diagonal (resp. is skew symmetric).

The proof of this lemma, being rather uninformative, is relegated in Appendix B.

Proof of Theorem 6.11. Parts 1 to 4. We show that model ðL2D8Þ holds if and only if RC1 and AC123 hold.

The necessity of RC1 and AC123 for model ðL2D8Þ is clear, using Theorem 6.8. We show sufficiency.

Consider a representation of % in model ðL1D8Þ. From the proof of Theorem 6.8, we have:
ðzi;wiÞ%�
i ðxi; yiÞ () /iðuiðziÞ; uiðwiÞÞP /iðuiðxiÞ; uiðyiÞÞ: ð6:19Þ
Without loss of generality, we may suppose that U ¼ uiðXiÞ is included in ð0; 1Þ. We may then apply Lemma

6.12 to obtain a function ui that is increasing in its first argument and decreasing in its second argument.

According to (6.17), we have:
ðzi;wiÞ ��
i ðxi; yiÞ ) uiðuiðziÞ; uiðwiÞÞ > uiðuiðxiÞ; uiðyiÞÞ: ð6:20Þ
Hence, this function can be used as a basis of the definition of H in view of Lemma 5.15. This shows

sufficiency.

Combining Theorem 6.8 and Lemmas 5.15 and 6.12, the proof for models ðL2D9Þ, ðL2D10Þ and ðL2D7Þ
is similar.

Part 5. Necessity. In view of Theorem 6.8 we only have to show that TAC1 and TAC2 are necessary.

Suppose that % has a representation in model ðL2D11Þ. The premise of TAC1i, interpreted in terms of the

model, yields three inequalities:
Hð/iðuiðxiÞ; uiðyiÞÞ; ð/jðujðajÞ; ujðyjÞÞÞj 6¼iÞP 0; ð6:21Þ

Hð/iðuiðyiÞ; uiðziÞÞ; ð/jðujðyjÞ; ujðajÞÞÞj 6¼iÞP 0; ð6:22Þ

Hð/iðuiðziÞ; uiðwiÞÞ; ð/jðujðbjÞ; ujðwjÞÞÞj 6¼iÞP 0: ð6:23Þ

Due to skew symmetry of /i and oddness of H , (6.22) may be rewritten as:
Hð/iðuiðziÞ; uiðyiÞÞ; ð/jðujðajÞ; ujðyjÞÞÞj 6¼iÞ6 0: ð6:24Þ
Using the increasingness of H (resp. /i) in its ith (resp. first) argument, (6.21) and (6.24) imply

uiðxiÞP uiðziÞ. Substituting uiðziÞ with uiðxiÞ in Eq. (6.23) yields:
Hð/iðuiðxiÞ; uiðwiÞÞ; ð/jðujðbjÞujðwjÞÞÞj 6¼iÞP 0;
which establishes TAC1i. The proof for TAC2i is similar.

Sufficiency. From the proof of Theorem 6.8, we know that % has a representation in model ðL1D11Þ such
that
ðxi; yiÞ%��
i ðzi;wiÞ () /iðuiðxiÞ; uiðyiÞÞP /iðuiðziÞ; uiðwiÞÞ and ð6:25Þ

xi%
�
i yi () uiðxiÞP uiðyiÞ: ð6:26Þ
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In view of Lemmas 5.15 and 6.12, the proof will be complete if we show that after transforming the
functions /i into functions ui according to Lemma 6.12, it is still true that (5.18) holds, i.e. that:
Table

Model

Mo

ðL1D

ðL1D
m
ðL1D

ðL1D

ðL1D
m
ðL1D

ðL1D
m
ðL1D

ðL1D
m
ðL1D

ðL1D
ðL1D

%% m

Condi
ðzi;wiÞ ���
i ðxi; yiÞ and

9 a�i; b�i 2 X�i s:t: ðxi; a�iÞ � ðyi; b�iÞ

�
) uiðuiðziÞ; uiðwiÞÞ ¼ uiðuiðxiÞ; uiðyiÞÞ:
In view of (6.18), this will be true if, as soon as ðzi;wiÞ ���
i ðxi; yiÞ and 9 a�i; b�i 2 X�i s.t. ðxi; a�iÞ � ðyi; b�iÞ,

it is not true that /iðuiðxiÞ; uiðyiÞÞ 2 S. This results from (4.2) and (4.3). h

Remark 6.13 (Regular representations). For models ðL1D8Þ, ðL1D9Þ, ðL1D10Þ, ðL1D7Þ and ðL1D11Þ,
Theorem 6.8 shows that it is always possible to build a representation of these models in which:

• ui is a numerical representation of the weak order %�
i and

• /i is a numerical representation of the weak order %�
i , in model ðL1D8Þ and of the weak order %��

i in the

more constrained models.

We call regular a representation in which this is the case (see Roberts, 1979, Chapter 2 about regular-

ization of a scale of measurement).

In Theorem 6.11, the representations that we build start from the regular representations provided by

Theorem 6.8 and we modify them, in accordance with the restrictions of Lemma 5.15, so as to make /i

increasing in its first argument and decreasing in its second argument. This modification is done, on each
i 2 N , on a set Si containing all the values s such that:
s ¼ /iðuiðxiÞ; uiðziÞÞ ¼ /iðuiðyiÞ; uiðziÞÞ or s ¼ /iðuiðziÞ; uiðxiÞÞ ¼ /iðuiðziÞ; uiðyiÞÞ

for some xi; yi; zi 2 Xi such that xi ��

i yi. It is not difficult to see that the emptiness of the sets Si is a necessary

and sufficient condition to obtain a regular representation in the models envisaged in Theorem 6.11 (see

Bouyssou and Pirlot, 2002a, for details).
8

s ðL1D0Þ to ðL1D11Þ
dels Definition Conditions

0Þ x%y () Hð½/iðuiðxiÞ; uiðyiÞÞ
ÞP 0

/ið%;&Þ
£

1Þ ðL1D0Þ with /iðuðxiÞ; uiðxiÞÞ ¼ 0

ind.

2Þ ðL1D1Þ with /i skew symmetric

3Þ ðL1D2Þ with H odd cpl., ind.

4Þ ðL1D0Þ with Hð%Þ
RC1, AC123

8Þ ðL1D0Þ with Hð%%Þ

5Þ ðL1D1Þ with Hð%Þ
RC1, ind., AC123

9Þ ðL1D1Þ with Hð%%Þ

6Þ ðL1D2Þ with Hð%Þ
RC12, AC123

10Þ ðL1D2Þ with Hð%%Þ

7Þ ðL1D3Þ with Hð%Þ cpl., RC12, AC123
11Þ ðL1D3Þ with Hð%%Þ cpl., TC, AC123

eans increasing, % means nondecreasing, & means nonincreasing, cpl. means completeness, ind. means independence.

tions for the first four rows are identical to those of Table 6.



D. Bouyssou, M. Pirlot / European Journal of Operational Research 163 (2005) 287–337 327
Remark 6.14 (Extension to the general case). Because we have deliberately used above representations that

are not regular (i.e. /i does not necessarily represent %
�
i or %

��
i ), the extension of the results in this section to

the general uncountable case is slightly more involved than for other models (see Bouyssou and Pirlot,

2002a). This does not raise major difficulties however.

The main results in this section are summarized in Tables 8, 9 and Fig. 5.
Table 9

Models ðL2D0Þ to ðL2D11Þ
Models Definition Conditions

ðL2D0Þ x%y () Hð½/iðuiðxiÞ; uiðyiÞÞ
ÞP 0

/ið%%;&&Þ £

ðL2D1Þ ðL1D0Þ with /iðuðxiÞ; uiðxiÞÞ ¼ 0

m ind.

ðL2D2Þ ðL2D1Þ with /i skew symmetric

ðL2D3Þ ðL2D2Þ with H odd cpl., ind.

ðL2D4Þ ðL2D0Þ with Hð%Þ
m RC1, AC123
ðL2D8Þ ðL2D0Þ with Hð%%Þ

ðL2D5Þ ðL2D1Þ with Hð%Þ
m RC1, ind., AC123
ðL2D9Þ ðL2D1Þ with Hð%%Þ

ðL2D6Þ ðL2D2Þ with Hð%Þ
m RC12, AC123
ðL2D10Þ ðL2D2Þ with Hð%%Þ

ðL2D7Þ ðL2D3Þ with Hð%Þ cpl., RC12, AC123
ðL2D11Þ ðL2D3Þ with Hð%%Þ cpl., TC, TAC12

%% means increasing, % means nondecreasing, && means decreasing, cpl. means completeness, ind. means independence.

Conditions are identical to those of Table 8 except for the last row.

Fig. 5. Implication between models resulting from Theorems 6.8 and 6.11.
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7. Discussion

This paper has proposed a general approach of conjoint measurement models tolerating intransitivity and/

or incompleteness using simple tools based on several kinds of marginal traces on coordinates induced by the

binary relation on the product set. We have provided, when X is supposed to be countable, a fairly complete

analysis of a large variety of models. Our project was to investigate how far it was possible to go in terms of

numerical representations using a limited number of cancellation conditions without imposing any transi-

tivity requirement on the preference relation and any structural assumptions on the set of objects. Rather
surprisingly, as we saw, such a poor framework allows us to go rather far. Furthermore the cancellation

conditions that we used (RC1, RC2, Independence, TC, AC1, AC2, AC3, TAC1, TAC2) are reasonably simple

and have close relations with the conditions used in the analysis of traditional conjoint measurement models.

Our framework and results have many possible applications. Among them let us mention:

• the characterization of all relations compatible with a dominance relation, using our models based on

marginal traces on levels (see Bouyssou and Pirlot, 2002f),

• the characterization of preference relations that can be obtained using an ‘‘ordinal aggregation model’’
using our models based on marginal traces on levels (see Bouyssou and Pirlot, 2002b,c,e). Alternative

approaches to this kind of models may be found in Bouyssou and Vansnick (1986), Dubois et al.

(2003b), Fargier and Perny (2001), Fishburn (1976) and Tsouki�as et al. (2002),
• the characterization of various functional forms for F , G or H (see Bouyssou et al., 2002; Greco et al.,

forthcoming),

• the particularization of our results to the important case of decision under uncertainty Bouyssou et al.

(2000) and Bouyssou and Pirlot (2003a),

• the characterization of ‘‘ordinal’’ models (see Dubois et al., 1997) for decision under uncertainty (see
Bouyssou et al., 2000; Bouyssou and Pirlot, 2003b). Alternative approaches were proposed in Dubois

et al. (2003a) and Dubois et al. (2002).

It is clearly impossible to develop these points here. The patient reader who has followed us till now

should be in position to guess the general spirit of these results.

Summarizing the main messages in a few words, we would say that:

• when confronted to a nontransitive/noncomplete relation, it is always profitable to investigate its traces
and/or marginal traces,

• the use of conjoint measurement techniques is not restricted to the study of complete and transitive bin-

ary relations,

• if assessment procedures are not looked for, replacing additivity by mere decomposability requirements

often allows to grasp in a very simple way the essence of a model,

• replacing additivity by mere decomposability requirements amounts to using models which are inti-

mately related with ‘‘rule-based’’ preference modelling (Greco et al., 1999, 2001; Greco et al., 2002).

This allows to consider the possibility of deriving assessment procedures using the machinery of ‘‘rule
induction’’ in Artificial Intelligence.

Our framework and results are also intended to contribute to the general theory of conjoint measure-

ment. They allow to draw the following general picture of conjoint measurement models (see Fig. 6), where

models are classified, when studying the proposition x%y, according to whether:

• they use traces on differences, i.e. their functional form can be written so as to be nondecreasing in func-

tions piðxi; yiÞ,



Fig. 6. Summary of models. T means ‘‘transitive’’, D means ‘‘uses traces on differences’’, L means ‘‘uses traces on levels’’, �x means

‘‘Not x’’.
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• they use traces on levels, i.e. their functional form can be written so as to be nondecreasing in functions

uiðxiÞ and nonincreasing in functions uiðyiÞ,
• they are transitive.

These various models are summarized in Fig. 6, where T denotes a transitive model, L a model involving

traces on levels and D a model involving traces on differences. It is clear that the classical additive utility
model (1.1) is transitive and involves traces on levels (via the functions ui) and on differences (via the

differences uiðxiÞ � uiðyiÞ).
In the L family all relations are weakly separable but may not be weakly independent (and, even less,

independent). On the contrary, the D family includes only independent relations, as soon as axiom RC2 is

invoked. The marginal preference relations will be rather well-behaved in the L family being complete and

most often semi-orders (as soon as AC3 and either AC1 or AC2 are invoked). This will not be the case in the

D family.

It is worth noting that all combinations of T, L and D have been studied in the literature except for the
combination T;L;D. This is no surprise since when D applies, most models appeal to RC2 and, hence, are

independent. When this is combined with transitivity and completeness of %, %i is a weak order and is

confounded with %
�
i . Hence, such models also involve traces on levels.

Our hope is that the proposed framework and results will stimulate research in the area.
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Appendix A. Examples

A.1. AC1, AC2, AC3, TAC1 and TAC2

We first give three examples showing that, in the class of complete binary relations on X , AC1i;AC2i and

AC3i are independent conditions. We leave to the reader the easy task of finding similar examples in the case

of incomplete (e.g. irreflexive) binary relations. This will prove part 5 of Lemma 4.2. It is tedious, but easy,

to check that completeness, AC1i;AC2i and AC3i are in fact completely independent conditions.
Examples A.1–A.3 have a common structure. In all of them X ¼ X1 � X2 with X1 ¼ fw1; x1; y1; z1g and

X2 ¼ fw2; x2; y2; z2g. We define % on X by:
ðr1; r2Þ% ðs1; s2Þ () F ½f ðr1; s1Þ; gðr2; s2Þ
P 0; ðA:1Þ

where f (resp. g) is a real-valued function on X 2

1 (resp. on X 2
2 ) and F is a real-valued function on R2.

It is clear that, using obvious notation:

(1) When F is odd ðF ðxÞ ¼ �F ð�xÞÞ and f and g are skew symmetric ðf ðr1; s1Þ ¼ �f ðs1; r1ÞÞ,% is complete.

(2) When F is nondecreasing in its first argument, ½f ðr1; t1ÞP f ðs1; t1Þ for all t1 2 X1
 )
r1%

þ
1 s1 and ½f ðt1; r1Þ6 f ðt1; s1Þ for all t1 2 X1
 ) r1%

�
1 s1. Similar conditions hold for the second com-

ponent when F is nonincreasing in its second argument.

In all the following examples, f and g will be skew symmetric and F ða; bÞ ¼ a þ b, so that F is odd and

increasing in its two arguments.

Example A.1 (AC1, AC2, Not AC3). Define f and g by the following tables (all tables are to be read from

row to column):
Since the table for g is step-typed, it is clear that %�
2 is complete. Hence, AC12, AC22 and AC32 hold.

It is easily checked that AC11 holds with %
þ
1 as (using obvious simplified notation for weak orders):

½x1;w1
 �þ
1 y1 �þ

1 z1. Similarly, AC21 holds with: x1 ��
1 y1 ��

1 ½w1; z1
.
Because w1 �þ

1 y1 and y1 ��
1 w1, AC31 is violated.

Hence we have an example of a complete binary relation satisfying AC1, AC2 and AC3i on all but one

attribute.

Example A.2 (Not AC1, AC2, AC3). Define f by the following table:
and use the same table for g as in Example A.1. We have: Not½y1%þ
1 w1
 (because ðw1;w2Þ% ðx1;w2Þ and

Not½ðy1;w2Þ% ðx1;w2Þ
) and Not½w1%
þ
1 y1
 (because ðy1; y2Þ% ðz1;w2Þ and Not½ðw1; y2Þ% ðz1;w2Þ
). Hence AC11

is violated. In fact it is easy to check that %
þ
1 is such that x1 �þ

1 y1, x1 �þ
1 w1, x1 �þ

1 z1, y1 �þ
1 z1 and

w1 �þ
1 z1.
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It is easily checked that AC21 holds with x1 ��
1 ½y1;w1
 ��

1 z1. Using part 3 of Lemma 4.2, we can check
that AC31 holds.

Hence we have an example of a complete binary relation satisfying AC2, AC3 and AC1i on all but one

attribute.

Example A.3 (AC1, Not AC2, AC3). Transposing the tables defining f and g in Example A.2 gives an

example of a complete binary relation satisfying AC1, AC3 and AC2i on all but one attribute.

The next two examples are related to Lemma 4.5. We first show that there are weakly independent semi-

orders satisfying TAC12 that are not weak orders.

Example A.4 (Nontransitive semi-order satisfying TAC12). Let X ¼ X1 � X2 with X1 ¼ fx1; y1; z1g and

X2 ¼ fx2; y2; z2g. Consider the binary relation % identical to the weak order: ðx1; x2Þ > ðx1; y2Þ > ðy1; x2Þ >
ðx1; z2Þ > ðy1; y2Þ > ðz1; x2Þ > ðy1; z2Þ > ðz1; y2Þ > ðz1; z2Þ, except that ðy1; y2Þ � ðx1; z2Þ and ðz1; x2Þ � ðy1; y2Þ.

This relation is clearly complete. It is not transitive since ðz1; x2Þ% ðy1; y2Þ, ðy1; y2Þ% ðx1; z2Þ but

ðx1; z2Þ � ðz1; x2Þ.
It is easily checked that this relation is a semi-order having the preceding weak order for trace. This semi-

order is independent. Its marginal relations are weak orders identical to its marginal traces. We have

x1 > y1 > z1 and x2 > y2 > z2.
This relation has only a few pairs of alternatives linked by �. It is then easy to check that TAC12 holds.

For instance, starting with ðy1; y2Þ% ðx1; z2Þ we should have ðx1; y2Þ � ðx1; z2Þ, ðy1; x2Þ � ðx1; z2Þ and

ðy1; y2Þ � ðy1; z2Þ, because x1 ��
1 y1 and x2 ��

2 y2. This is indeed the case.

Hence we have an example of a nontransitive weakly independent semi-order satisfying TAC12.

The final example shows that for complete relations, TAC2 may hold without TAC1. An example of

complete relation verifying TAC1 but not TAC2 is easily built using a similar principle.

Example A.5 (Not TAC1, TAC2). Let X ¼ X1 � X2 with X1 ¼ R2 and X2 ¼ R.

Define % letting:
ðða1; b1Þ; x2Þ% ððc1; d1Þ; y2Þ () a1 þ x2 > c1 þ y2 or

a1 þ x2 ¼ c1 þ y2
and

a1 þ b1 P c1:

8<
:

It is clear that % is complete.

We have ða1; b1Þ%�
1 ðc1; d1Þ () a1 P c1 and ða1; b1Þ%þ

1 ðc1; d1Þ () ða1; b1ÞP Lðc1; d1Þ, where P L de-

notes the lexicographic order on R2. On the second attribute, it is clear that x2%
þ
2 y2 () x2%

�
2 y2 ()

x2 > y2.
A simple check shows that % is strictly responsive to %

þ
2 , %

�
2 and %

�
1 . This not so for %

þ
1 since, for

instance, ðð10; 0Þ; 10Þ � ðð8; 2Þ; 12Þ and ðð10; 2Þ; 10Þ � ðð8; 2Þ; 12Þ, while ð10; 2Þ �þ
1 ð10; 0Þ (because

ðð10; 2Þ; 10Þ% ðð11; 0Þ; 9Þ and Not½ðð10; 0Þ; 10Þ% ðð11; 0Þ; 9Þ
).
Hence we have an example of a complete relation satisfying TAC2 and TAC12 but violating TAC11.
A.2. RC1 and RC2

We first give six examples complete the proof of part 3 of Lemma 5.3 showing that independence,

reflexivity and RC1i are completely independent conditions.
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Example A.6 (Reflexive, RC1, not independent). Let X ¼ fa; bg � fz;wg and consider % on X defined by:

for all ða;bÞ, ðc; dÞ 2 X , ða; bÞ% ðc; dÞ () f ða; cÞ þ gðb; dÞP 0, where f and g are such that: f ða; aÞ ¼ �1,

f ða; bÞ ¼ 0:5, f ðb; aÞ ¼ �0:5, f ðb; bÞ ¼ 1, gðz; zÞ ¼ gðw;wÞ ¼ gðw; zÞ ¼ 1, gðz;wÞ ¼ 0.

It is easy to see that % is reflexive and satisfies RC1. It is not independent since ðb; zÞ% ðb;wÞ and

Not½ða; zÞ% ða;wÞ
.

Example A.7 (RC1, not reflexive, not independent). In Example A.6, taking f ða; aÞ ¼ �2 leads to a relation

% that verifies RC1 but is neither independent nor reflexive (since Not½ða; zÞ% ða; zÞ
).

Example A.8 (RC1, not reflexive, independent). Let X ¼ fa; bg � fz;wg and consider % on X defined by: for

all ða; bÞ, ðc; dÞ 2 X , ða; bÞ% ðc; dÞ () f ða; cÞ þ gðb; dÞP 0, where f and g are such that:

f ða; aÞ ¼ f ðb; bÞ ¼ f ðb; aÞ ¼ �1, f ða; bÞ ¼ 1, gðz; zÞ ¼ gðw;wÞ ¼ 0, gðz;wÞ ¼ 1, gðw; zÞ ¼ �1.

It is easy to see that % is not reflexive (it is in fact irreflexive). It is easily seen to satisfy RC1. Since
f ða; aÞ ¼ f ðb; bÞ and gðz; zÞ ¼ gðw;wÞ, % is clearly independent.

Example A.9 (not RC1, reflexive, independent). Let X ¼ fa; b; cg � fz;wg and consider % on X that is a
clique (with all loops) except that Not½ða; zÞ% ðc;wÞ
 and Not½ða;wÞ% ðb; zÞ
.

It is clear that % is reflexive. It can easily be checked that % is independent. It does not satisfy RC1 since:

ða; zÞ% ðb;wÞ, ða;wÞ% ðc; zÞ, Not½ða; zÞ% ðc;wÞ
 and Not½ða;wÞ% ðb; zÞ
.

Example A.10 (not RC1, not reflexive, independent). Modifying Example A.9 in order to have % irreflexive

gives an example of a relation that is independent but violates RC1 and reflexivity.

Example A.11 (not RC1, reflexive, not independent). Modifying Example A.9 in order to have
Not½ðb; zÞ% ðb;wÞ
 leads to a relation % that is reflexive but violates independence and RC1.

We now give three examples that complete the proof of part 4 of Lemma 5.3 showing that RC1i and RC2i

are completely independent conditions in the class of complete relations.

Example A.12 (not RC1, not RC2). Let X ¼ fa; b; cg � fz;w; kg and consider % on X that is a clique (with

all loops) except that Not½ða; zÞ% ðc;wÞ
, Not½ða; kÞ% ðb; zÞ
 and Not½ðc; zÞ% ða;wÞ
. It is clear that % is

complete. Since ða; zÞ% ðb;wÞ, ðc; kÞ% ða; zÞ, Not½ða; kÞ% ðb; zÞ
 and Not½ðc; zÞ% ða;wÞ
, % violates RC1. Since
ða; zÞ% ðb;wÞ, ðb; zÞ% ða;wÞ, Not½ða; zÞ% ðc;wÞ
 and Not½ðc; zÞ% ða;wÞ
, % violates RC2.

Example A.13 (not RC1, RC2). Modify Example A.12 adding the relation ða; zÞ% ðc;wÞ. It is clear that % is

complete and violates RC1. Using Lemma 5.2, it is not difficult to see that it satisfies RC2.

Example A.14. (RC1, not RC2). Let X ¼ fa; bg � fz;wg and consider % on X defined by: for all ða; bÞ,
ðc; dÞ 2 X , ða; bÞ% ðc; dÞ () f ða; cÞ þ gðb; dÞP 0, where f and g are such that: f ða; aÞ ¼ �1,

f ða; bÞ ¼ f ðb; aÞ ¼ f ðb; bÞ ¼ 1, gðz;wÞ ¼ 0, gðz; zÞ ¼ gðw;wÞ ¼ gðw; zÞ ¼ 1.
It is easy to see that % is complete and satisfies RC1. It is not independent since ðb; zÞ% ðb;wÞ and

Not½ða; zÞ% ða;wÞ
. In view of part 2 of Lemma 5.3, this shows that RC2 is violated.

A.3. TC, AC1, AC2, AC3

We show below that, in the class of complete binary relations conditions TCi, AC1i, AC2i and AC3i are

independent.
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Example A.15 (AC1,AC2, AC3, Not TC). Let X ¼ fa; b; cg � fd; e; f g; x%y iff Gðp1ðx1; y1Þ; p2ðx2; y2ÞÞP 0

with
Gða; bÞ ¼ a þ b if ja þ bj > 2;
0 otherwise;

	

and p1 and p2 given in the following tables:
G is odd and nondecreasing and p1, p2 are skew symmetric; hence % is complete and satisfies RC1, RC2.
Condition TC is violated since ðc; dÞ% ða; f Þ, ða; eÞ% ðc; dÞ, ða; dÞ% ðb; eÞ but Not½ða; dÞ% ðb; f Þ
.

It is easily checked that AC1, AC2 and AC3 hold with b ��
1 c ��

1 a and f ��
2 ½d ��

2 e
.

Example A.16 (Not AC1, AC2, AC3, TC). Let X ¼ fa; b; cg � fd; e; f g. Define % letting x%y iff

Gðp1ðx1; y1Þ; p2ðx2; y2ÞÞP 0, with p1 and p2 given in the following tables:
and G such that:
G is odd and increasing in its two arguments and p1, p2 are skew symmetric implying that % is complete and

satisfies TC.
It is easy to check that we have: c ��

1 a ��
1 b, c �þ

1 b, a �þ
1 b, Not½c%�

1 a
, Not½a%�
1 c
, d ��

2 e ��
2 f .

Hence AC2 and AC3 hold but AC11 is violated (while AC12 holds). One verifies indeed that we have
ðc; f Þ% ðc; f Þ and ða; f Þ% ðb; eÞ but neither ða; f Þ% ðc; f Þ nor ðc; f Þ% ðb; eÞ.

Example A.17 (AC1, Not AC2, AC3, TC). This example is the same as Example A.16 except that p1 becomes

�p1. The effect of this modification is to interchange the rôles of AC11 and AC21 since the value associated
to the pair ðy1; x1Þ is the value that was formerly associated to ðx1; y1Þ in Example A.16. Therefore % is

complete and verifies TC.
We have: b �þ

1 a �þ
1 c, b ��

1 c, b ��
1 a, Not½a%�

1 c
, Not½c%�
1 a
, d ��

2 e ��
2 f . Hence AC1 and AC3 hold

but AC21 is violated (while AC22 holds). One verifies indeed that ðc; f Þ% ðc; f Þ and ðb; eÞ% ða; dÞ but neither
ðc; f Þ% ða; f Þ nor ðb; eÞ% ðc; dÞ.

Example A.18 (AC1, AC2, Not AC3, TC). Let X ¼ fa; b; c; dg � fw; x; y; zg. Define % as in Example A.16

with the same table for G and p1, p2 given in the following tables:
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Since G is odd and increasing and p1, p2 are skew symmetric, we know that % is complete and verifies TC.
It can be checked that we have: w ��

2 x ��
2 y ��

2 z, a �þ
1 d �þ

1 b �þ
1 c and a ��

1 b ��
1 d ��

1 c. Hence AC1
and AC2 hold but AC3 is violated since neither d%�

1 b nor b%�
1 d.
Appendix B. Proof of Lemma 6.12

We prove Lemma 6.12 in the most constrained case, i.e. when f is skew symmetric. Since U is countable,

the set S of values r for which there are a; b; c; d 2 U such that either:
f ða; cÞ ¼ f ðb; cÞ ¼ r with a > b or f ða; cÞ ¼ f ða; dÞ ¼ r with c > d
is countable.

Consider separately the positive part Sþ ðr > 0Þ, the null part S¼ ðr ¼ 0Þ and the negative part S� ðr < 0Þ
of S. We number arbitrarily the elements of Sþ and S�:
rþ1 ; r
þ
2 ; . . . for the elements of Sþ;

r�1 ; r
�
2 ; . . . for the elements of S�:
For each u; v in U � U , we define gðu; vÞ letting:
gðu; vÞ ¼

u � v if f ðu; vÞ ¼ 0;

f ðu; vÞ þ 1þ
P

k:rþk <f ðu;vÞ ð1=2Þ
k

if f ðu; vÞ > 0 and f ðu; vÞ 62 S;

rþi þ 1þ
P

k:rþk <rþi
ð1=2Þk þ ð1=2Þiþ1ð1þ u � vÞ if f ðu; vÞ ¼ rþi ;

f ðu; vÞ � 1�
P

k:r�k >f ðu;vÞ ð1=2Þ
k

if f ðu; vÞ < 0 and f ðu; vÞ 62 S;

r�i � 1�
P

k:r�k >r�i
ð1=2Þk � ð1=2Þiþ1ð1� u þ vÞ if f ðu; vÞ ¼ r�i :

8>>>>>>>><
>>>>>>>>:
The function g is now fully described. It is skew symmetric since f is. It is strictly monotonic on f �1ðrÞ,
for all r 2 S. By construction, we have:
½f ðu; vÞ ¼ f ðu0; v0Þ
 ) ½gðu; vÞ ¼ gðu0; v0Þ
 iff f ðu; vÞ 62 S: ðB:1Þ

It is easy to check that g is increasing in its first argument, decreasing in its second argument and such that

(6.17) holds. h
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