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A B S T R A C T   

The effects of sloping ground on the vertical pile-to-pile interaction for end-bearing piles embedded in a ho
mogenous soil are investigated through three-dimensional finite element simulations. The wave propagation 
mechanism and pile to pile interaction factor are investigated in detail from displacement and axial force per
spectives. For contrast, soil attenuation and wave diffraction induced by a vertically vibrating end-bearing pile in 
horizontal ground are also studied. The highlight is put on the amplitude and phase lag in soil-pile system to 
reveal the essential characteristics of dynamic pile-pile interaction. Numerical results show that the dynamic 
displacement of a free field is position dependent. Moreover, the interaction factor of receiver pile on the upslope 
side is larger than the one on the downslope, since the longer embedded segment absorbs a greater amount of 
energy from the surrounding soil. On the basis of the numerical findings, an analytical model is established to 
calculate the dynamic responses of pile groups in sloping ground.   

1. Introduction 

Piles are generally subjected to dynamic loads from a range of 
sources such as vibrating machines, earthquake action, wind, or traffic 
vehicles, etc. The vibrating (‘source’) pile shaft can generate shear waves 
that will spread out and strike an adjacent pile (namely the ‘receiver’ 
pile), thereby imposing an additional vertical displacement on the 
receiver pile. The resultant displacement of receiver pile is significantly 
influenced by the amplitude and phase lag of striking waves which are 
dependent on the propagation distance and wavelength of the striking 
waves in soil medium. Specifically, when the waves arrive in an opposite 
phase with that of the source pile, the displacement of receiver pile is 
positively suppressed; when the waves arrive in approximately the same 
phase, that displacement is undesirably amplified. As a result, the dy
namic stiffness at the pile head may be significantly reduced at certain 
frequencies and spatial locations, or be greater than the stiffness sum
mation of all the individual piles (Wolf and Von 1978, Gazetas and 
Makris 1991, Wolf 1998). This is in contrast to the static pile-pile 
interaction, which always amplifies the displacement of the receiver 
pile (Poulos 1968, Randolph and Wroth 1978, Kanellopoulos and 

Gazetas 2019). 
Due to the complex wave superposition process and potential 

aforementioned mechanism, the issue on calculating dynamic responses 
has received considerable attention in the past few decades. For the 
single pile case, soil attenuation factor φ is introduced to evaluate the 
attenuation effects of the free field vibration induced by the vibrating 
pile as shown in Fig. 1(a). For the pile group, one of the most efficient 
methods to calculate the dynamic response is based on the concept of 
‘interaction factor’ αv that is defined as the ratio of the vertical 
displacement u1 at the head of the loaded pile by the vertical displace
ment u3 at the head of the receiver pile as shown in Fig. 1(b). 

Dobry and Gazeta (1988) proposed a practical and useful framework 
to calculate the “dynamic impedance of pile group”, which is a critical 
physical quantity for engineering design and equals the ratio of the 
external force PG acting on the cap to the induced cap displacement uG 
during vibration as shown in Fig. 1(c). In the study by Dobry and Gazeta 
(1988), the displacement u3 of receiver pile was approached by the 
vertical displacement u2 of the free field in position, i.e., αv = φ. That 
approximation gave a satisfactory estimation of interaction factor from a 
practical perspective, especially for the floating piles (Makris, and 
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Gazetas 1993). Furthermore, Mylonakis et al. (1998) introduced the 
concept of ‘diffraction factor ζ’ to consider the diffraction of the arriving 
wave field due to the rigidity of the passive pile and the interaction 
between pile and surrounding soil. As a consequence, αv equals the 
product of soil attenuation factor and diffraction factor, i.e., αv = φζ. 
Mylonakis et al (1988) elaborated the influences of axial stiffness of piles 
on the interaction factor, whereas the soil attenuation factor still re
quires the traditional plane strain assumption that neglects the vertical 
propagation of waves in soil. Taking account of the radial soil 
displacement and the vibration attenuation along vertical direction, 
Luan et al. (2019) deduced a rigorous three-dimensional solution for 
end-bearing group of piles in horizontal soil. More successful imple
mentations involving dynamic pile-pile interaction in this domain were 
reported in Kanellopoulos and Gazetas (2019), Gazetas et al. (1993), 
Ullash et al. (2018), Zhang et al. (2019), etc. 

In the recent years, increasing engineering projects of pile founda
tions for bridges, embankments and transmission towers locate in 
sloping topography (Lin and Yang 2013, Zhao et al., 2014, Nontapat 
et al., 2018, Lei et al., 2019). It is reported that ground slope will amplify 
the soil reaction (Srbulov 2010, Tripe et al. 2013), reduce the soil 
resistance and decrease the bearing capacity of piles (Choudhury et al. 
2006, Van 2014). A recent experimental study by Qu et al. (2020) finds 
that sloping ground topography may prominently increase the cyclic 
displacement of single piles. 

However, the effects of ground inclination on the dynamic interac
tion of pile and soil, is still not clear, not to mention the underlying 
mechanism. On the other hand, the analytical solutions under the 
irregular boundary conditions, e.g. soil surface inclination (Luco and 
Mita 1987, Peplow et al. 1999, Qu et al.2017, Ding et al. 2018) are far 
from sufficient, despite the fact that significant progress in the theoret
ical aspect has been achieved for pile dynamic analysis (Cui et al. 2018, 
Li et al. 2019, Luan et al. 2020a, 2020b, Ding et al.2019, Wu et al. 2020). 
The previous analytical solutions mainly focus on the piles in the ground 
of horizontal soil profile, which may not adapt to the sloping ground 
condition. To fill the gaps, this study numerically examines the possible 
effects on the soil vibration attenuation of free field and the interaction 
factor of piles in sloping ground. The piles are considered to be end- 
bearing, and only vertical responses are analyzed, i.e, the larteral 
deformation of piles are neglected during both the installation and vi
bration phases (Han et al., 2017, Zhou et al. 2020). Through the 
amplitude and phase of displacement, sloping ground effects on dy
namic pile-to-pile interaction are investigated. Then, a simplified 
calculating method is proposed on the basis of numerical simulation. 

2. Problem definition and method 

The problem considered in the current work is the interaction of two 
cylindrical piles in a sloping ground where one pile is subjected to a 
vertical dynamic force at the head while the other does not carry any 
load. The soil is considered as homogeneous, viscoelastic material and 

the pile is assumed to be perfectly elastic; the motion of pile-soil system 
is assumed to be small and thus no particle breakage (Peng et al., 2021), 
relative slip and separation (between the pile and soil) could occur 
during vibration, from those this study’s limitation can be derived. 
Despite of all this, models of such explicit or ideal settings play a 
fundamental role to understand the nature of complicated dynamic pile 
soil interaction problem under irregular boundary condition. Fig. 2 

Fig. 1. Definition for soil attenuation factor, interaction factor and dynamic 
impedance of pile group (schematic). The symbol s is the distance of receiver 
position from loaded pile. (a) soil attenuation factor φ; (b) interaction factor αv; 
(c) dynamic impedance of pile group (calculated by PG/uG). 

Fig. 2. Schematic illustration of dynamic pile-to-pile interaction in horizontal 
and sloping ground. (a) Depth profile of vertical displacement amplitudes of a 
loaded pile and of a passive pile in horizontal ground are assumed to be of the 
same shape; (b) will the displacement profiles of the two piles in sloping ground 
remain the same? (c) illustration of amplitude attenuation and time delay 
in piles. 
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shows the dynamic interaction of piles in sloping ground, as well as the 
horizontal ground that is a natural degradation of that sloping case. For 
the horizontal ground, it is usually assumed that the shaft perimeter of 
the loaded pile will simultaneously emit cylindrical waves that propa
gate horizontally in the radial direction. Under this hypothesis, the 
vertical displacement amplitude of the active pile and passive pile will 
share the same profile along depth as shown in Fig. 2(a), and the 
arriving waves at various depths of the passive pile are all in phase, i.e. 
no time delay. That deduction is a crucial basis for calculating the dy
namic impedance by superposing interaction factors. The reason why 
the aforementioned approach achieves satisfactory performance for 
floating piles in homogenous strata, has been shown theoretically 
(Makris and Gazetas 1993) and numerically (Kanellopoulos and Gazetas 
2019). The question arises as to whether the simplified deduction still 
remain reasonable for end-bearing piles since restrained bottom and 
pile’s rigidity will cause apparent wave diffraction. Moreover, does the 
displacement profiles of the pile in sloping ground (shown in Fig. 2(b)) 
still obey the aforementioned empirical pattern? And, if not, how does 
the displacement distribution change? In order to reveal this problem, 
the amplitude and time delay of the wave crest (shown in Fig. 2(c)) in 
the whole pile-soil system are studied. Harmonic excitation is for 
conveniently obtaining the amplitude and phase at certain frequencies, 
which demonstrated an alternative and efficient method (Kanellopoulos 
and Gazetas 2019) through finite element (FE) method. 

3. FE model description and verification 

Three-dimensional finite element models developed in this paper are 
described and verified in this section. In simulation, linear elastic ma
terial law is considered for piles and viscoelastic linear material is 
applied to soil, since non-linear behavior of the soil is often neglected 
under small strain range (Di Benedetto et al., 2003). The interface be
tween pile and soil is assumed to have perfect contact, i.e, no relative 
slip and separation occur, which is a common treatment in the domain of 
dynamic interaction of pile and soil (Kouroussis et al. 2009, Luan et al., 
2019, Wu et al., 2020). Dynamic load p considered in this study is 
vertically distributed on the pile top and has a harmonic wave form of 
p = sin(2πft): excitation frequency (f) varies from 0.5 Hz to 10 Hz, which 
is a common range for soil dynamic analysis. Note that the combined 
viscous boundary and infinite elements (proposed by Kouroussis et al. 
2013), which are capable to provide both stiffness and energy vanish 
surrounding the finite domain, are introduced to minimize the influence 
of reflecting waves on the concerned positions: 2d, 5d, 10d radial dis
tance off the pile centerline, where d denotes the pile diameter. Addi
tionally, for the pile medium, only the vertical motion is considered, i.e., 
the horizontal and bending deformation is suppressed. 

The pile characteristics are: mass density ρp 2400 kg/m3; Young’s 
modulus Ep 20 GPa, Poisson’s ratio 0.17, diameter d 1 m, shaft length H 

includes two parts: exposed length H1 and embedded length H2; the soil 
characteristics are: mass density ρs 1800 kg/m3, slope angle θ = 0◦, 27◦

or arctan(0.5), 45◦; Young’s modulus Es varies from 20 MPa to 200 MPa; 
Poisson’s ratio 0.3. Detailed parameters of numerical models can be 
referred Case 1 to Case 12 summarized in Table 1, in which Case 4, Case 
5 and Case 8 are presented in Fig. 3(a), (b) and (c), respectively. 
Considering the symmetrical nature of the concerned problem, only half 
model is built, and the normal direction of symmetry boundary is par
allel to Y axis. The meshes around the piles and the zone of interest 
shown in the right parts of Fig. 3(a), (b) and (c), are modeled using 
hexahedral solid elements (C3D8 in Abaqus software), and strictly meet 
the empirical restriction: a maximum element size of 0.1λmin (Kanello
poulos and Gazetas 2019), where λmin is the minimum concerned 
wavelength. Rayleigh damping is set to account for the soil damping 
behavior (Kanellopoulos and Gazetas 2019). The two coefficients α and 
β of Rayleigh damping can be obtained by: α = 2κω1ω2/(ω1 + ω2), 
β = 2κ/(ω1 + ω2), where α is mass-dependent and β is stiffness- 
dependent, κ is the damping ratio of soil and a small strain damping 
level of 5% Rayleigh damping is applied here; ω1 and ω2 are the first 
circular natural frequency and the second natural frequency, respec
tively, which can be extracted through the Lanczos eigensolver in the 
frequency module of Abaqus. Iterative algorithm and implicit integra
tion are employed to attain satisfactory accuracy. Dynamic implicit al
gorithm is carried out in time domain to avoid excessive number of FE 

Table 1 
Soil and pile properties in numerical simulation.  

Case 
ID 

Slope 
angle 

Pile length 
by diameter 
(H/d) 

Embedded pile 
length by 
diameter (H2/ 
d) 

Modulus 
ratio of pile 
over soil (Ep/ 
Es) 

Number of 
piles in 
model 

1 0◦ 15 15 1000 1 
2 0◦ 15 15 100 1 
3 0◦ 30 30 1000 1 
4 0◦ 25 15 1000 1 
5 27◦ 25 15 1000 1 
6 45◦ 25 15 1000 1 
7 0◦ 25 15 1000 3 
8 27◦ 25 15 1000 3 
9 45◦ 25 15 1000 3 
10 0◦ 25 15 100 3 
11 27◦ 25 15 100 3 
12 45◦ 25 15 100 3  

Fig. 3. 3D FE models with various geometry: (a) model for computing soil 
attenuation factor away from a partially-embedded pile in horizontal ground 
(case 4); (b) model for computing soil attenuation factor around a partially- 
embedded pile in sloping ground with angle 27◦ (case 5); (c) model for 
computing pile-pile interaction factor at 2d off a partially-embedded pile in 
sloping ground with angle 27◦ (case 8). 
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nodes. (Kouroussis et al. 2009). 
Fig. 4 shows the vertical displacement time history at the positions: 

0d (pile top), 2d, 5d, 10d radial distance from the centerline of the fully 
embedded pile for Case 1. Obvious time delay and displacement decay 
are observed when receiver position moves further from the source. In 
the following analysis, amplitude and phase lag are calculated with the 

time delay and peak displacement to straightforwardly report the 
fundamental dynamic behaviors. 

To verify the accuracy of the finite element method, the problem of 
soil vibration attenuation around a single end-bearing pile that is fully- 
embedded in horizontal ground is considered. The results obtained by 
the finite element method are compared with a published analytical 
solution by Luan et al. (2019), which considers the effects of both 
radially and vertically propagating waves on the soil attenuation factor 
and gives an accurate solution at low frequency (f) range. Natural fre
quencies of the model can be calculated in Abaqus as ω1 = 10.6 rad/s, 
ω2 = 11.8 rad/s. In order to conform with the study (Luan et al. 2019), 
the soil damping ratio for verification takes κ = 0.02. Additionally, 
alternative calculations that adopt κ = 0.05 are also done for 
comparison. 

Fig. 5(a) shows that the results from FE method at ξ = 0.02 well 
agree with analytical solution in amplitude while the numerically yiel
ded amplitude decreases at high frequency (say larger than 5 Hz in this 
paper) as κ increases from 0.02 to 0.05. Note that the amplitude at soil is 
normalized with respect to the one at pile head, i.e, u(0,0), to address the 
vibration attenuation as frequency varies. Fig.(b) shows that a slight 
deviation between FE and Luan’s solution occurs when f exceeds 5 Hz, 
which is partially due to the different damping settings—hysteretic 
damping in analytical solution by Luan et al. (2019) and Rayleigh 
damping in the presented FE model. It reflects that the Rayleigh 
damping, to some extent, overestimates the phase at high frequency 
because of indirect approximation of physical energy dissipation 
(Kramer 1996). Whereas, the numerical algorithm demonstrates a 
feasible technique to deal with the wave propagation problem. 

Fig. 4. Vertical displacement time history at different positions of single pile- 
soil system with a 5 Hz-harmonic excitation at pile head. H = 15 m, d = 1 m, 
Es = 20 MPa, Ep = 20 GPa. 

Fig. 5. Comparisons of soil attenuation factors between the used finite element and available analytical solution for horizontal ground. Ep = 25 GPa, Es = 26 MPa, 
H = 20 m; d = 1 m. 

Fig. 6. The influences of critical parameters of pile-soil system on the soil attenuation factor in level ground (H/d = 15). Amplitudes at 2d, 5d, 10d soil positions are 
normalized with respect to the one at pile head. 

L. Qu et al.                                                                                                                                                                                                                                       
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4. Dynamic interaction of soil and pile in horizontal ground 

4.1. Soil vibration attenuation around fully embedded pile 

The soil deformation tends to decrease as the wave spreads out. In 
this section, vibration characteristics of pile in horizontal ground is 
presented to capture the main features of dynamic pile-soil interaction 
in horizontal ground. 

Cylindrical wave type is an empirical but robust rule that estimates 
the soil vibration induced by a vertically floating pile in level ground, 
which premises on the assumption that the compressive wave along 
vertical direction is neglectable. The natural frequency of soil deposit 
can be estimate by the formula f =Vs/4H, in which Vs denotes shear 
wave speed in soil. Therefore, the values of natural frequency for Case 1 
and Case 2 gets 1.1 Hz and 3.4 Hz. Fig. 6 shows the influence of pile-soil 
relative stiffness (Ep/Es) on the displacement of soil surface at various 
positions at various loading frequencies. In Fig. 6(a), it is observed that 
the amplitude notably decays when the receiving positions moves away 
from pile centerline. Nonetheless, the influence of relative stiffness on 
the displacement amplitude is not significant. For Ep/Es = 1000, a 
similar frequency-dependent attenuation amplitude is observed on the 
curves for 2d, 5d and 10d from pile axis: The amplitude for soil atten
uation factor increases to maximum at less than 1.5 Hz, and then grad
ually falls in Fig. 6(a). For Ep/Es = 100, it appears that the amplitude of 
soil peaks at around 4 Hz whereas it is generally insensitive to frequency. 
The explanation for the different behaviors on stiff soil (Ep/Es = 100) 
and soft soil (Ep/Es = 1000) is straightforward: waves in stiff soil tend to 
spread in three dimensions (compressive wave components emerge) and 
thus exhibit more rapid decay in amplitude at low frequency range; on 
the other hand, waves in stiff soil travel with greater speed, which leads 
to the obvious reduction of phase lag as Ep/Es decreases from 1000 to 
100. Also, energy loss in soft soil significantly increases with frequency 
whereas that growth for stiff soil is gently mild as indicated in Fig. 6(b), 
which accounts for the trend that amplitude for Ep/Es = 100 remains 
larger than that for Ep/Es = 1000 at larger frequency range. 

The displacement along depth plays a role in revealing how soil 
deforms and how waves propagate inside the pile-soil system. In Fig. 7 
(left), the single solid line and solid line with symbol show the 
displacement normalized by the pile top displacement u(0,0), and the 
one normalized by the pile shaft displacement at the same horizontal u 
(0,z), respectively. Note that the considered loading frequency is 0.5 Hz. 
It is found that the displacement at pile centerline constantly falls as pile 
depth increases. However, for the soil displacement along 2d centerline, 
the displacement reduces slowly within a certain depth, then quickly 
decreases till zero. That critical depth tends to increase when receiver 
positions moves away from the pile centerline. On the other hand, when 

the displacement along depth is normalized by shaft displacement of the 
loaded pile, it is found that the displacement varies a little along depth, 
which indicates the soil displacement attenuation is relatively stable 
along depth. The right part of Fig. 7 shows that the phase lag gradually 
increases as radial distance increases (the same hereinafter). At 
f = 0.5 Hz, the phase is less than 15◦ for a range of 10d radial distance 
and is nearly invariable along depth. 

Following the similar method, the normalized amplitude and phase 
lag at 2d, 5d radial distance are shown at f = 5 Hz, f = 10 Hz in Fig. 8(a) 
and (b) respectively. It is evident that the normalized amplitude be
comes flatter as frequency increases. Another finding is that the phase 
lag along depth significantly increases with increasing frequency-the 
phase lag at different depth of pile can rise to near 50◦ at 10 Hz. Thus, 
for end-bearing piles, the typical assumption by Dobry and Gazeta 
(1988) that the out-going waves emit simultaneously from all the peri
metric points of pile shaft may cause unneglectable deviation as fre
quency grows. Nevertheless, at Ep/Es = 1000, the phase difference 
among different radial distances (0d, 2d, 5d) vary rather limitedly as 
depth increases, which justifies the simplification by Mylonakis et al. 
(1998) that the shear waves generated from pile shaft propagates in 
approximately horizontal manner. 

4.2. Influence of exposed pile segment on soil vibration attenuation 

The vibration energy in the unembedded pile segment relies on the 
mass and loading frequency and will naturally affect the displacement in 
the embedded one. It remains not yet sure whether the exposed segment 
plays a role in the dynamic pile soil interaction. Fig. 9 compares the 
time-domain displacements between a partially and a fully embedded 
pile, including pile head displacements denoted by u(0, 0) or 0d and soil 
displacements at 2d, 5d and 10d radial distances. Note that the 

Fig. 7. Normalized displacement profile of single-pile system at frequency 
0.5 Hz for Case 3. 

Fig. 8. Depth profiles of amplitude and phase lag at various frequencies for 
Case 3. 

Fig. 9. Comparisons of time-domain displacements in partially and fully 
embedded pile-soil system. f = 0.5 Hz for Case 1 and Case 4. 
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displacements here are normalized by the pile displacement of the 
partially embedded pile at the embedded level, namely by u(0, H1). It is 
apparently that the additional free length amplifies the displacement at 
pile top but barely modifies the soil displacement. 

Furthermore, Fig. 10 shows that the exposed segment hardly changes 
the soil attenuation factor (both amplitude and phase) at given fre
quencies. It is anticipated because that the apparent velocity of 
compression-extension wave in a free bar approximates the longitudinal 
wave speed, and thus the time delay and amplitude decay are rather 
small when the wave passes through the exposed segment. Hence the 
influence of exposed segment will not be further discussed in this study. 

5. Vibration attenuation and wave propagation in sloping 
ground 

5.1. Direction-dependent soil attenuation factor on sloping ground 

Vibration attenuation of soil relies on the pile-soil interaction and 
wave propagation manner. As shown in Fig. 11(a), the soil attenuation 
factor in sloping ground, which is calculated using the pile head 
displacement, is direction-dependent: upslope amplitude is generally 
smaller than downslope, which arises from the different geometric 
damping and energy dispersion when waves pass through downslope 
and upslope. Furthermore, the amplitude varies with the receiving 

Fig. 10. Comparison of soil attenuation factor between partially and fully embedded piles. Amplitudes at 2d, 5d, 10d are normalized with respect to the one of pile 
section at ground level. 

Fig. 11. Comparison of soil attenuation factors along two directions in sloping ground and horizontal ground. Ep/Es = 1000, H1 = 10d, H2 = 15d, slope angle 27◦.  

L. Qu et al.                                                                                                                                                                                                                                       
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position. The amplitude in horizontal ground is taken as reference. At 2d 
off loaded pile, the reference amplitude is between upslope and down
slope; at 5d and 10d, it approaches to the value on downslope. Besides, 
the peak frequency seems to be dependent with the deposit height at 
receiving position, which is understandable since resonant frequency of 
soil field is positively correlated with soil height from sub rock 

(Gutowski et al. 1976). As shown in Fig. 11(b), the phases among 
different topography generally have small differences except that up
slope 10d position yields obvious phase lag when frequency exceeds 
5 Hz, which may be attributed to the large soil damping along upslope. 
Considering that the vibration at 10d position is quite weak, the phase 
lag can only exert an insignificant influence on interaction. Therefore, 
the displacement amplitude is exclusively focused in the hereafter 
analysis. 

The graphical comparison of vertical displacement field, shown in 
Fig. 12, can reveal what happens for the vibrating pile-soil system when 
the wave spread out along sloping ground. It is clear that the displace
ment of the loaded pile is rather insensitive to ground inclination. For 
the soil domain, perfectly central symmetry is observed for the 
displacement contours in the case of horizontal ground. However, the 
symmetry tends to deteriorate when slope angle increases. It is observed 
that the displacement concurs tend to deviate with the reference circles 
as slope increases. Also observe that the wave front near ground surface 
obviously tilts (approximately parallel to the ground surface) when 
wave propagates upslope; while only limited wave rays change paths 

Fig. 12. Peak displacement contours of soil-pile systems under various ground inclination. Ep/Es = 1000, H = 25d, H1:H2 = 2:3, f = 5 Hz; the centers of reference 
circles locate at the pile centerlines. 

Fig. 13. The wave propagation paths of vibrating pile in horizontal and 
sloping ground. 

Fig. 14. Sloping ground effects on interaction factor with frequency variation for the pile-soil system with different properties. H1/H2 = 2/3, H2/d = 15.  
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through downslope. 
The wave paths (similar with the concept of ‘wave rays’ in Gazetas 

and Makris, 1991) illustrated in Fig. 13 may explain the differential 
vibration of soil field located downslope and upslope. Just consider the 
case of Ep/Es = 1000 or larger in horizontal ground, Section 3.1 has 
confirmed that horizontal wave dominates the soil vibration at that 
condition, which is shown in the left sketch in Fig. 13. By contrast, for 
the case of sloping ground, no horizontal wave from vibrating pile can 
directly reach P1, thus the vibration of P1 in sloping ground is impaired 
because of lacking a significant portion of energy. At the same time, P2 
receives supplementary energy from inclined waves and thus vibrates a 
little bit more dramatically compared with P2 in horizontal ground. 

5.2. Interaction factors in sloping ground 

Fig. 14(a) shows that the interaction factor of receiver pile increases 
with frequency at similar increasing rates for different ground in
clinations at Ep/Es = 1000. Moreover, the pile positioned upslope ob
tains the larger interaction factor. The divergence between upslope pile 
and downslope pile increases from around 20% to 40% as the slope 
increases from 27◦ to 45◦. Note that frequency appears to exert a weak 
influence on that divergence. In addition, when the slope is milder 
(27◦in this study), the pile located downslope suffers approximate vi
bration with horizontal ground, which indicates that the downslope pile 
is less affected under gentle slope topography. At Ep/Es 100 and buried 

length H2 = 15d, the interaction factor becomes flatter as depicted in 
Fig. 14 (b). Moreover, divergence between upslope and downslope piles 
shows a decreasing trend as frequency increases; and no significant 
difference is observed at 10 Hz. 

Fig. 15 shows the variation of axial force profile for the piles in the 
ground of various inclination. It is obvious that the axial force gradually 
reduces after the loaded pile is buried in the soil. As for the passive piles, 
the axial force of free segment approaches zero, and it increases with the 
buried length at a decreasing rate. Furthermore, larger axial force is 
observed in the passive pile at upslope side, which reflects that the pile 
with longer frictional length receives larger energy from the near 
vibrating soil. 

6. Simplified solution to sloping effects 

6.1. Solving process 

The pile-to-pile interaction process includes three stages: (1) an 
oscillating pile exerts shear force to surrounding soil by friction; (2) 
wave propagates into the soil and cause soil vibration; (3) the passive 
pile is stroked by the arriving spreading waves and starts to vibrate. In 
sloping ground, piles that are embedded in different locations have 
different friction lengths between pile and soil, which causes various pile 
responses. As shown in Fig. 16, the interaction factors are calculated in 
two directions: downslope and upslope. The lateral soil resistance is 

Fig. 15. Sloping ground effects on axial force profile. H1/H2 = 2/3, H2/d = 15, f = 0.5 Hz.  

Fig. 16. Calculation model for the dynamic interaction factor of the piles in slope ground.  
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simplified as a series of vertical springs and viscous dampers with the 
coefficients kz and cz, respectively—for the bottom soil, those are kp and 
cp. Then, the intended downslope interaction factor χdown can be 
expressed as the displacement ratio u21/u11 and upslope interaction 
factor χup = u12/u22, in which the top vertical displacement u21 of 
downslope passive pile 2# equals u12 of upslope passive pile
—application of the reciprocal theorems of displacement. 

On the basis of the conclusions in the Section 4.2, Section 5.1 and 
Section 5.2, following assumptions can be proposed to simplify the 
problem: (1) the influence of unembedded pile segment on the pile-pile 
interaction factor could be ignored; (2) the waves towards the down
slope mainly spread radially. Therefore, the interaction factor αv(s) of 
the embedded pile segment could be written as: 

αv(s) = φξ (1)  

where φ is the soil attenuation factor of the free field, and ξ is the 
diffraction factor that is proposed to account for the diffraction effect of 
the arriving waves in the presence of receiver pile (Mylonakis and 
Gazetas, 1998): 

φ(s) =
H2

0

(
s
d

a0̅̅̅̅̅̅̅̅̅̅
1 + 2iκ

√

)

H2
0

(
1
2

a0̅̅̅̅̅̅̅̅̅̅
1 + 2iκ

√

) (2)    

where s is the axis-to-axis spacing; a0 is non-dimensional frequency and 
equals ωd/Vs; ω is the circular frequency, is the soil damping ratio; Vs is 
the shear wave velocity of soil; L4 denotes the embedded length of the 
passive pile; ρp, Ap, d are the mass density, cross section area and 
diameter of the pile, respectively; ̃k is the elementary soil resistance that 

takes k̃ = kz + icz; λ =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
ω2 − k̃

√
/ρpAp; kb and cb represent the soil 

resistances at pile tip, which can be refered Gazetas et al. (1991). 
Specially, when the soil at pile tip is incompressive, kb→∞ and Eq. (3) 
can be simplified as: 

ξ(s) =
k̃

2
(

k̃ - ρpApω2
)

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 −
2L4

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
k̃ - ρpApω2

EpAp

√

sinh

⎛

⎝2L4

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
k̃ - ρpApω2

EpAp

√ ⎞

⎠

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(4) 

The general solution to the displacement and axial force of the 
unembedded segment of the passive pile can be written as: 

u3(z) = A3cos
(

ω
Cp

z
)

+B3sin
(

ω
Cp

z
)

(5)  

N3(z) = - EpAp
ω
Cp

[

− A3sin
(

ω
Cp

z
)

+ B3cos
(

ω
Cp

z
)]

(6) 

Combining the initial condition and boundary condition, one can 
obtain: 

A3 = u3(0);B3 = 0 (7) 

Hence, the displacement of the passive pile at the ground horizontal 
on downslope direction can be expressed as: 

u3(L3) = u3(0)cos
(

ω
Cp

L3

)

(8) 

Assuming the head displacement of the active pile as one, then the 
load at pile top of the active pile is z(0), and thus the displacement of 
active pile at ground horizontal can be written as: 

u1(L1) = cos
(

ω
Cp

L1

)

+

λψ
ω + tan

(
ω
Cp

L1

)

1 − λψ
ω tan

(
ω
Cp

L1

)sin
(

ω
Cp

L1

)

(9) 

the displacement of passive pile at ground horizontal is expressed as: 

u3(L1) = αv(s)

⎡

⎣cos
(

ω
Cp

L1

)

+

sin
(

ω
Cp

L1

)

A1/B1

⎤

⎦ (10)  

where the coefficient of A1/B1 can be calculated by Eq. A15. 
One can obtain the pile-to-pile interaction factor on downslope: 

χdown = αv(s)

⎡

⎣cos
(

ω
Cp

L1

)

+

sin
(

ω
Cp

L1

)

A1/B1

⎤

⎦

/

cos
(

ω
Cp

L3

)

(11) 

The reciprocal theorem is performed to establish the relationship 
between the interaction factor on upslope χup and the one on downslope 
χdown. As illustrated in Fig. 15, assume the load P as a unit force, then the 
vertical displacement of the piles can be written: 

u11 = 1/Z1(0) (12)  

u21 = χdown/Z1(0) (13)  

Fig. 17. Comparisons between the simplified solution and FE numerical results 
for the interaction factors in sloping ground. 

ξ(s) =
k̃

(
k̃ - ρpApω2

)

2L4
λ

Cp
+ sinh

(

2L4
λ

Cp

)

+

(
kbCp

EpApλ

)2[

sinh
(

2L4
λ

Cp

)

− 2L4
λ

Cp

]

+ 2 kbCp
EpApλ

[

cosh
(

2L4
λ

Cp

)

− 1
]

2sinh
(

2L4
λ

Cp

)

+ 2
(

kbCp
EpApλ

)2

sinh
(

2L4
λ

Cp

)

+ 4 kbCp
EpApλcosh

(

2L4
λ

Cp

) (3)   
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u22 = 1/Z2(0) (14)  

where Z1(0) is the dynamic impedance at the top surface of the upslope 
pile 1#; Z2(0) is the dynamic impedance at the top of the downslope pile 
2#, which can be caluculated by Eq. A16 

The reciprocal theorem is given by: 

u12 = u21 (15) 

Combined with the Eq. (13), Eq. (14) and Eq. (15), the pile-to-pile 
interaction factor towards upslope can be formulated as: 

χup =
u12

u22
= χdown

Z2(0)
Z1(0)

(16)  

6.2. Comparison and verification 

First, we compare the interaction factors in sloping ground obtained 
by the present solution and FE method in Fig. 17. The results show that 
the amplitude calculated by present solution is slightly larger than that 
by FE method in low frequency range (e.g., 2 Hz, 3 Hz), which reflects 
that neglecting longitudinal waves in soil field may overestimate, to 

Fig. 18. Verification of the present solution for the interaction factor in horizontal ground.  

Fig. 19. Frequency-dependent dynamic interaction factors in sloping ground; s = 2d; L/d = 40; Ep/Es = 1000.  

Fig. 20. Frequency-dependent dynamic interaction factors in sloping ground; s = 5d; L/d = 40; Ep/Es = 1000.  
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some extent, the interaction between pile and soil at low frequency. As 
frequency increases, the present solution produces satisfactory accuracy. 

On the other hand, note that dynamic interaction factor is essentially 
a complex number, which can be constituted by amplitude and phase or 
alternatively by the real part and imaginary part. The latter form of 
constitution often used to reveal the mechanical performance and en
ergy dissipation, whereas the former reflects the basic characteristics of 
waveform. From the practical perspective, we hereafter adopt the latter 
form of interaction factor for dynamic analysis. Eq. (15) degenerates 
into χup = χdown when L1 = L3 = 0, which represents the interaction 
factors in horizontal ground. In Fig. 18, the presented solution is 
compared with the study by Kaynia and Kausel (1982) that is based on 
the boundary element method and is considered an accurate solution for 
interaction factors of piles in horizontal ground. The results show that 
both the real and imaginary components based on this presented solu
tion agree with that in Kaynia and Kausel (1982), which proves the ef
ficacy of the present solution at the extreme condition of 0◦ slope. 

7. The sloping effects on dynamic response of group of piles 

7.1. Sloping effects on pile-to-pile interaction 

The parameters are: pile slender ratio L/ d = 40, pile spacing s = 2d, 
5d, 10d. Young’s modulus, mass density of pile and soil are, Ep/ 
Es = 1000, ρp/ρs = 1.33; Poisson’s ratio υ and damping ratio of soil 
are = 0.3, ζ = 0.05. Slope effects are dependent on the inclination 
angle of the ground and the location of the passive pile. The results in 
Fig. 19, Fig. 20, and Fig. 21, which are calculated with the presented 
analytical solution, show the variation of pile-to-pile interaction factor 
with frequency when the vibration propagates downslope and upslope 
at various slope angles at pile spacing 2d, 5d, 10d respectively. In gen
eral, to what extent the ground inclination exerts influence is closely 
related with the frequency and is not linear variation with the slope 
angle. 

In Fig. 19, it is observed that varying slope angles lead to prominent 
deviation at the low frequency for the real part of interaction factor. As 
frequency increases, the topography effects on the real part tend to 
become weaker. At pile spacing s = 2d, the interaction factor that 
induced by the waves towards slope crest is evidently smaller than the 
one that induced by the waves towards slope toe, and that difference 
increases with the slope angle—around 25% smaller for 60◦ slope angle 
in Fig. 19(a). A converse frequency dependency is observed for the 
imaginary part of the interaction factor shown in in Fig. 19(b). 

Combined with the results in Fig. 20 and Fig. 21, it is found that the 
slope effects become more complicated as pile spacing increases. The 
curves of interaction factor versus frequency meet identical crossing 
points for different slope angles. In Fig. 20(a), the intersection 

frequencies are around a0 = 0.3 and a0 = 1.0. Before a0 < 0.3, the slope 
effects on the interaction factor becomes weaker with increasing fre
quency. Moreover, the interaction factor toward downslope is larger 
than the one towards upslope. As the value of a0 ranges from 0.3 to 1.0, 
slope effects intensify at the beginning, come to a peak around a0 = 0.65, 
then gradually become weaker on the way to a0 = 1.0. Furthermore, the 
similar crossing point around a0 = 0.6 is observed for the imaginary part 
in Fig. 20(b). The topography effects on the imaginary part is also 
similar to the real part. In Fig. 21, three crossing points occur, and their 
frequency intervals are around 0.3. 

Our results in Fig. 19, Fig. 20, Fig. 21 confirm that ground inclination 
exerts undisputable influences on the dynamic interaction factor. 
Generally, it will reduce the peak value of interaction factor and weaken 
the fluctuation with frequency. The reduction by the sloping ground 
sometimes exceeds 20%, which means that neglecting sloping effects 
will bring in a considerable overestimation to the pile-to-pile dynamic 
interaction. 

7.2. Dynamic impedance of group piles in sloping ground 

The group of piles herein are considered to be connected with a no- 
mass rigid cap. Harmonic excitation is vertically applied on the cap. 
Therefore, the vertical displacement of the cap is identical with all the 
beneath piles, which yields: 

uG
EpAp

L
=

∑n

j=1

χij

Z̃jL
EpAp

pj =
∑n

j=1
βijpj (35)  

where uG is the vertical displacement of the cap; Ep, Ap, L are the Young’s 
modulus, cross section area, and length of piles, respectively; Pj is the 
load acting on the j pile head; Z̃j is the dynamic impedance of j pile at 
head; χij (i, j = 1, 2,…n) is the dynamic interaction factor between j pile 
and i pile; the coefficient βij can be calculated as following: 

βij =
χij

k̃jL
EpAp

(36) 

The external load P is simultaneously taken by all the piles: 

PG =
∑n

j=1
Pj (37) 

Combined with Eq. (35) and Eq. (37), the vertical displacement uG of 
the capped piles and the load Pj undertaken by pile j can be given by 
solving the following matrix equation: 

Fig. 21. Frequency-dependent dynamic interaction factors in sloping ground; s = 10d; L/d = 40; Ep/Es = 1000.  
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⎡

⎢
⎢
⎢
⎢
⎣

0 1 1 ... 1
− 1 β11 β12 ... β1n
− 1 β21 1 ... β2n
... ... ... ... ...

− 1 βn1 βn2 ... βnn

⎤

⎥
⎥
⎥
⎥
⎦

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

uG
EpAp

L
P1

P2

...

Pn

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

P
0
0
...

0

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(38) 

Therefore, the dynamic impedance of the group of piles in sloping 
ground can be expressed by: 

ZG = P
/

uG (39) 

The notable difference induced by ground inclination lies in the fact 
that βij ∕= βji, which indicates that the coefficient matrix in Eq. (38) is not 
symmetric. To clearly observe the dynamic impedance variation with 
frequency, the concept of dynamic impedance factor (DIF) is introduced 
by dividing the dynamic impedance by the static stiffness (approach 
with the real part of dynamic impedance at zero frequency). The results 
in Fig. 22 and Fig. 23, which are calculated with the presented analytical 
solution, show the variation of DIF with frequency on various slope 
angles at pile spacing s = 5d and 10d, respectively. In Fig. 22(a), it is 
observed that DIF peaks at some frequency range 0.4 < a0 < 0.8. At 
a0 < 0.4, ground inclination exerts disposable influence on the real part 
of DIF; after that, the real part of DIF of piles in the grounds of various 
slope angles starts to diverge with the frequency, and the greatest dif
ference occurs at the peak frequency. The steeper the slope is, the larger 
the peak frequency becomes, and the smaller the peak DIF gets. To be 
specific, the real part of DIF at slope angle 60◦ is reduced by 25% than 

that in horizontal ground. Similar characteristics could be found for the 
curves of dynamic damping versus frequency as shown in Fig. 22(b): 
topography effects tend to get intense before the peak frequency and get 
weaker after the peak frequency. At pile spacing 10d, the dynamic 
stiffness gradually diverges from the very low frequency (around zero) 
and peaks at a smaller frequency (approximately half) than that at pile 
spacing s = 5d. Generally, increasing the pile spacing causes more sig
nificant topography difference in the dynamic impedance, especially in 
the dynamic damping. The reduction of dynamic stiffness and dynamic 
damping are around 30% and 50%, respectively compared with that in 
horizontal ground. 

8. Conclusions 

Dynamic interaction between pile and soil in sloping ground are 
explored via finite element-based simulations. The wave propagation 
process, vibration attenuation of a free field, and displacement of pas
sive piles are numerically investigated. Additionally, on the basis of the 
numerical research, an analytical model is built to obtain the vertical 
pile-to-pile interaction factors. A comparison between the analytical 
solution and the numerical results confirms the rationality of the present 
model. Subsequently, dynamic responses of group piles in sloping 
ground are studied through the superposition method. The following 
conclusions can be drawn:  

(1) The soil attenuation factor in sloping ground is direction- 
dependent: the position at the downslope from pile axis suffers 
greater vibration than the one at the upslope. 

Fig. 22. Dynamic impedance factors of group of piles at various slopes (L = 40d, s = 5d).  

Fig. 23. Dynamic impedance factors of group of piles at various slopes (L = 40d, s = 10d).  
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(2) The piles in sloping ground have unequal embedded lengths and 
thus the stiffness of each individual pile is different from one 
another, which is the leading factor affecting the dynamic pile-to- 
pile interaction in sloping ground.  

(3) Ground slope mainly has twofold effects on the pile-to-pile 
interaction: (a) direction dependency: the interaction factor 
induced by the waves towards slope toe is slightly smaller than 
the one towards slope crest; (b) inclination angle: generally, the 
larger the slope angle, the smaller the interaction factor.  

(4) The influence of sloping ground on the dynamic interaction of 
pile and soil is associated with the vibration frequency and pile 
spacing. For a 2d pile spacing, topography has smaller influences 
on the real part of interaction factor with an increasing fre
quency. In contrast, for pile spacing of 5d and 10d, that mono
tonicity relies on the value of intersection frequency. 
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Appendix A. Brief derivation of the impedance of single piles partially embedded in slope ground 

In Section 4.2, it’s demonstrated that the slope topography exerts a neglectable influence on the vibration characteristics of single piles (also 
reported in Qu et al., 2020). Hence, the dynamic impedance of a single pile in the slope ground can be approximately replaced by the one in horizontal 
ground. The calculated model is shown in Fig. 24. The length of the whole pile shaft denotes L and is constituted by the unembedded segment L1 and 
embedded segment L2. 

The vertical vibrating equilibrium of an element of the unembedded pile segment is written as: 

EpAp
∂2u1(z, t)

∂z2 − mp
∂u1(z, t)

∂t2 = 0 (A1)  

u1(z, t) = u1(z)eiωt (A2)  

where u1 is the vertical displacement of the unembedded segment at a distance of z from the pile top at time t; Ep denotes the Young’s modulus of the 
pile; Ap is the area of the pile cross section; mp is the mass of the pile shaft per unit length; ω is the angular frequency of dynamic excitation; i=

̅̅̅̅̅̅̅
− 1

√

Substituting Eq. A2 into Eq. A1, one can obtain: 

∂2u1(z)
∂z2 +

mpω2

EpAp
u1(z) = 0 (A3) 

Fig. 24. Calculation model for the vertical vibration response of a partially embedded pile.  
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The general solution of Eq. A3 is: 

u1(z) = A1cos
(

ω
Cp

z
)

+B1sin
(

ω
Cp

z
)

(A4) 

The axial fore is given by: 

N1(z) = - EpAp
ω
Cp

[

− A1sin
(

ω
Cp

z
)

+ B1cos
(

ω
Cp

z
)]

(A5)  

where A1 and B1 are undetermined coefficients. 
Then, the dynamic pile impedance at the top of the unembedded segment can be expressed as: 

Z(0) =
N1(0)
u1(0)

= -
EpAp

ω
Cp

A1
B1

(A6) 

Similarly, the dynamic pile impedance at bottom of the unembedded segment can be expressed as: 

Z(L1) =
N1(L1)

u1(L1)
= -

EpAp
ω
Cp

[

− A1
B1

tan
(

ω
Cp

L1

)

+ 1
]

A1
B1
+ tan

(
ω
Cp

L1

) (A7) 

The vertical vibrating equilibrium of an element of the embedded pile segment can be written as: 

EpAp
d2u2(z)

dz2 +mω2u2(z) − k̃u2(z) = 0 (A8)  

where u2(z) is the vertical displacement of the embedded pile shaft at the elevation z; ̃k is the complex soil stiffness calculated by ̃k = kz +iω cz and 
the value of kz and cz can be referred in the study Gazetas et al. (1991). 

Similar to that of the unembedded pile segment, the displacement and axial force of the embedded segment can be expressed as: 

u2(z) = A2cos
(
λ/Cpz

)
+B2sin

(
λ/Cpz

)
(A9)  

N2(z) = -
λ

Cp
EpAp

[

− A2sin
(

λ
Cp

z
)

+ B2
λ

Cp
cos

(
λ

Cp
z
)]

(A10)  

where λ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ω2 − k̃/ρpAp

√

Thus, the dynamic impedance at the top of embedded pile segment can be expressed as: 

Z(L1) =
N2(L1)

u2(L1)
= -

EpAp
λ

Cp

[

− A2
B2

tan
(

λ
Cp

L1

)

+ 1
]

A2
B2
+ tan

(
λ

Cp
L1

) (A11) 

Considering the boundary condition at pile tip, one can obtain the following: 

A2

B2
=

Ep
λ

Cp
+ (kb + iω cb)tan

(
λ

Cp
L
)

Ep
λ

Cp
tan

(
λ

Cp
L
)

− kb - iω cb

(A12) 

Specially, when the soil under pile tip is uncompressible, Eq. (A12) can be simplified as: 

A2

B2
= − tan

(
λ

Cp
L
)

(A13) 

Considering the consistency nature of the pile impedance at the ground horizontal (z = L1), one has: 

EpAp
ω
Cp

[

− A1
B1

tan
(

ω
Cp

L1

)

+ 1
]

A1
B1
+ tan

(
ω
Cp

L1

) =

EpAp
λ

Cp

[

− A2
B2

tan
(

λ
Cp

L1

)

+ 1
]

A2
B2
+ tan

(
λ

Cp
L1

) (A14) 

Substituting Eq. A13 into Eq. A14, the unknown coefficients can be given by: 

A1

B1
=

ωtan
(

λ
Cp

L1

)

− λtan
(

ω
Cp

L1

)

+ A2
B2

[

λtan
(

λ
Cp

L1

)

tan
(

ω
Cp

L1

)

+ ω
]

A2
B2

[

ωtan
(

ω
Cp

L1

)

− λtan
(

λ
Cp

L1

)]

+ λ + ωtan
(

ω
Cp

L1

)

tan
(

λ
Cp

L1

) (A15) 
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Combining with Eq. A6, the dynamic impedance at the top of the whole pile shaft can be formulated as: 

Z(0) =
EpAp

ω
Cp

ωtan

(

λ
CpL1

)

− λtan

(

ω
CpL1

)

+
A2
B2

[

λtan

(

λ
CpL1

)

tan

(

ω
CpL1

)

+ω

]

A2
B2

[

ωtan

(

ω
CpL1

)

− λtan

(

λ
CpL1

)]

+λ+ωtan

(

ω
CpL1

)

tan

(

λ
CpL1

)

(A16) 

Specially, when the soil under pile tip is uncompressible, Eq. A16 can be simplified as: 

Z(0) =
EpAp

L

Lω
Cp

[
λψ
ω + tan

(
ω
Cp

L1

)]

1 −
λψ
ω tan

(
ω
Cp

L1

) (A17) 

Substituting Eq. A12 to Eq. A11, the dynamic impedance at the ground horizontal of the pile shaft can be written as: 

Z(L1) =
N2(L1)

u2(L1)
=

EpAp
λ

Cp

⎡

⎣ −

Ep
λ

Cp+(kb+iω cb)tan

(

λ
Cp L

)

Ep
λ

Cp tan

(

λ
Cp L

)

− kb+iω cb

tan
(

λ
Cp

L1

)

+ 1

⎤

⎦

Ep
λ

Cp+(kb+iω cb)tan

(

λ
Cp L

)

Ep
λ

Cp tan

(

λ
Cp L

)

− kb+iω cb

+ tan
(

λ
Cp

L1

)

(A18) 

By combining Eq. A6 with Eq. A7, one can formulate the relationship between the displacements of the positions at the top and ground horizontal 
of the pile shaft: 

u1(L1) = u1(0)

⎡

⎣cos
(

ω
Cp

L1

)

+

sin
(

ω
Cp

L1

)

A1/B1

⎤

⎦ (A19)  
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