
Proc. Int’l Workshop on Graph and Model Transformation (GraMoT 2005)

Applying a Model Transformation Taxonomy
to Graph Transformation Technology

Tom Mens 1

Software Engineering Lab
Université de Mons-Hainaut

Mons, Belgium

Pieter Van Gorp 2

Formal Techniques in Software Engineering
Universiteit Antwerpen
Antwerpen, Belgium

Dániel Varró 3

Department of Measurement and Information Systems
Budapest University of Technology and Economics

Budapest, Hungary

Gabor Karsai 4

Institute for Software-Integrated Systems
Vanderbilt University

Nashville, Tennessee, USA

Abstract

A taxonomy of model transformations was introduced in [18]. Among others, such
a taxonomy can help developers in deciding which language, forma lism, tool or
mechanism is best suited to carry out a particular model transformation activity.
In this paper we apply the taxonomy to the technique of graph transformation, and
we exemplify it by referring to four representative graph transformation tools. As
a byproduct of our analysis, we discuss how well each of the considered tools carry
out the activity of model transformation.

Key words: model transformation, taxonomy, graph
transformation, MDA, MDD, MDE

c©2005



Mens et al.

1 Introduction

A taxonomy of model transformation was introduced in [18]. By taxonomy
we mean “A system for naming and organizing things [. . . ] into groups which
share similar qualities” (Cambridge Dictionaries Online). Such a taxonomy
can be used for a wide variety of purposes. Among others, it can help a
software developer choosing a particular model transformation approach that
is best suited for his needs, it can help tool builders to assess the strengths and
weaknesses of their tools compared to other tools, and it can help scientists
to identify limitations across tools or technology that need to be overcome by
improving the underlying techniques and formalisms.

In this paper we use the taxonomy to study the technique of graph trans-
formation, in order to find out what are the merits and drawbacks of graph
transformation technology with respect to the activity of model transforma-
tion. We exemplify this by applying the taxonomy to a representative subset
of tools relying on graph transformation technology. As a byproduct of this
analysis, we identify how well these tools carry out the activity of model trans-
formation.

As indicated by [27], the presence of taxonomies and benchmarks, when
embraced by a community, have a strong positive effect on the scientific matu-
rity of a discipline. While this paper will focus on the application of a model
transformation taxonomy to graph transformation tools, a related paper pro-
posed a benchmark for graph transformation [32].

Because graph transformation consists of a large set of different theories,
languages, techniques and tools, we need to restrict ourselves to a represen-
tative subset somehow. Therefore, we tried to classify existing tools relying
on graph transformation technology according to their principal domain of
application, and we came up with four important categories:

General-purpose graph transformation tools include AGG 5 [29] and PRO-
GRES [26];

Reengineering tools based on graph transformation include Fujaba 6 (From
UML to Java And Back Again) [2] that supports round-trip engineering
between UML and Java, and VARLET 7 that performs information system
reengineering based on triple graph grammars;

Model transformation tools that make use of graph transformation include
GReAT 8 [28] and MOLA [12];

1 Email: tom.mens@umh.ac.be
2 Email:pieter.vangorp@ua.ac.be
3 Email:varro@mit.bme.hu
4 Email:gabor.karsai@vanderbilt.edu
5 http://tfs.cs.tu-berlin.de/agg/
6 http://wwwcs.uni-paderborn.de/cs/fujaba/
7 http://wwwcs.uni-paderborn.de/cs/varlet/
8 http://repo.isis.vanderbilt.edu/tools/

2



Mens et al.

Model checking and verification tools that rely on graph transformation
include VIATRA (VIsual Automated model TRAnsformations) [4], GROOVE 9

[21] and CheckVML [22].

We have selected the following tools from each category, because we had
easy access to them: AGG, Fujaba, GReAT and VIATRA. In the remainder we
will use these four tools to illustrate the use of the taxonomy of [18]. However,
we believe that the taxonomy is general and applicable to the other tools as
well.

The structure of the paper follows the main structure of the taxonomy,
which is summarised below:

What needs to be transformed into what? This dimension comprises the
following criteria:
• Number of source and target models
• Technical space of the transformation (e.g., MDA, XML)
• Endogenous versus exogenous transformations (i.e., within the same lan-

guage or between languages)
• Horizontal versus vertical transformations (i.e., on the same level of ab-

straction or across levels of abstractions)
• Syntactical versus semantical transformations (i.e., simple syntactical rewrit-

ing or complex transformations that take semantics into account)

Important characteristics of a transformation :
• Level of automation provided by the tool
• Complexity of the transformation
• Preservation of properties by the transformation

Success criteria for a transformation tool :
• Suggesting when to apply transformations
• Customising or reusing transformations
• Verifying and guaranteeing correctness of transformations
• Testing and validating transformations
• Dealing with incomplete or inconsistent models
• Grouping, composing, and decomposing transformations
• Genericity of transformations
• Bidirectionality of transformations
• Supporting traceability and change propagation

Quality requirements for a transformation tool :
• Usability and usefulness
• Verbosity versus conciseness
• Performance and scalability
• Extensibility
• Interoperability
• Acceptability by user community

9 http://groove.sourceforge.net

3



Mens et al.

• Standardization

2 What needs to be transformed into what?

Graphs seem to be a natural representation of models since many models are
intrinsically graph-based in nature (e.g., statecharts, activity diagrams, collab-
oration diagrams, class diagrams, Petri nets), in contrast to source code where
a tree structure is likely to be more appropriate (e.g., parse trees, abstract syn-
tax trees). As a consequence, graph transformations seem to a natural means
to specify and execute model transformations.

Number of source and target models.

Graph transformation theory allows us to express one-to-one model transfor-
mations directly as a graph production (also known as graph transformation
rule) with a left-hand side (LHS) representing the source model, and a right-
hand side (RHS) representing the target model. One-to-many transformations
(e.g., branching and splitting of models), many-to-one transformations (e.g.,
merging of models) and many-to-many transformations can also be defined
formally as graph transformations, but this requires a more complex solution.

Triple graph grammars [24], for example, allow the specification of many-
to-many model transformations that transform pairs of related models simul-
taneously while maintaining their consistency. Using this idea, multi graph
rewriting rules can be defined that transform any number of (related) source
models in a consistent way [15].

Technical space.

All of the considered graph transformation tools allow us to deal with models
in the XML or MDA technical space directly, or using some translators.

The AGG tool uses GXL 10 , a standard graph exchange format as meta-
metamodel. However, since GXL is based on XML, it is relatively easy to
provide a mapping to the XML technical space. AGG also supports export
into GTXL 11 , a standard exchange format for graph transformations.

The VIATRA model transformation tool uses an XMI input/output format
that conforms to the MOF model. It primarily supports the MDA technical
space, but business process models and XSD models are also targeted.

The Fujaba CASE tool suite supports UML development and automatic
generation of Java code. The underlying technology to represent UML dia-
grams is based on graph transformations. Fujaba uses a vendor-specific version
of UML, so it can be considered as part of the MDA technical space.

10 http://www.gupro.de/GXL/
11 http://tfs.cs.tu-berlin.de/projekte/gxl-gtxl.html

4



Mens et al.

The GReAT model transformation tool uses UML and OCL notation to
specify metamodels and transformations. As such, it belongs to the MDA
technical space.

Endogenous versus exogenous transformations.

In graph transformation, the structure of a metamodel is described by means
of a type graph [3]. In an endogenous graph transformation, the source and
target graphs are instances of the same type graph. This is the case in the
AGG tool, in which only a single type graph can be specified for a given
graph transformation system. However, one can easily specify two different
metamodels and their interrelationships within the same type graph, as shown
in [5].

Exogenous transformations, where the source and target are expressed in
a different domain (i.e., have a different metamodel) can be expressed using
graph transformations, provided that a different type graph can be specified for
source and target model. Note that (temporary) edges (so called ”cross-links”)
between nodes belonging to different type graphs might also be required. This
is supported by GReAT and VIATRA, where multiple type graphs (as well as
a cross-links) are supported.

Horizontal versus vertical transformations.

Graph transformation technology can be, and has been, used for specifying
horizontal as well as vertical model transformations.

As an example of vertical exogenous model transformation, Karsai et al.
show how to transform a platform-independent model (PIM) into a more
platform-specific model (PSM) using GReAT [13]. As another example, Baresi
et al. illustrate the use of graph transformation for refinement of software ar-
chitectures [1].

As an example of horizontal endogenous model transformation, graph
transformations have been used to specify program refactorings [19,30], and
model refactorings in AGG and Fujaba [17]. A typical example is a statechart
flattening, where all composite (nested) states are recursively expanded until
one obtains a statechart only containing simple states [8].

As an example of horizontal exogenous transformation, graph transfor-
mations have been used for migration from one domain-specific language to
another using GReAT [28].

Finally, Große-Rhode et al. [20] illustrate vertical endogenous transforma-
tions by specifying formal refinements as typed graph transformations.

Syntactical versus semantical transformations.

Graphs and graph transformations can be used to specify and modify the
syntactic structure of a model, but also to specify the dynamic behaviour

5



Mens et al.

of a model. Even syntactic transformations can take semantic information
into account, by specifying graph constraints (invariants) that need to be
preserved by the transformation. This is especially needed in the case of model
refactoring, where the structure of a model is improved while preserving its
behaviour [19,17].

3 Important characteristics of a transformation

Level of automation.

Graph transformation theory offers two flavours of automating the application
of a series of graph transformations: graph grammars and programmed graph
transformation.

The graph grammar approach is supported by AGG. Starting from an
initial graph, all possible applicable graph productions are applied repeatedly,
and in parallel. This iterative process is repeated as long as possible. The set
of result graphs obtained by this process is called the language generated by
the graph grammar.

Programmed graph transformation is supported by Fujaba, VIATRA, and
GReAT. In this approach, rules are specified to control the order of graph
transformations. Fujaba uses so-called story-driven modelling, where an activ-
ity diagram is used to specify in which order graph transformations should be
applied. In VIATRA, the graph transformations are driven by abstract state
machines as the specification formalism. GReAT uses explicitly sequenced
transformation rules with input and output parameters that specify the ini-
tial bindings for selected pattern variables, as well as allow passing selected
graph nodes to subsequent rules. The connectivity between the parameters of
rules determines the flow of execution.

Complexity of the transformation.

Complex transformations require more complex control mechanisms to gov-
ern the execution order of rules. Graph transformation languages may vary
significantly in the strength of these control structures or the way they are
specified.

AGG supports layered graph grammars to impose a certain order on the
graph production rules to be applied. If only the internal graph transformation
of AGG is used, however, one can write arbitrarily complex Java programs to
control the order of execution of graph transformations.

Fujaba uses story diagrams (a kind of activity diagrams) to control the
application of graph transformations.

In GReAT, the control structure is based on hierarchical dataflow-like dia-
grams (that represent control-flow as well), but an explicit loop control struc-
ture is missing. Loops can be expressed as transitions to previous rules in the
flow.

6



Mens et al.

VIATRA uses another formal specification language, namely, abstract state
machines as control language with constructs for as long as possible, parallel
or recursive rule applications.

Even with these advanced control mechanisms it remains to be seen whether
graph transformation alone suffices to express complex transformations. For
practical purposes, a hybrid approach combining the virtues of a graph trans-
formation language and a textual constraint language may be more opportune.
Given that many of the graph transformation tools rely on UML notation in
one way or another, OCL seems to be a viable alternative to specify tex-
tual constraints of graph transformations. For instance, GReAT uses OCL
constraints to impose restrictions on the result of the matching process. An
OCL evaluator is available to check whether the result of the transformation
complies with the constraints.

Preservation of properties.

Graph transformation theory seems promising to formally specify model refac-
torings and to show that these refactorings preserve behavioural properties.
An initial feasibility study has shown, however, that current graph transfor-
mation formalisms lack expressiveness in order to accomplish this goal [19].
Therefore, Van Eetvelde and Janssens [30,11] proposed a number of exten-
sions to graph transformations in order to enhance their expressive power.
Incorporating these extensions in graph transformation tools remains to be
done.

4 Success criteria for a graph transformation tool

Suggesting when to apply transformations.

Most graph transformation languages and tools provide a mechanism and
language to express constraints on the graphs that need to be transformed.
Graph constraints consist of path expressions that state that particular links
and / or node values should be present or not.

In AGG, one can use the graphical user interface to define constraints as
negative application conditions, but one can also specify general graph con-
straints that can be translated into postconditions of graph transformation
rules. In VIATRA, graph patterns (used as constraints) may contain negative
application conditions embedded into each other at arbitrary depth. In Fu-
jaba, control constructs can be used to combine graph constraints and graph
transformations in arbitrary ways. In GReAT, constraints can be used to re-
strict the results of the graph matching, and zero cardinality on association
ends is used to implement a restricted form of negative application conditions.

7



Mens et al.

Customising or reusing transformations.

A simple yet crucial way to customise graph transformations is by means of
parameterisation. A parameterised graph production represents an infinite
set of possible graph productions, each one obtained by providing concrete
values for the parameters. A parameterisation mechanism is available in all
considered graph transformation tools.

Some graph transformation tools are integrated into an object-oriented de-
velopment environment, thus allowing to exploit well-known object-oriented
mechanisms such as inheritance to enable reuse. For example, in Fujaba, graph
productions are used as specifications of methods, and inheritance can be used
to reuse these methods in subclasses. Similarly, GReAT supports reusability
via features provided by the visual modeling environment (GME) it is im-
plemented in: transformation rules (or higher-level transformation sequences
called blocks) can be reused through the type/instance machinery supported
by the environment.

In VIATRA, a graph transformation can be built up from predefined pat-
terns, that are reusable across transformations. Another important way to
enhance the reusability of transformations is by making use of generic and
meta transformations [31].

Verifying and guaranteeing correctness of the transformations.

A model is syntactically correct if it conforms to its metamodel structure
and well-formedness rules. In graph transformation, structure conformance
is enforced by means of type graphs. Type graphs may include cardinality
constraints, and may also support inheritance (as in the UML metamodel).
The type graph mechanism is supported in all four considered tools.

Another way to enforce syntactical correctness is by defining a dedicated
graph grammar that contains rules to be used for syntax-directed editing.

AGG can check termination and consistency of a graph grammar based
on graph constraints. More specifically, it is the only available tool that im-
plements the mechanism of critical pair analysis to check termination and
confluence of graph grammars [10]. Two graph productions may form a crit-
ical pair if they are in conflict, in the sense that they do not preserve the
confluence property. This property is needed to guarantee that a rewriting
system has a functional behaviour.

VIATRA aims at providing verification of transformations by an ongoing
integration with the CheckVML tool [22]. CheckVML projects graph trans-
formation rules into transition systems verified by the SPIN model checker.

Testing and validating transformations.

While systematic testing approaches such as unit testing are commonplace in
traditional (object-oriented) software development, this is much less the case

8



Mens et al.

for graph transformations. Ideally, each graph production specification should
come with a suite of tests that verify that the graph production has the desired
behaviour. Geiger et al. investigate graph-transformation based testing and
debugging in the Fujaba environment [9,7].

To a certain extent, AGG ’s critical pair analysis can also be considered as
validation of transformations since it allows the developer to test whether a
give set of graph transformations (i.e., a graph grammar) is consistent.

Dealing with incomplete or inconsistent models.

In all the graph transformation tools we studied, the models (i.e., graphs)
under consideration have to be well-formed. In other words, none of the ap-
proaches allow for inconsistent models. Incompleteness poses less of a problem,
as long as the well-formedness constraints are guaranteed.

Grouping, composing and decomposing transformations.

Composition of graph transformations can be achieved by using controlled or
programmed graph transformation, i.e., a set of control mechanisms to govern
the execution order of rules [25]. Typical control mechanisms are sequencing,
branching and looping. They are supported in Fujaba by means of so-called
story diagrams, and in VIATRA by means of abstract state machines that
drive the transformations. Additionally, in Fujaba, transformations are imple-
mented as method bodies, so composition of transformations can be achieved
by performing method calls. In VIATRA, graph transformations can be com-
posed out of more primitive patterns, though recursive patterns are not sup-
ported yet.

Another mechanism that has been proposed to group and compose graph
transformation is the structuring mechanism of graph transformation units
[16,14]. In the graph grammar variant of graph transformation (e.g., AGG),
one can use layered graph grammars as a primitive kind of structuring mech-
anism. The layers fix the order in which rules are applied. Rules of layer 0
are applied as long as possible, followed by rules of layer 1, and so on.

In GReAT, one can form blocks from sequenced transformation rules.
Blocks encapsulate rules, are hierarchical, and can participate in recursive
calls. Rules of a special form, called tests are available to implement control
flow within a block that is dependent on the input models.

Genericity of transformations.

The only graph transformation tool that supports higher-order transforma-
tions is VIATRA [31]. Higher-order transformations enable a very compact de-
scription of certain transformation problems in MDA. A possible disadvantage
is a degradation in performance. But this problem is addressed by automat-
ically deriving efficient first-order transformations from generic higher-order

9



Mens et al.

ones. To this extent, meta transformations are used, i.e., transformations
whose source and target models are transformations themselves.

Bidirectionality of transformations.

By definition, a graph transformation rule is unidirectional. This does not
mean, however, that it is impossible to support bidirectionality in a graph
transformation tool. One obvious way would be to define two graph grammars,
one for each direction. Another possibility is to rely on a transaction an
rollback mechanism to undo (i.e., reverse) earlier transformations.

Supporting traceability and change propagation.

Most of the considered graph transformation tools have no or poor support
for traceability and change propagation and do not provide an incremental
update mechanism. Meta transformations can be very helpful here in order
to maintain or upgrade existing model transformations.

5 Quality requirements for a graph transformation tool

Usability and usefulness.

That graph transformation technology is useful for the purpose of model trans-
formation has been amply illustrated by experiments performed with trans-
formation tools such as GReAT and VIATRA. Even general-purpose graph
transformation tools like AGG and Fujaba have been shown to support model
transformation.

That graph transformations are also usable is more difficult to assess, as
this depends on several factors, such as the intended target audience. For
research purposes, all of the studied tools are already quite usable. To become
usable in an industrial setting, most tools still need to mature to make them
more performant and user-friendly, but this is just a matter of time. Some
ways to make the GReAT language more usable are proposed in [34].

Verbosity versus conciseness.

Compared to XML-based transformation technology, graph transformation
seems to give rise to more concise and better readable code. Whether this code
is also easier to produce and maintain is not clear and should be investigated
further.

Within the realm of graph transformation tools, a distinction should be
made between general purpose tools and dedicated model transformation
tools. Due to their dedicated nature, the latter tend to produce more concise
code. This goes at the expense of verbosity, since it requires the introduction
of extra syntactic constructs that are specifically tuned to model transforma-
tion.

10



Mens et al.

Performance and scalability.

Graph transformations are sometimes accused of generating inefficient pro-
grams or having inefficient algorithms. However, this poor performance is
not an inherent limitation of the technique per se. For example, Varró et al.
show how to transform higher-order model transformations automatically in
efficient first-order transformations [31]. They also suggest to use database
technology as an underlying engine of graph transformation in order to in-
crease its efficiency. As another example, Vizhanyo et al. have illustrated
significant performance gains by optimising traditional graph matching algo-
rithms on the one hand and bypassing the generic transformation engine of
GReAT by native transformation code on the other hand [33].

In important characteristic of the graph transformation tool influencing the
performance is the ability to compile the graph transformations into native
code or into bytecode. This is indeed possible for Fujaba which can generate
Java bytecode from graph transformations, as well as for GReAT, which is
able to compile “production” code from the transformation models. AGG
and VIATRA, on the other hand, use an interpreted approach, which makes
them inherently less performant.

Extensibility.

The AGG tool is extensible in the sense that its internal graph transforma-
tion engine, which is implemented in Java, can be extended freely to cover a
wide variety of different applications. The tools Fujaba and VIATRA, offer a
powerful plug-in mechanism for extending the tool with new functionality. In
the case of VIATRA this plug-in mechanism can be used to write importers
and exporters for models from other technical spaces than MOF/UML. For
example, there are already importers for business process models and XSD.
In GReAT extensibility is achieved by using a procedural language for imple-
menting the code for attribute mapping that gets executed after all the graph
operations done in a transformation rule. While this makes the formal analy-
sis of transformation programs (at least) very difficult, it was found to be very
practical. This procedural source code is compiled into executable code that
is dynamically linked into the execution engine (or statically linked with the
compiled transformation code).

Acceptability by user community.

In order to get accepted by an existing user community, a language should
not diverge too much from what people are accustomed to. For example,
for people trained in procedural programming, a procedural style is probably
more readable than the declarative grammar approach of AGG. For people
accustomed to UML notation, Fujaba story diagrams provide a very natu-
ral notation to express graph transformations without the user even being

11



Mens et al.

aware of it. GReAT is based on the meta-programmable Generic Modeling
Environment (GME), and is tailored for constructing software that performs
transformation on models (typically, but not exclusively constructed in GME).
It is equipped with an interpretive engine, a debugger, and a compiler. It relies
on standard C++ development tools.

Standardization.

Another way to make graph transformation technology accepted is by sup-
porting existing standards such as UML and XML. This is already the case
for the considered graph transformation tools. They either support UML
or XML directly, or provide some translators (e.g., XMI export facilities) to
bridge between technical spaces. For example, VIATRA provides a very flexi-
ble import/export mechanism for models from other technical spaces. On the
other hand, the metamodelling notation used by VIATRA is different from
the MOF standard.

Graph transformation tools can also be applied using MDA standards like
UML, MOF and XMI. Type graphs can be defined as class diagrams in UML
editors with proper XMI export facilities. The resulting model can be trans-
formed into a MOF metamodel. Existing MDA frameworks can be used to
monitor the OCL well-formedness rules of this metamodel on models resid-
ing in a MOF repository. Model transformations can be developed as graph
transformations expressed in UML statechart and class diagram editors that
export the transformation models to XMI. The transformation models can
be transformed into executable MOF transformation code that can transform
any model that is an instance of the original type graph [23,6].

For graph transformation languages in particular, two standards are avail-
able. GXL is an exchange format for graphs, while GTXL is an exchange
format for graph transformations. Both standards are supported by AGG.

6 Discussion

In this paper, we used a taxonomy of model transformation to evaluate the
technique of graph transformation as a way to support the activity of model
transformation. The proposed taxonomy assisted in identifying and evaluating
the appropriateness of a representative subset of four tools based on graph
transformation technology. A summary of our initial analysis is presented in
Table 6. Not all criteria of the model transformation taxonomy appear in
this table, since we only displayed those criteria where a difference could be
discerned. In the future, we intend to carry out a more detailed analysis, and
we will consider other tools based on graph transformation as well.

Nevertheless, based on the analysis we performed, we can already con-
clude that graph transformation is a promising approach to deal with model
transformation. First of all, for many types of models, that are intrinsically

12



Mens et al.

graph-based in nature, graph transformations offer a natural and direct way
to specify model transformations. Secondly, the graph transformation ap-
proach is formally founded: one can resort to many theorems to prove certain
properties of a transformation system. Finally, graph transformation tech-
nology offers mechanisms to reuse transformations, and to compose smaller
transformations into more complex ones.

A disadvantage is that the various graph transformation approaches are
not always compatible. With respect to standardization, there is a tendency
to combine graph transformation technology with XML and UML notation.
This tendency favours acceptability by the user community because of their
familiarity with these languages. Compared to AGG and Fujaba, the VIA-
TRA tool is more tuned to the activity of model transformation since it was
specifically built for this purpose. Concerning expressiveness, VIATRA seems
to be one of the most advanced tools since it offers such unique features as
higher-order and meta-transformations. On the other hand, GReAT and Fu-
jaba provide a full environment for developing transformation programs: a
(visual) modeling tool, interpreter with debugger, and a code generator.

References

[1] Baresi, L., R. Heckel, S. Thöne and D. Varró, Style-based refinement of dynamic
software architectures, in: Proc. of the 4th Working IEEE/IFIP Conference on
Software Architecture (WICSA4) (2004), pp. 155–164.

[2] Burmester, S., H. Giese, J. Niere, M. Tichy, J. Wadsack, R. Wagner,
L. Wendehals and A. Zuendorf, Tool integration at the meta-model level: The
fujaba approach, Int’l Journal on Software Tools for Technology Transfer 6
(2004), pp. 303–318.

[3] Corradini, A., U. Montanari and F. Rossi, Graph processes, Fundamenta
Informaticae 26 (1996), pp. 241–265.

[4] Csertán, G., G. Huszerl, I. Majzik, Z. Pap, A. Pataricza and D. Varró, VIATRA
- visual automated transformations for formal verification and validation of
UML models, in: Proc. 17th Int’l Conf. Automated Software Engineering (2002),
pp. 267–270.

[5] Ehrig, H. and K. Ehrig, Overview of formal concepts for model transformations
based on typed attributed graph transformation, in: Proc. Int’l Workshop
on Graph and Model Transformation (GraMoT 2005), Electronic Notes in
Computer Science (2005).

[6] Formal Techniques in Software Engineering, Model driven, Template based,
Model Transformer (MoTMoT), http://sourceforge.net/projects/motmot/
(2004).

13



Mens et al.

[7] Geiger, L. and A. Zündorf, Graph based debugging with Fujaba, in: Proc. Int’l
Workshop on Graph Based Tools, Electronic Notes in Theoretical Computer
Science 72 (2002).

[8] Geiger, L. and A. Zündorf, Statechart modeling with fujaba, in: Proc. Int’l
Workshop Graph-Based Tools (GraBaTs), Electronic Notes in Theoretical
Computer Science (2004).

[9] Geiger, L. and A. Zündorf, Transforming graph based scenarios into graph
transformation based JUnit tests, in: Proc. AGTIVE, Lecture Notes in
Computer Science 3062, Springer, 2004 pp. 61–74.

[10] Heckel, R., J. Küster and G. Taentzer, Confluence of typed attributed graph
transformation systems, in: Proc. 1st Int’l Conf. Graph Transformation, Lecture
Notes in Computer Science 2505 (2002), pp. 161–176.

[11] Hoffmann, B., D. Janssens and N. Van Eetvelde, Cloning and expanding graph
transformation rules for refactoring, in: Proc. Int’l Workshop on Graph and
Model Transformation (GraMoT 2005), Electronic Notes in Computer Science
(2005).

[12] Kalnins, A., J. Barzdins and E. Celms, Model transformation language MOLA,
in: Proc. Model-Driven Architecture: Foundations and Applications, 2004, pp.
14–28.

[13] Karsai, G., A. Agrawal and F. Shi, On the use of graph transformations for
the formal specification of model interpreters, Journal of Universal Computer
Science 9 (2003), pp. 1296–1321.

[14] Klempien-Hinrichs, R., H.-J. Kreowski and S. Kuske, Typed graph
transformation units, in: Proc. 2nd Int’l Conf. Graph Transformation, Lecture
Notes in Computer Science 3526 (2004), pp. 112–127.

[15] Königs, A. and A. Schürr, Mdi - a rule-based multi-document and tool
integration approach, Software and Systems Modelling (2005).

[16] Kreowski, H.-J. and S. Kuske, Graph transformation units and modules,
Handbook of Graph Grammars and Computing by Graph Transformation 2
(1999), pp. 607–638.

[17] Mens, T., On the use of graph transformations for model refactoring, in:
Proc. Int’l Summer School on Generative and Transformational Techniques in
Software Engineering, 2005.

[18] Mens, T. and P. V. Gorp, A taxonomy of model transformation, in: Proc. Int’l
Workshop on Graph and Model Transformation (GraMoT 2005), Electronic
Notes in Computer Science (2005).

[19] Mens, T., N. Van Eetvelde, S. Demeyer and D. Janssens, Formalizing
refactorings with graph transformations, Software Maintenance and Evolution:
Research and Practice 17 (2005), pp. 247–276.

14



Mens et al.

[20] M.Große-Rhode, F. P. Presicce and M. Simeoni, Formal software specification
with refinements and modules of typed graph transformation systems, Journal
of Computer and System Sciences 64 (2002), pp. 171–218.

[21] Rensink, A., The GROOVE simulator a tool for state space generation, in: Proc.
AGTIVE 2003, Lecture Notes in Computer Science 3062 (2004), pp. 479–485.

[22] Rensink, A., A. Schmidt and D. Varró, Model checking graph transformations: A
comparison of two approaches, in: Proc. 2nd Int’l Conf. Graph Transformation,
Lecture Notes in Computer Science 3526 (2004), pp. 226–241.

[23] Schippers, H., P. Van Gorp and D. Janssens, Leveraging UML profiles to
generate plugins from visual model transformations, in: Proc. Int’l Workshop
Software Evolution through Transformations (SETra), Electronic Notes in
Theoretical Computer Science 127 (2005), pp. 5–16.

[24] Schürr, A., Specification of graph translators with triple graph grammars, in:
Proc. WG’P4 Workshop on Graph-Theoretic Concepts in Computer Science,
1994, pp. 151–163.

[25] Schürr, A., Logic based programmed structure rewriting systems, Fundamenta
Informaticae 26 (1996), pp. 363–385.

[26] Schürr, A., A. Winter and A. Zündorf, “Handbook of Graph Grammars and
Graph Transformation,” World Scientific, 1999 pp. 487–550.

[27] Sim, S. E., S. Easterbrook and R. C. Holt, Using benchmarking to advance
research: A challenge to software engineering, in: Proc, 25th Int’l Conf. Software
Engineering (2003), pp. 74–83.

[28] Sprinkle, J., A. Agrawal, T. Levendovszky, F. Shi and G. Karsai, Domain model
translation using graph transformations, in: Proc. Int’l Conf. Engineering of
Computer-Based Systems (2003), pp. 159–168.

[29] Taentzer, G., AGG: A graph transformation environment for modeling and
validation of software, in: Proc. AGTIVE 2003, Lecture Notes in Computer
Science 3062 (2004), pp. 446–453.

[30] Van Eetvelde, N. and D. Janssens, Extending graph rewriting for refactoring,
in: Proc. 2nd Int’l Conf. Graph Transformation, Lecture Notes in Computer
Science 3526 (2004), pp. 399–415.

[31] Varró, D. and A. Pataricza, Generic and meta-transformations for model
transformation engineering, in: A. M. Thomas Baar, Alfred Strohmeier, editor,
UML 2004 - The Unified Modeling Language, Lecture Notes in Computer
Science 3273 (2004), pp. 290–304.

[32] Varro, G., A. Schürr and D. Varro, Benchmarking for graph transformation, in:
A. Amber and K. Zhang, editors, Proc. IEEE Symposium on Visual Languages
(VL/HCC 2005), University of Texas at Dallas (2005).

15



Mens et al.

[33] Vizhanyo, A., A. Agrawal and
F. Shi, Towards generation of efficient transformations, in: Proc. Generative
Programming and Component Engineering, Lecture Notes in Computer Science
3286 (2004), pp. 298–316.

[34] Vizhanyo, A., S. Neema, F. Shi, D. Balasubramanian and G. Karsai, Improving
the usability of a graph transformation language, in: Proc. Int’l Workshop
on Graph and Model Transformation (GraMoT 2005), Electronic Notes in
Computer Science (2005).

16



Mens et al.
T
ab

le
1

cr
it

er
io

n
A

G
G

Fu
ja

ba
V

IA
T

R
A

G
R
eA

T

nu
m

be
r

of
so

ur
ce

an
d

ta
rg

et
m

od
el

s
on

e-
to

-o
ne

m
an

y-
to

-m
an

y
m

an
y-

to
-m

an
y

m
an

y-
to

-m
an

y

ki
nd

of
tr

an
sf

or
-

m
at

io
n

en
do

ge
no

us
en

do
ge

no
us

en
do

ge
no

us
+

ex
og

en
ou

s
en

do
ge

no
us

+
ex

og
en

ou
s

te
ch

ni
ca

l
sp

ac
e

X
M

L
,
G

X
L
,
G

T
X

L
M

D
A

,
U

M
L
,
Ja

va
M

D
A

,
X

SD
,

bu
si

ne
ss

pr
oc

es
s

m
od

el
s

M
D

A
,
U

M
L

le
ve

l
of

au
to

m
a-

ti
on

gr
ap

h
gr

am
m

ar
s

st
or

y-
dr

iv
en

m
od

el
lin

g
tr

an
sf

or
m

at
io

ns
dr

iv
en

by
ab

-
st

ra
ct

st
at

e
m

ac
hi

ne
s

ex
pl

ic
it

ly
se

qu
en

ce
d

tr
an

s-
fo

rm
at

io
n

st
ep

s
w

it
h

co
n-

te
xt

pa
ra

m
et

er
s

co
m

pl
ex

it
y

la
ye

re
d

gr
am

m
ar

s
co

nt
ro

lle
d

gr
ap

h
tr

an
s-

fo
rm

at
io

ns
hi

gh
er

-o
rd

er
an

d
m

et
a

tr
an

s-
fo

rm
at

io
ns

co
nt

ro
lle

d
gr

ap
h

tr
an

sf
or

-
m

at
io

ns

cu
st

om
is

ab
ili

ty
/

re
us

ab
ili

ty
pa

ra
m

et
er

is
ed

tr
an

sf
or

-
m

at
io

ns
pa

ra
m

et
er

is
ed

tr
an

sf
or

-
m

at
io

ns
/

in
he

ri
ta

nc
e

of
tr

an
sf

or
m

at
io

ns

re
us

e
of

pr
ed

efi
ne

d
pa

tt
er

ns
re

us
e

of
tr

an
sf

or
m

at
io

n
ru

le
s

an
d

bl
oc

ks

ve
ri

fic
at

io
n

/
va

li-
da

ti
on

te
rm

in
at

io
n

an
d

co
ns

is
-

te
nc

y
ch

ec
ki

ng
,

cr
it

ic
al

pa
ir

an
al

ys
is

de
bu

gg
er

;
gr

ap
h-

tr
an

sf
or

m
at

io
n-

ba
se

d
JU

ni
t

te
st

s

fu
ll-

fle
dg

ed
ve

ri
fic

a-
ti

on
/v

al
id

at
io

n
by

C
he

ck
V

M
L

de
bu

gg
er

;
w

el
l-
fo

rm
ed

ne
ss

of
tr

an
sf

or
m

at
io

n
re

su
lt

s

co
m

po
si

ti
on

la
ye

re
d

gr
ap

h
gr

am
m

ar
m

et
ho

d
ca

lls
in

st
or

y
dr

iv
en

m
od

el
lin

g
no

n-
re

cu
rs

iv
e

co
m

po
si

ti
on

of
pa

tt
er

ns
in

to
ru

le
s

hi
er

ar
ch

ic
al

bl
oc

ks
of

se
-

qu
en

ce
s,

re
cu

rs
io

n

pe
rf

or
m

an
ce

/
sc

al
ab

ili
ty

in
te

rp
re

te
d

in
te

rp
re

te
d

+
co

m
pi

le
d

in
te

rp
re

te
d

in
te

rp
re

te
d

+
co

m
pi

le
d

ex
te

ns
ib

ili
ty

by
ex

te
nd

in
g

A
G

G
’s

in
-

te
rn

al
en

gi
ne

pl
ug

-i
n

m
ec

ha
ni

sm
pl

ug
-i
n

m
ec

ha
ni

sm
fo

r
w

ri
ti

ng
im

po
rt

er
s

an
d

ex
po

rt
er

s
pr

oc
ed

ur
al

co
de

ac
ce

pt
ab

ili
ty

fo
r

re
se

ar
ch

pu
rp

os
es

fo
r

so
ft

w
ar

e
de

ve
lo

pm
en

t
fo

r
m

od
el

tr
an

sf
or

m
at

io
n

fo
r

m
od

el
tr

an
sf

or
m

at
io

n

st
an

da
rd

is
at

io
n

G
X

L
,
G

T
X

L
U

M
L
,
Ja

va
,
X

M
I,

M
O

F
U

M
L
,
X

M
I,

M
O

F
U

M
L
,
X

M
I

17


	Introduction
	What needs to be transformed into what?
	Important characteristics of a transformation
	Success criteria for a graph transformation tool
	Quality requirements for a graph transformation tool
	Discussion
	References

