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This paper presents an analysis system aiming at discriminating between normal and pathological voices. Compared to literature
of voice pathology assessment, it is characterised by two aspects. First the system is based on features inspired from voice pathology
assessment and music information retrieval. Second the distinction between normal and pathological voices is simply based on
the correlation between acoustic features, while more complex classifiers are common in literature. Based on the normal and
pathological samples included the MEEI database, it has been found that using two features (spectral decrease and first spectral
tristimulus in the Bark scale) and their correlation leads to correct classification rates of 94.7% for pathological voices and 89.5%
for normal ones. The system also outputs a normal/pathological factor aiming at giving an indication to the clinician about the
location of a subject according to the database.

Copyright © 2009 Thomas Dubuisson et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

1. Introduction

The acoustic evaluation of voice quality is an important tool
for the assessment of pathological voices. This assessment
may be performed following two different approaches: the
perceptive judgement and the objective assessment. On the
one hand, the perceptive judgement is used in the clinical
domain and consists in qualifying and quantifying the voice
pathologies by listening the production of a patient. This
evaluation is performed by trained professionals who rate the
speech samples on a grade scale (GRBAS scale [1]) according
to their perception of voice disorder. This subjective evalua-
tion suffers of the drawbacks to be highly dependent on the
experience of the listener and on its inconsistency on judging
pathological voice quality. On the other hand, the objective
analysis consists in qualifying and quantifying the voice
pathologies by acoustical, aerodynamic, and physiological
measurement. It offers the advantages to be quantitative,
cheaper, faster, and more comfortable for the patient than
methods like the electroglottography (EGG) [2] or the
imaging of the vocal folds (by stroboscopy [3] or more
recently by high-speed camera [4]).

Many methods of acoustic evaluation of pathological
voices have been proposed in literature. Among them, an
important part consists of computing acoustic descriptors,
using them in a classifier, and computing a classification
performance from the outputs of this system. Interesting
results are obtained but two drawbacks can be highlighted.

(i) Using a classifier like Neural Networks is equivalent
to a kind of “black box,” it is difficult to identify what
really happens in it and, in the case of transformation
of the input space, which feature or set of features dis-
criminate well the normal and pathological samples.

(ii) The features used in literature are often linked to the
clinical evaluation, while other acoustic features have
been proposed in other domains of sound processing.
Moreover, features like jitter or Harmonic-to-Noise
Ratio (HNR) are based on the evaluation of funda-
mental period, which can be subject to controversy in
speech analysis, even more in the case of pathological
voices [5].

For these reasons, this paper presents an analysis system
using only the information from the correlation between
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Figure 1: Structure of the analysis system.

acoustic descriptors in order to discriminate the normal and
the pathological voices. These features come from both the
clinical and sound analysis domains and have in common
that none is based on the value of the fundamental frequency.

The analysis system is composed of three parts (see
Figure 1).

(1) Feature extraction: this part consists in cutting the
signal into frames, windowing them and computing
descriptors (from both normal/pathological voices
assessment and music analysis) in temporal and
spectral domains. Only the value of descriptors cor-
responding to voiced parts of speech are considered.
This part is described in Section 5.

(2) Correlation computation: the correlation between
descriptors in voiced parts of speech is computed
and stored into a matrix. This part is described in
Section 6.

(3) Exploitation of the correlation: the elements of
the correlation matrix are manipulated in order
to discriminate between normal and pathological
samples and to compute a final descriptor (nor-
mal/pathological factor). These manipulations are
the results of a statistical study described in Section 7.

In a nutshell, the aims of this study are as follows.

(1) Giving an overview of the classic features and clas-
sifiers in normal/pathological voices discrimination.
These two aspects are, respectively, described in
Sections 2 and 3.

(2) Proposing features coming from other domain of
sound analysis.

(3) Showing that simply using the correlation between
features not based on fundamental frequency instead
of a classic classifier allows to discriminate well
between normal and pathological samples, extracted
from the database described in Section 4.

2. Classic Features in Pathological Voice
Assessment

The subject of this section is the overview of the classic
features involved in pathological voice assessment. It is
obviously not possible to include all the descriptors found
in literature, only the most common are presented.

2.1. Fundamental Frequency. When working in speech pro-
cessing domain, an obvious feature for researchers is the
fundamental period, and its spectral equivalent, the funda-
mental frequency. This parameter is used in most of the
studies, sometimes in conjunction with the Mel-Frequency
Cepstral Coefficients (MFCC).

2.2. Mel -Frequency Cepstral Coefficients. MFCCs are one of
the most widely-used way to represent the speech signal in
domains like recognition or coding [6]. These coefficients
are computed by weighting the Fourier Transform of the
signal by a MEL filterbank (perceptive scale), then computing
the cepstrum from this weighted spectrum and finally the
Discrete Cosinus Transform (DCT) of this cepstrum.

Using the MFCC parameters provides three advantages.

(i) The human perception is taken into account by
considering a perceptive scale of frequencies.

(ii) The MFCC parameters are uncorrelated thanks to
the DCT operation. This may be an advantage if
these parameters are used directly as input of a
classification system. In this case, each parameter
brings its own information, without link to other
ones.

(iii) The spectral envelope is summarized into a limited
set of parameters.

As MFCC coefficients are widely used in speech processing,
some studies aim at adapting techniques of Automatic
Speaker Recognition (ASR) to the pathological voice assess-
ment. In [7, 8] the aim is to train a GMM classifier (see
Section 3.1) able to determine the grade corresponding to
a particular voice sample. 16 MFCC coefficients and their
first derivative are computed by using a 24 MEL filterbank.
In [9–11], 12 MFCC coefficients, with their first and second
derivative, and the fundamental period are the inputs of
an HMM classifier (see Section 3.2) trained in order to
discriminate between normal and pathological samples. The
distinction between these two classes is also the subject of
[12], in which MFCC coefficients are used, among others, as
inputs of a SVM classifier (see Section 3.3).

2.3. Acoustic Features from MDVP Software. The Multi-
Dimensional Voice Program (MDVP) is a software produced
by KayPentax Corp. [13]. When assessing the production of a
subject, this system computes acoustic descriptors related to
the perturbation of the fundamental frequency (or period)
and to the amplitude of the signal (the whole definition of
these descriptors is given in [14]).

As these features are considered as “classic” in the domain
of speech pathology assessment, some authors use them in
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their classification system. Among these studies, some use the
acoustic descriptors computed directly from MDVP software
[10, 15], which is facilitated by the fact that these features
are stored with speech samples in the MEEI database (see
Section 4). However, one can object that there is little control
on the computation of these acoustic descriptors. Some other
studies use features inspired from those computed by MDVP
software, meaning that their definitions is taken or inspired
from [14]. For example, [16, 17] present a classification
system of normal/pathological discrimination after trans-
mission through a telephone channel in which input features
are, among others, the perturbation of fundamental period
and amplitude as defined in MDVP software.

2.4. Fundamental Frequency and Amplitude Perturbations
(Jitter and Shimmer). Perhaps among the most famous
acoustic descriptors in speech pathology assessment, jitter
and shimmer are defined as the variation of the duration and
the amplitude of the glottal cycle during the production of a
sustained vowel.

MDVP software includes different ways of calculating
jitter and shimmer, all of them being based on a classic
estimation of fundamental frequency. Among these different
implementations, Perturbation Quotient of fundamental
frequency and amplitude are especially used as a measure
of jitter and shimmer in a majority of studies [17–20]. An
other descriptor derived from the Perturbation Quotient and
showing more correlation with pathology is proposed in
[21].

Most of the methods of jitter and shimmer computation
rely on the assumption that periodicity exists in speech,
which may be questionable in presence of pathology. That is
why some methods propose alternative ways of computing
jitter and shimmer than those based on the estimation of
fundamental period. In [22] the salience of a sample (defined
as the longest interval over this sample is maximum) is used
to derive a duration quite close to the definition of glottal
cycle length. Jitter and shimmer can easily be derived once
this duration is available. One other interesting method relies
on the modelisation of the power spectrum of speech into an
harmonic part influenced by the jitter and a subharmonic
one appearing because of jitter [5]. Jitter can be estimated
by observing the behaviour of these two parts. Concerning
the shimmer, the study proposed in [23] uses the waveform
matching technique [24] to compute it. This study also
proposes an interesting review of the different acceptations
of the term amplitude in the definition of shimmer.

2.5. Spectral Balances. It is considered that the location of
energy in spectral domain may be discriminant between the
two populations. That is why descriptors are computed in
limited frequency regions. Among these, the spectral balance
is defined as the ratio between the spectral energy in two
frequency bands.

Apart from HNR, de Krom defines in [25] 4 frequency
bands ([60–400 Hz], [400–2000 Hz], [2000–5000 Hz],
[5000–8000 Hz]) between which spectral balances are
computed. The method exposed in [19] extends these
frequency bands with the [8000–11025 Hz] band. Spectral

balances between all possible pairs of bands and the whole
spectrum are also considered. Other frequency bands (below
1 kHz, above 1 kHz, below 2 kHz, above 2 kHz) are proposed
in [26] and are involved in the computation of two spectral
tilt parameters, tuned to indicate the amount of noise
without influence of jitter and shimmer.

2.6. Harmonics and Formant Level Variation. Considering
the level in harmonic and formant regions is popular in
speech pathology assessment because they reflect the pres-
ence of perturbation on speech signal (jitter, shimmer) and
glottal source characteristics (spectral tilt, open quotient).

Concerning the harmonics, the first and second har-
monic are most of the time considered. In [25, 27] the
difference of amplitude between these harmonics and the
relative level of the first one regarding to the level in the
[400–2000 Hz] band are measured. The study [26] uses this
measure in addition to the measure of the first harmonic
level. Finally the authors of [19] choose to compute the level
of the first harmonic and the relative level between the two
first harmonics in the cepstral domain.

Concerning the formants, the level differences between
the first harmonic and the strongest one in the first and
third formant region are used in [26] and the level difference
between the first and third formant is considered in [27].
The energy level in the region of the first, second and third
formant are also selected in [28].

It must however be noticed that the measurement
of these levels strongly relies on fundamental frequency
estimation (which may be problematic in pathological cases)
and formant detection.

2.7. Noise Features. As pathological speech is often perceived
as noisy, researchers have been interested in measuring the
harmonic and noise components of speech. This kind of
measure is besides part of tools used in clinical domain (e.g.,
MDVP Software).

Some noise measures proposed in literature can be
highlighted:

(i) Harmonic to Noise Ratio (HNR): defined in [29] as
the log ratio of the energy of the periodic and aperiodic
components, different methods of HNR computation have
been proposed in literature (a comparison between them is
proposed in [29] in the context of voice quality analysis).
Some methods are based on a model in which speech is
assumed to be composed of a periodic component and an
aperiodic component [25, 30] (notably by computing the
cepstrum of speech signal) while other use the short-time
autocorrelation function [31]. They all share the fact that
they are based on the estimation of fundamental frequency.

When looking at studies of pathological speech assess-
ment, HNR arises as a popular measure. It is sometimes
computed for the whole frequency range [15] or more
frequently in particular frequency bands because of the
assumption that noise energy is located in different frequency
regions in normal and pathological phonations. Indeed HNR
in four frequency bands is used in [32] with spectral energy
in critical bands for the discrimination between normal
and pathological samples in the MEEI Database. The same
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measure is used in [33] to show that HMM is able to classify
different voice qualities and in [16, 17] to discriminate
normal and pathological samples after transmission through
a telephone channel. Speech samples for both methods are
also extracted from the MEEI Database.

(ii) Normalized Noise Energy (NNE): this measure is
proposed in [34] and aims at quantifying the energy of
the noise component from the spectrum of speech. In the
computation of NNE, noise energy is obtained between
the harmonics directly from spectrum while inside the
harmonics noise energy is assumed to be the mean value of
the adjacent minima in the spectrum. The authors point that
there may be a problem of estimation when the harmonics
are broadened (in case of jitter). This measure is used in
[15] for the discrimination between normal and pathological
samples in the MEEI database.

(iii) Glottal to Noise Excitation (GNE) ratio: this measure
is proposed in [35] and aims at quantifying the amount of
voice excitation by vocal-fold oscillations versus excitation
by turbulent noise. This descriptor is computed as the
maximum correlation between the Hilbert enveloppes of the
inverse filtered speech wave, in different frequency bands.

GNE measure is compared to HNR and NNE in [35] in
which the authors show its relevance for the measure of noise
energy, even in presence of strong jitter and shimmer (in the
case of synthetic speech signals). This work is continued in
[18], in which GNE is compared to other features (HNR,
GNE, jitter and shimmer from MDVP software) in the field
of voice quality assessment (in the case of real speech signals).
As for HNR and NNE, GNE is computed for different
frequency bands. It turns from this study that, in pathological
speech, GNE (measuring the additive noise due to air passing
through the glottis in case of uncomplete closure), and
jitter and shimmer (measuring the irregularity of vocal folds
vibration) describe different voice aspects that often appear
for this kind of voice.

GNE has also been proved to show significant difference
between subjects with normal phonation or pathological
phonation ([15] for various pathologies or [27] for the
particular case of cancer).

3. Classifiers used in Normal/Pathological
Voices Discrimination

This section aims at describing the different kinds of clas-
sifiers used in voice pathology assessment. Their structure
and behavior are briefly presented, with a focus on the way
they are adapted to this particular problem. This section is
complementary to Section 2, since the features used as input
are described in this latter.

3.1. Gaussian Mixture Model. Gaussian Mixture Modeling
(GMM) is widely used in Automatic Speaker Recognition,
where it acts as a supervised classification system able to
differentiate speech samples into classes (two for speaker
verification and n for speaker identification).

In [7] GMM is adapted from speaker identification so
that a class does not longer belong to a given speaker but
to one of the grades in GRBAS scale (from 0 (normal) to

3). Each class is thus learnt using samples whose pathology
is associated to this grade. The normal and pathological
corpus are part of a database developed by LAPEC (Hôpital
de la Timonne, Marseille, France) and consists of 20 normal
samples and 60 pathological samples whose grade has been
assessed by experts. The building of the classification system
consists into three phases.

(i) Parametrization: MFCC coefficients and their first
derivatives are extracted from speech.

(ii) Model training: a generic GMM is estimated on
a normal corpus and GMMs are derived from
the generic one by adapting of the mean of all
the gaussians (MAP technique). In case of nor-
mal/pathological discrimination, a normal and a
pathologic GMM are adapted from the generic GMM
while in the case of grade classification, each grade
is represented by a GMM adapted from the generic
GMM.

(iii) Classification: when a speech sample has to be
classified, the likelihood between this sample and
each GMM is estimated and the decision relies on the
maximum between these likelihoods.

For the normal/pathological classification, 95% of normal
subjects and 81.7% of pathological ones are correctly
classified. For the grade classification, the same performance
is obtained for the grade 0 (corresponding to the normal
subjects) while a loss of performance is observed for
the pathological ones, specially between adjacent grades.
Although the results are judged promising by the authors,
no particular attention is put on the choice of acoustic
parameters. The same system is used in [8] to determine
which kind of information is better suited to the classification
of the four grades. Three levels are considered.

(i) Energy: only the information extracted from non-
silence frames is considered.

(ii) Phonetic: the information is extracted from frames
after automatic phonetic alignment.

(iii) Voiced: only the information extracted from voiced
segments is considered.

Whatever the level of information, the same performance for
grade 0 than in [7] is obtained. For other grades, it turns
out that the information extracted from the phonetic level
provides the best overall classification result (71% for the
same database as in [7]). The authors pursue their work
in [36], where the same system than in [7, 8] is applied
but this time to parameters extracted from a cut of the
frequency range [0–8000 Hz] into subbands. It turns out
that the [0–3000 Hz] band seems to be more informative (in
terms of discrimination between the four grades) that the
full frequency range. Interesting results of this study are the
proof that (1) an attention on acoustic features is important
for the classification (2) the whole frequency range may not
be as performant as a subband to discriminate normal and
pathological voices.
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GMMs are also used in [37] in order to discriminate
between 41 normal samples and 111 pathological samples
collected in a room of the ENT department of a hospital.
This time, the features come from the MDVP analysis (see
Section 2.3) and consists of Jitt, RAP, Shim, APQ, HNR,
and SPI. The methodology for building the GMM is slightly
different than, for example, in [7] because this time one
GMM models all the pathological samples and the varying
dimension is the number of Gaussians involved in the
mixture. For the optimal number of gaussians, the correct
classification rate is 92.9% for normal data and 98.6% for
the pathological ones. As in [7], the authors point that it
would be interesting to pay more attention to the choice of
the acoustic features.

3.2. Hidden Markov Model. Hidden Markov Models
(HMMs) are well known in speech processing, notably in
speech recognition and more recently in speech synthesis.

In [9] HMMs are trained on 12 MFCC coefficients,
their first and second derivatives and the pitch for the
sustained vowels /a/ and the spoken utterances from the
MEEI Database (see Section 4). The correct classification
rate for the sustained vowels is 98.3% and 97.75% for the
spoken utterances. The authors compare these performances
to those obtained by using the results of MDVP analysis on
the same corpus. It turns that using these features provides
lower classification rate for the two kinds of production.
This work is continued in [10], in which a discrimination
between four degrees of a particular pathology (A-P
Squeezing) are classified using an HMM structured as in
[9]. It turns that the correct classification rate is higher
when the degree of pathology is severe and that using
an HMM with the same features than in [9] provides
better classification rate than using the features from
MDVP analysis. The classification of different pathologies
is pursued in [11], where the authors aim at discriminating
five pathologies (A-P Squeezing, hyper-function, ventricular
compression, paralysis, gastric reflux) in the pathological
corpus of vowels /a/ from the MEEI Database. The same
features than in the two papers above are used as input
of the HMM. In this case, five HMMs are trained, each
one corresponding to a pathology versus the others. When
a new sample is presented as input of the classification
system, the assigned pathology is the one corresponding to
the HMM that outputs the maximum score. The average
correct classification rate is 71%. Although the results of
discrimination between pathologies are encouraging, the
authors point that extending this work to other pathologies
would be difficult because of the sparseness of data in the
MEEI database. In terms of features, these three papers show
that (1) spectral enveloppe features and pitch tend to be
more reliable than the features estimated in MDVP analysis
and (2) using HMM in classification provides good results in
the case of discrimination between normal and pathological
voices, and between different kinds of pathologies.

3.3. Support Vector Machines. Support Vector Machines
(SVMs) [38] are a well-known classifier used in problems of
classification, regression, and novelty detection.

Some people use this classifier in discrimination between
normal and pathological samples. For example, [12] pro-
poses to use a set of features consisting of 11 MFCC coeffi-
cients, HNR, NNE, GNE, Energy, and their first derivatives.
The classifier is trained on the vowels /a/ from the patho-
logical corpus of MEEI Database (53 normal samples and 77
pathological samples) and the average correct classification
rate is 95.12%. The author point that the cepstral and the
noise features complement well and that the results are better
than using an MLP classifier with the same inputs. This kind
of classifier is also used in [39], in which input features
are extracted from the wavelet transform of 30 normal
and 60 pathological speech utterances (from a database
designed in Republic Center of Hearing, Voice and Speech
Pathologies, Minsk, Belarus). The correct classification rate is
this time 97.5% for normal voices and 100% for pathological
ones.

3.4. Linear Discriminant. Among the simplest classification
systems, Linear Discriminant (LD) classifier aims at cutting
the feature spaces under the hypothesis of Gaussian Distri-
bution for features of each class. Under assumptions about
the distributions, the decision boundaries are linear. When a
new sample is presented as input of this classifier, its assigned
class is the one for which the classifier outputs the highest
probability.

The remote diagnosis tool presented in [16] uses as
input features inspired from MDVP analysis (pitch and
amplitude perturbations, HNR in different frequency bands)
to discriminate normal and pathological samples when
speech is transmitted through the telephonic channel. The
database consists of all the samples from MEEI database
after transmission through this channel. The authors use
an LD classifier and obtain a correct classification rate
of 89.10% for the original database and 74.15% for the
telephone database. Although they point out that the results
are promising, they admit that more samples are needed to
increase the performance of the system and that the difficulty
in accurately tracking the pitch in speech could severly limit
the discriminant ability of pitch perturbation measures.

This work is pursued in [17] by using pitch and
amplitude perturbation features to classify the pathological
samples from the telephone database of [16] into different
kinds of pathologies (neuromuscular, physical, and mixed).
The LD classifier provides a correct classification rate of
87.27% for the neuromuscular corpus, 77.97% for the
physical corpus and 61.08% for the mixed corpus. It also
turns that, in the case of the database transmitted by
telephone channel, HNR measures are not as relevant as
others to discriminate between normal and pathological
groups and between the different groups of pathologies.

3.5. K-Nearest Neighbours. The K-Nearest Neighbours
(KNNs) classifier [38] is a system aiming at clustering a
feature space into as many regions as classes, these regions
being delimited by piecewise linear planes.

In [32] a modification of this classifier is used in order
to classify 53 normal and 163 pathological samples extracted
from the MEEI database. In this system, a new sample is not
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compared to its K nearest neighbours but to a vector which
represents the mean of all the features vectors belonging to
a class. Thus the class assigned to the new sample is the one
corresponding to the closest mean vector to the new sample.
As the method exposed in [32] considers HNR in 4 frequency
bands and spectral energy in 21 critical bands as inputs, these
two kinds of features are used to design classifiers between
normal and pathological samples. For the first set of features,
the obtained accuracy is 94.28% and for the second one
92.38%. Although the dimension of the first set of features
is smaller and the obtained accuracy higher than for the
second set, the authors point out that fundamental frequency
is difficult to estimate for pathological voices, leading to
erroneous estimation of harmonic and noise components.
They also highlight that the computation load of HNR is
higher than for spectral energy.

3.6. Neural Networks. Artificial Neural Networks are a widely
used classifier in various domains, in pattern classification
and recognition or in speech recognition. Basically this type
of classifier can be viewed as an interconnexion between
simple small units, the neurons, designed to model to some
extent the behaviour of human brain.

In [15] an MLP classifier is designed to discriminate
between normal and pathological samples in the MEEI
database. The network consists of a 26-neurons input layer
(26 acoustic descriptors computed by MDVP software and
stored in the database with the speech samples), one hidden
layer and 1-neuron output layer (normal or pathological).
The average correct classification rate is 94% when HNR,
VTI, and ShdB are used as input features. The authors
of [19] are also interested in the discrimination between
normal and pathological samples in a database of 5 spanish
sustained vowels (100 normal samples and 68 pathological
samples). Each vowel is treated by a neural network which
takes as input classic parameters and others extracted from
the bicoherence. The decision from the 5 networks are then
combined to decide if the input sample is healthy or not. The
correct classification rate is 94.4% for the classic parameters
and is increased of 4% when the others ones are added.
A similar study is conducted in [20], in which the same
classifier than in [19] is applied to two sets of features
extracted from the database presented in the same paper.
The two sets of features consist on classic parameters and
classic parameters plus non-linear features inspired from
the dynamic system theory (the correlation dimension and
the largest Lyupanov exponent). The author shows that
using this latter configuration of features leads to a correct
classification rate of 93%.

4. Database

In the domain of pathological voices assessment, a widely-
used database is the MEEI Disordered Voice Database,
produced by KayPentax Corp. [14]. It has been chosen
because a certain amount of studies [10–12, 15–17, 32, 33]
use it in order to compare themselves to other methods and
because it already provides a distinction between normal and
pathological samples.

Speech signal

Temporal features Spectral features

Normalization

Voicing mask

Windowing

Framing

Features extraction

Figure 2: Details of the first part of the analysis system.

The database contains sustained vowels and reading text
samples (12 seconds readings of the “Rainbow Passage”),
from 53 subjects with normal voice and 657 subjects with
a large panel of pathologies. The recordings are linked to
informations about the subjects (age, gender, smoking or
not) and to the results of the analysis by the MDVP software.
The sampling frequency of the recordings is 25 kHz or
50 kHz, with only 25 kHz for the normal voices.

In this study, only the sustained vowels of the MEEI
Database are considered. This group is split into a training
and a test set, respectively, representing 65% and 35% of the
whole database of sustained vowels.

(i) Training set: this set contains normal and patholog-
ical samples. The normal ones consist of 34 normal
samples randomly chosen among the 53 samples of
the database. The pathological ones consist of 427
samples randomly chosen among the 657 samples of
the database.

(ii) Test set: this set contains the normal and pathological
samples that are not part of the training set. It thus
consists of 19 normal samples and 230 pathological
ones.

The training set is used to find which information is the
most discriminant for the discrimination between normal
and pathological samples and the test set is used to assess the
classification performance of this information.

In order to limit the computational load and to avoid an
effect of the sampling frequency value on the discrimination
between the two groups, all the voices are resampled at
16 kHz and quantified on 16 bits.

5. Feature Extraction

The first part of our analysis system consists in extracting
features from speech signal (see Figure 2). This section thus
aims at describing first the practical conditions of feature
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extraction, then the reasons of selecting features from the
ones presented in Section 2 and from music sound analysis.
The mathematical formulation of the selected descriptors
and the implementation of voicing decision are finally
presented.

5.1. Practical Conditions of Features Extraction. The compu-
tation of descriptors is preceded by several steps aiming at
preparing the speech signal to be treated.

As explained in Section 4, the speech samples studied
here (sustained vowels /a/) are part of the MEEI database.
Their sampling frequency are various (25 or 50 kHz). It was
then chosen resample them directly to 16 kHz.

In order to be as independent as possible to the recording
conditions (e.g., tuning of the recording system), speech
signal is normalized according to (1) (x(n) stands for the
samples of speech signal and N for its length):

x(n) = x(n)− (1/N)
∑N

i=1x(i)
√

(1/N)
∑N

i=1

(
x(i)− (1/N)

∑N
i=1x(i)

)2
. (1)

The descriptors considered in this paper are all local descrip-
tors. They have thus to be computed for short time periods.
Besides, in order to keep a good time resolution for the
extraction of information, these time periods must overlap.
As 30 milliseconds and 10 milliseconds are common values in
speech processing community for, respectively, the duration
and the delay between consecutive time periods, these two
parameters are chosen in the analysis system. Besides, each
time period is weighted by a window function (here a
Hanning window), in order to avoid strong discontinuities
at the boundaries.

5.2. Selecting Descriptors from Pathological Voices Assess-
ment. Acoustic widely used descriptors in the domains of
normal/pathological samples discrimination have been pre-
sented in Section 2. As already said in the introduction and
stated in [5], the estimation of fundamental frequency may
be doubtful in speech (especially in pathological speech).
That is why it has been chosen not to consider descriptors
relying on this measure (e.g., HNR, jitter, shimmer, harmonic
level). Besides the results of some classification methods as
[36] suggest that cutting the frequency range into frequency
bands may be more informative than considering the whole
frequency range. That is why, from the normal/pathological
voice discrimination literature, the features related to spec-
tral balances are considered in our system. These features are
defined in Section 5.5.

5.3. Selecting Descriptors from Other Domains of Sound
Analysis. Speech signal is itself a particular example of
sound. Apart from the speech processing domain, many
others are dedicated to the extraction of information from
the sound. Among those, Music Information Retrieval (MIR)
aims at extracting information from music in order to
build classification system of music by, for example, artists.
As this extraction is based on acoustic descriptors, it is
interesting to highlight here some of them that could be

used in voice pathologies assessment. These descriptors are
part of the CUIDADO project [40], aiming at developing a
new chain of applications through the use of audio/music
content descriptors, and of the MPEG-7 [41] standard for
multimedia content description. These features are not so far
from speech processing: they are just complementary to the
standard features exposed in Section 2.

All the considered features coming from the MIR domain
(excepted the tristimuli) are not based on the estimation of
fundamental frequency. However a modified definition of
tristimuli is proposed in order to keep this measure in the
feature vector. All these features are defined in Sections 5.4
and 5.5.

5.4. Temporal Domain. The features describing the temporal
behaviour of speech signal are mathematically defined in this
section. For the rest of the paper, x(n) stands for a frame of
speech signal and N for its length.

5.4.1. Temporal Energy. The energy of the frame (expressed
in dB) is computed as

ET = 10× log10

N∑

n=1

(x(n))2. (2)

5.4.2. Temporal Mean. The mean value of the frame is
computed as

μT = 1
N

N∑

n=1

x(n). (3)

5.4.3. Temporal Standard Deviation. The standard deviation
of the frame is computed as

σT =

√
√
√
√
√

1
N

N∑

n=1

(
x(n)− μT

)2
. (4)

5.4.4. Temporal Zero Crossing. The zero-crossing rate [40,
42] aims at quantifying the frequency at which the signal
crosses the zero-axis. This descriptor is notably used to
indicate if a speech fragment is voiced or not [43]. For a
given frame, the number of times that sign changes between
a sample and the previous one (from positive to negative or
the opposite) is computed. To convert this value in Hz, it is
divided by the interval of time on which it is computed, 30
milliseconds in the present case.

5.5. Spectral Domain. The features describing the spectral
behaviour of speech signal are mathematically defined in this
section. For the rest of the paper, X(k), |X(k)|, k, and NFFT

stand, respectively, for the Discrete Fourier Transform, its
modulus, its bin index, and the number of frequency bins
on which it is computed for the numeric sequence x(n).NFFT

is set to 1024 in this study.
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5.5.1. Spectral Delta. The delta value aims at quantifying the
range of the amplitude spectrum. It is defined as

DeltaS = max
k

(|X(k)|)−min
k

(|X(k)|). (5)

5.5.2. Spectral Mean Value. The mean value of the amplitude
spectrum is defined as

μS = 1
NFFT

NFFT∑

k=1

|X(k)|. (6)

5.5.3. Spectral Median Value. The median value of the
amplitude spectrum is defined as the amplitude value that
divides all the values in two groups of same cardinality. The
median is characterized by the fact that it is less influenced
by extreme values than the mean value.

5.5.4. Spectral Standard Deviation. The standard deviation of
the amplitude spectrum is defined as

σS =

√
√
√
√
√

1
NFFT

NFFT∑

k=1

(|X(k)| − μS
)2
. (7)

5.5.5. Spectral Center of Gravity. The spectral center of
gravity (also known as spectral centroid) is a very common
feature in MIR domain [42, 44–47]. Perceptively connected
to the perception of brightness, it indicates where the “center
of mass” of the spectrum is. The spectral center of gravity of
the amplitude spectrum is known as an economic spectral
descriptor giving an estimation of the major location of
spectral energy. It is computed as

COG =
∑NFFT/2

k=1 k × |X(k)|
∑NFFT/2

k=1 |X(k)|
. (8)

The amplitude corresponding to this frequency is also stored
as a feature.

5.5.6. Spectral Moments. As the power spectrum of a signal
can be considered as the distribution of energy along fre-
quency, one can describe this distribution by using descrip-
tors from the theory of statistics. The spectral moments of
the power spectrum [46] are well adapted to this description.
The first four moments of the power spectrum [48] are
considered in this study.

In order to compute them, the power spectral density and
its total energy are computed as

PSD(k) = 1
NFFT

|X(k)|2,

ES =
NFFT∑

k=1

PSD(k).

(9)

Then the four moments are computed as follows.

(1) The first moment is equivalent to the spectral center
of gravity but computed this time on the PSD:

M1 = 2
ES

NFFT/2∑

k=1

k × PSD(k). (10)

(2) The second moment expresses the spread of the
spectrum around its first moment:

M2 = 2
ES

NFFT/2∑

k=1

(k −M1)2 × PSD(k). (11)

(3) The third moment is defined as

M3 = 2
ES

NFFT/2∑

k=1

(k −M1)3 × PSD(k). (12)

As itself, the third moment is not stored as a feature
because it is used to compute the skewness [49],
defining the orientation of the PSD around its first
moment. If it is positive, the PSD is more oriented to
the right and to the left if is negative. The skewness is
computed as

Skewness = M3

M2
3/2 . (13)

(4) The fourth moment is defined as

M4 = 2
ES

NFFT/2∑

k=1

(k −M1)4 × PSD(k). (14)

As itself, the fourth moment is not stored as a
feature because it is used to compute the kurtosis
[49], defining the acuity of the PSD around it first
moment. A Gaussian distribution having a kurtosis
equal to 3, a distribution with a higher kurtosis is
more acute than a Gaussian one while a distribution
with a lower kurtosis is more flat than a gaussian
distribution. The kurtosis is computed as

Kurtosis = M4

M2
2
. (15)

5.5.7. Spectral Decrease. The spectral decrease [40] aims
at quantifying the amount of decrease of the amplitude
spectrum. Coming from perceptive studies, it is supposed to
be more correlated with human perception. This descriptor
is computed as

Decrease =
∑NFFT/2

k=2 ((|X(k)| − |X(1)|)/(k − 1))
∑NFFT/2

k=2 |X(k)|
. (16)

5.5.8. Spectral Slope. The spectral slope [46, 50] is an
other representation of the amount of decreasing of the
amplitude spectrum. It is computed by linear regression of



EURASIP Journal on Advances in Signal Processing 9
M

el
sc

al
e

0

500

1000

1500

2000

2500

3000

3500

Frequency scale (Hz)

0 1 2 3 4 5 6 7 8 9 10
×103

Figure 3: Relation between Hz and MEL scales.

the spectrum. In this formulation, the amplitude spectrum
is approximated

X̂(k) = S× k + constant, (17)

and the slope is computed

S=
[

(NFFT/2)
∑NFFT/2

k=1 k|X(k)|
]
−
[∑NFFT/2

k=1 k×∑NFFT/2
k=1 |X(k)|

]

[∑NFFT/2
k=1 |X(k)|

][

(NFFT/2)
∑NFFT/2

k=1 k2−
(∑NFFT/2

k=1 k
)2
] .

(18)

5.5.9. Spectral Roll-Off. The spectral roll-off [42, 46] is the
frequency so that 95% of the energy is located below this
point. kc is computed by solving the equality

kc∑

k=1

|X(k)|2 = 0.95×
NFFT/2∑

k=1

|X(k)|2. (19)

5.5.10. Perceptive Scales. As already said in Section 2.2,
perceptive behaviour of human hearing can be approximated
by non linear scale of frequencies. Among those, one may cite
the MEL scale and the Bark scale.

The MEL scale consists in a non linear division of fre-
quency range, guided by perceptive considerations. Proposed
in [51], this perceptive scale of pitches is defined so as a
constant variation in the MEL scale is perceived as constant in
the Hz scale. One particular link between these scales is that
1000 Hz corresponds to 1000 mels. The relation between the
Hz scale and MEL scale is presented in Figure 3 and obeys

m = 2595× log10

(

1 +
f

700

)

. (20)

Based on this scale, a filterbank is designed and consists on
24 triangular-shaped filters whose center frequency is linearly
distributed in the MEL scale and whose bandwith increases
with central frequency.

The Bark scale [52] divides the frequency range into
critical bands. This division is defined so as two sinusoids
located in a critical band and whose amplitude is the same
are perceived in the same way while their perceived intensity

is different if they are located in different bands. The relation
between Hz and Bark scale obeys

Bark = 13× arctan

(
f

1315.8

)

+ 3.5× arctan

(
f

7518

)

. (21)

Based on this scale, the critical bands are implemented by
using 24 rectangular filters whose center frequency is linearly
distributed in the Bark scale and whose bandwith increases
with central frequency. The Bark scale is used to compute the
loudness and derived measures [46] with the sharpness and
the spread (see Section 5.5.12).

5.5.11. Spectral Tristimuli. The tristimuli [46] are proposed
in [53] as a timbre equivalent to the color attributes of vision.
These are defined as energy ratio between the fundamental
frequency and its harmonics. As it is decided to use in
this study descriptors not based on fundamental frequency
estimation, the implementation of tristimuli is modified by
using frequency bands from the MEL and Bark scales instead
of the harmonics. The 3 tristimuli are defined as in (22),
in which kBand[1] stands for the FFT bins corresponding
to the frequency range defined by the first MEL or Bark
frequency band and kBand[1,...,24] for the bins corresponding to
the frequency range defined from the first to the 24th MEL
or Bark frequency bands:

T1 =
∑

kBand[1]
|X(k)|

∑
kBand[1,...,24]

|X(k)| ,

T2 =
∑

kBand[2,3,4]
|X(k)|

∑
kBand[1,...,24]

|X(k)| ,

T3 =
∑

kBand[5,...,24]
|X(k)|

∑
kBand[1,...,24]

|X(k)| .

(22)

5.5.12. Spectral Loudness. The specific loudness [46] is the
loudness associated to each Bark band and is defined as in
(23), where z is the index of the Bark band (z standing for
values from 1 to 24) and kBand[z] the FFT bins corresponding
to the frequencies included in the zth critical band:

Loudness(z) =

⎛

⎜
⎝
∑

kBand[z]

|X(k)|

⎞

⎟
⎠

0.23

. (23)

The total loudness is defined as the sum of the specific
loudness:

LoudnessTotal =
24∑

z=1

Loudness(z). (24)

For each band, a relative loudness is defined

LoudnessRelative(z) = Loudness(z)
LoudnessTotal

. (25)
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Based on the Bark scale and the loudness, a perceptive
equivalent to the spectral center of gravity is computed as

A = 0.11×
∑24

z=1zg(z)Loudness(z)
LoudnessTotal

, (26)

where g(z) is defined

g(z) =
⎧
⎨

⎩

1, if z < 15,

0.066× e0.171×z, if z ≥ 15.
(27)

Finally the Spread measures the distance from the larget
specific loudness to the total loudness:

Spread =
(

LoudnessTotal −max[z][Loudness(z)]
LoudnessTotal

)2

.

(28)

5.5.13. Spectral Balances. As defined in [19], 5 frequency
bands are considered:

(1) L0: [60–400 Hz],

(2) L1: [400–2000 Hz],

(3) L2: [2000–5000 Hz],

(4) L3: [5000–8000 Hz],

(5) LT : [60–8000 Hz].

The energy in each of these bands is computed as in (29),
where Li stands for the ith frequency band and kLi for the
FFT bins corresponding to the frequencies included in the Li
frequency band (i stands for the values 0, 1, 2, 3,T):

ELi = 10× log10

∑

kLi

PSD(k). (29)

The energy ratio between two of these frequency bands is
defined as in (30) (i and j stand for the values 0, 1, 2, 3,T):

ELi, j = 10× log10

∑
kLi

PSD(k)
∑

kLi
PSD(k)

. (30)

The Soft Phonation Index is defined in the same way than
in (30), but for the [0–1000 Hz] and [0–8000 Hz] frequency
bands.

5.5.14. Spectral Flux. The spectral flux [42, 46, 47] is
a descriptor aiming at quantifying the variation of the
spectrum along time. It is particularly useful when particular
event (such as voice onsets [54]) must be detected. This
temporal variation is computed from the normalized cross-
correlation between two successive amplitude spectra:

SF(t) = 1−
∑NFFT/2

k=1 |X(t − 1, k)| × |X(t, k)|
√∑NFFT/2

k=1 |X(t − 1, k)|2 ×
√∑NFFT/2

k=1 |X(t, k)|2
.

(31)

5.6. Voicing Decision. As it has been chosen to compute the
correlation between features only for voiced parts of speech,
a voicing detection algorithm dedicated to this purpose has
been developed. The different steps of this algorithm are as
follows.

(1) Prior estimation of fundamental period: a lot of
methods are proposed in literature, but the YIN
algorithm [55] has emerged since recent years in the
speech processing and MIR communities. This algo-
rithm provides a prior estimation of fundamental
period, necessary for the following step.

(2) Computation of the local cross-correlation [49]:
the cross-correlation function (see (32) for two
sequences y(n) and z(n) whose length is N) is the
major element to determine if the speech segment is
voiced or not:

Ryz(m) = 1
N − |m|

N−m−1∑

n=0

y(n +m)z(n). (32)

Every 30 milliseconds, the corresponding estimation
of fundamental period is considered and two frames
are extracted from speech signal: one fundamental
period on the left of the current instant of analysis
and one fundamental period on the right of this
instant. The cross-correlation between these two
frames is then computed according to (32).

(3) Thresholding of the cross-correlation: by observ-
ing the evolution of the maximum of the cross-
correlation function (let us call it MaxXC) and
according to [43], it has been observed that this
descriptor, correctly thresholded, provides a prelim-
inary discrimination between voiced and unvoiced
frames. The most satisfying value for the threshold
is 0.02. A voiced mask is defined for the whole speech
signal:

Voiced Mask =
{

1, if MaxXC ≥ 0.02,

0, if MaxXC < 0.02.
(33)

(4) Correction of the voicing mask: although the results
of the previous step are already satisfying, some
mistakes remain, as in other problems in which
a threshold has to be applied. A typical mistake
is an isolated voiced frame among unvoiced ones.
To overcome these detection errors, a second-order
moving average filter has been applied on the voiced
mask. Thus, for a given frame, if the output of the
filter is lower than 1, it is tagged as unvoiced and
voiced otherwise.

Once the voiced mask is available, each evolution of the
features presented above is multiplied by the mask in order
to keep only the value of features in voiced parts of speech.

6. Correlation Computation

As presented in Section 5, a total of 87 features are considered
in this study. They were originally intended to be inputs of
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a classification system. In order to eliminate the redundant
information in the features, the correlation between features
is first computed. This operation is included in the second
part of the analysis system (see Figure 4).

6.1. Definition of the Correlation. The Pearson correlation
coefficient [49] is computed as (for two numeric sequences
x and y whose length is N)

Rxy =
∑N

i=1(xi − x)× (yi − y
)

√∑N
i=1(xi − x)2 ×

√∑N
i=1

(
yi − y

)2
, (34)

where

x = 1
N

N∑

i=1

xi,

y = 1
N

N∑

i=1

yi.

(35)

The values of the correlation coefficient are constricted into
the [−1, 1] interval, |Rxy| = 1 corresponding to perfectly
correlated sequences and Rxy = 0 to perfectly uncorrelated
sequences.

In the case of multiple sequences of features, the
correlation is computed between each pair of sequences and
the overall correlation matrix is computed as

M
(
p, q

) =
∑N

i=1

(
xi,p − x

)
×
(
yi,q − y

)

√
∑N

i=1

(
xi,p − x

)2 ×
√
∑N

i=1

(
yi,q − y

)2
, (36)

where p and q (constricted into the [1, 87] interval) identify
two sequences of features and where x and y are computed
for each sequence. The correlation matrix for a normal
subject and a pathological sample (from the database
described in Section 4) are presented in Figures 5 and 6.

When looking at those matrices, one can see that their
structures are quite different, this fact being confirmed for
other samples in the database. That is why it was decided to
exploit the information from the correlation matrix rather
than the features themselves in order to see if significant
differences could be found between normal and pathological
samples.
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Figure 5: Correlation matrix for a normal sample.
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Figure 6: Correlation matrix for a pathological sample.

6.2. Exploitation of the Correlation Matrix. As shown in
Figures 5 and 6, the correlation matrix for the normal sample
contains more elements close to 1 (in absolute values) than
the one for the pathological sample. An information could
be extracted from the correlation matrix by considering the
elements of the upper part of this matrix and by considering
each of these elements as a feature itself. As correlation
matrix is symetric and its diagonal consisting on elements
equals to 1 by definition, the number of elements in the
upper part of the correlation matrix is

NDescriptors ×
(
NDescriptors − 1

)

2
, (37)

where NDescriptors stands for the number of acoustic descrip-
tors. In the present case, as 87 descriptors are considered as
inputs of the system, there are 3741 elements to consider in
the correlation matrix.

In order to find a statistical discriminant factor between
normal and pathological samples, the correlation matrix is
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computed for all samples of the training set and, to assess
the classification performance of this factor, the correlation
matrix has also been computed for the samples in the test
set.

A first attempt to the extraction of information from the
correlation matrix is the sum of the elements in its upper
part. The distribution of this sum for the samples of the
training set is shown in Figure 7. The normal distribution
is in green and the pathological one in red. The y-axis is
graduated in percentages of samples that are associated to a
particular value of the sum (x-axis). When looking at these
distributions, one can see that each one is large and that they
strong overlap, leading to the conclusion that the sum value is
not able to separate the normal and pathologic samples. One
can make the hypothesis that some features bring confusion
in the sum operation. That is why it was decided to select only
few of them in order to see if the separation between normal

and pathological samples is better in this case. The operation
of selecting features is presented in the next section.

7. Feature Selection

As each element of the correlation matrix can be considered
as a feature, the analysis system computes now 3741 features.
As seen in the previous section, the sum of these features
does not allow to separate well the distribution of normal
and pathological samples in the training set. It is thus
necessary to select among the 3741 features the few ones
that discriminate best between the two populations. Some
methods are proposed in literature, each of them is briefly
described here. The reasons of choosing one of them are
then presented and the selected method is finally applied to
the present problem. The selection and combination of the
elements of the correlation matrix are included in the third
part of the analysis system (see Figure 8).

7.1. Methods for Feature Selection

7.1.1. Principal Component Analysis. Principal Component
Analysis (PCA) is a well-known method for the preprocess-
ing of features in a classification system [38, 56]. It is used
to linearly transform the features in order to find the best
way to represent them (in terms of least square error). If X
represents the normalized features matrix, the new features
matrix Z is obtained by

Z = UTX , (38)

where U is the linear transformation matrix. One can show
that the matrix U that leads to the best final representation
consists of the eigen vectors of the autocorrelation matrix
XXT . The dispersion of features around each new axis of
representation is given by the eigen value associated to
this axis. A reduction of features dimensionality is possible
by selecting the axis of representation associated to the
highest eigen values. It must be however emphasized that
the transformation defined in (38) is not based on a class
labelling but only on the features. Besides, PCA consists of
computing a linear combination of original features, leading
to a difficult physical interpretation of the new ones.

7.1.2. Generalized Fisher Criterion. The generalized Fisher
criterion [56] is a class separation criterion based on the
features and the class labelling. It is based on the ratio
between two matrices.

(i) Within-class covariance matrix: quantifies the
amount of inner features dispersion for all the
classes.

(ii) Between-class covariance matrix: quantifies the fea-
tures dispersion around the general mean for all the
classes.
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For a given feature k, only the diagonal elements of the two
matrices defined above are considered and its discriminant
power between C classes is defined as

Dk =
∑C

c=1p(ωc)
(
μck − μk

)2

∑C
c=1p(ωc)σ2

ck

, (39)

where p(ωc) stands for the percentage of representation of
class c in the database, μck for the mean of the feature k in
the class c, μk the mean of feature k for all the classes, and σck
for the standard deviation of feature k in the class c. A feature
selection is possible by selecting the features associated to the

highest values of discriminant power. Comparing to PCA,
it has the advantage to be based on class labelling and to
conserve the meaning of the features.

7.1.3. Fisher Discriminant Analysis. The Fisher discriminant
analysis [56, 57] is a procedure allowing to change the
representation system of features and to select among them
in one operation. For a C classes problem, this method
consists of finding C − 1 linear discriminant functions,
these functions maximizing the ratio between the within-
class covariances and the between-class covariances. One can
prove that these functions are the eigen vectors of a particular
matrix. This method allows to reduce the dimensionality of a
problem although this dimensionality is fixed by the number
of involved classes. Besides, as PCA, the new features are the
result of linear combination of the original ones, leading to a
difficult physical interpretation after transformation.

7.2. Application of Feature Selection. It has been chosen in
this study to apply the generalized Fisher criterion in order
to keep the choice of the final dimensionality (contrary to
the linear discriminant analysis) and the physical meaning
of the features (contrary to PCA and linear discriminant
analysis).

Figure 9 shows the discriminant power of the 3741
correlations, sorted in ascending order, for the samples of
the training set. One can see that, for some correlations, the
discriminant power is higher than for others. It has been
chosen to study two cases here: the case in which only the
correlation associated to the highest discriminant power is
kept and the case in which only the two ones associated to
the highest discriminant powers are kept.

7.2.1. One Correlation Case. The selected correlation is
the one between the first spectral tristimulus in the Bark
scale (see Section 5.5.11) and the spectral decrease (see
Section 5.5.7). The distribution of this correlation for the
two classes of the training set is shown in Figure 10.
The normal samples are characterized by the fact that
there is a high concentration for values around −0.75.
This means that the evolution of the spectral decrease
and the first spectral tristimulus are fairly strong linked
for a large majority of samples, although this link is not
absolute (because the correlation is not −1 but −0.75).
The pathological samples are characterized by a larger
dispersion of the correlation value, meaning that for some
samples the two characteristics are fairly slightly linked
and for others no link exists at all. Compared to Figure 7,
the two classes are much more separated. It may thus
be possible to split the normal and pathological samples
of the training set by thresholding the most discriminant
correlation.

In order to have an overview of the classification
performances of this thresholding for the training set, a
Receiver Operating Curve (ROC) is built by computing the
False Positive Rate (FPR) and True Positive Rate (TPR)
for thresholds uniformly distributed between the lower and
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Figure 11: ROC for the “One Correlation Case.”

upper limits of the correlation. These numbers are computed
for each threshold value as follows.

(1) For each sample of the training set, computing an
automatic labelling by assigning the class Normal
if the correlation is lower than the threshold and
assigning the class Pathological otherwise.

(2) Computing the confusion matrix based on the
confrontation between the manual class labelling (in
other terms if a sample has been manually tagged
Normal or Pathological) and on the automatic class
labelling. The elements of the confusion matrix are
defined as in Table 1 where TP stands for True
Positive, FP for False Positive, FN for False Nega-
tive and TN for True Negative. These values may
be normalized according to the cardinality of the
Normal class (called #Normal) and the cardinality of
the Pathological class (called #Pathological). TPR and
FPR are therefore obtained by dividing, respectively,
TP and FP by #Pathological and #Normal. One may
also define the accuracy (Acc), measuring how well
a binary classifier correctly identifies or excludes a
condition and defined as

Acc = TP + TN

#Normal + #Pathological
. (40)

The ROC for the “One Correlation Case” is shown in
Figure 11. In this curve, the point (0, 0) corresponds to
the case in which all the normal samples are correctly
classified but all the pathologic ones are misclassified and the
point (1, 1) corresponds to the opposite situation. One may
also cite the ideal point (0, 1) corresponding to the perfect
classification of both normal and pathological samples. The
more the ROC is close to this point the best the classifier is.
Between the points (0, 0) and (1, 1),the choice of a particular

Table 1: Confusion matrix.

Manual pathological Manual Normal

Auto pathological TP FP

Auto normal FN TN

Table 2: Confusion matrix for the one correlation case (Training
set).

Manual pathological Manual normal

Auto pathological 0.947 0.088

Auto normal 0.053 0.912

Table 3: Confusion matrix for the one correlation case (Test set).

Manual pathological Manual normal

Auto pathological 0.947 0.105

Auto normal 0.053 0.895

Table 4: Mean confusion matrix for the 10 training sets (One
correlation case).

Manual pathological Manual normal

Auto pathological 0.943 0.109

Auto normal 0.057 0.891

threshold depends on the objective. If one wants to avoid
errors on Normal class identification, the corresponding
threshold will lead to low FPR (but also to low TPR). On the
contrary if it is important to avoid mistakes on Pathological
class identification, the corresponding threshold will lead to
high TPR (but also high FPR).

A particular point is highlighted in the ROC (black
square), corresponding to the threshold located at the cross-
ing point of the two distributions in Figure 10 (threshold =
−0.3). For this threshold, the confusion matrix is shown
in Table 2 (Acc = 0.9446). These first results are already
satisfying.

Now that the most discriminant correlation has been
chosen and its classification performance assessed on the
training set, this performance has to be evaluated for
samples that are not part of the training set, here samples
forming the test set. When applying the threshold of the
correlation on samples of the test set, one obtains the
confusion matrix shown in Table 3 (Acc = 0.9426). One
can see that the performance is in the same order as for
the training set although the chosen correlation and its
threshold lead to lower classification performance for the
normal samples. It must be emphasized here that the normal
samples are much less represented than the pathological ones
in the MEEI Database, and thus in training and test sets.
Consequently a misclassification of a normal sample leads
to a higher variation of classification performance than a
misclassification of a pathological sample because #Normal
is much lower than #Pathological. That is why the results of
classification should be interpreted while keeping in mind
this difference.
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Table 5: Mean confusion matrix for the 10 test sets (One
correlation case).

Manual pathological Manual normal

Auto pathological 0.955 0.074

Auto normal 0.045 0.926

Table 6: Accuracy for the 10 pairs of training and test sets (One
correlation case).

Number Training set Test set

1 0.946 0.947

2 0.942 0.947

3 0.942 0.947

4 0.940 0.951

5 0.940 0.951

6 0.938 0.955

7 0.929 0.971

8 0.938 0.955

9 0.940 0.963

10 0.942 0.945

In order to validate the fact that the chosen correlation
and its thresholding are the most appropriate for the
distinction between normal and pathological samples, 10
training sets and 10 test sets (different from the training and
test sets defined in Section 4) have been randomly formed
from the samples of the MEEI Database. This has been done
in the proportion described in Section 4. For each training
set, the Fisher analysis has been performed. It turned out that
the most discriminant correlation is always the correlation
between the first spectral tristimulus in the Bark scale and
the spectral decrease. Moreover, it appeared that the same
threshold than the one corresponding to the crossing point
of the distributions in Figure 10 could be appropriate for the
classification task. Therefore this threshold has been applied
on the chosen correlation in the 10 training sets and 10
test sets and the associated confusion matrices have been
computed. Tables 4, 5, and 6 show, respectively, the mean
confusion matrix for the 10 training sets, the mean confusion
matrix for the 10 test sets, and the accuracy for the 10 pairs
of sets.

All these results confirm that the chosen correlation
and its associated threshold perform well in the task of
discriminating between normal and pathological samples.

7.2.2. Two Correlations Case. In this case the two correlations
associated to the highest discriminant power are selected.
The first one is the correlation between the first spectral
tristimulus in the Bark scale and the spectral decrease and the
second one is the correlation between the relative loudness
in the first Bark band (see Section 5.5.12) and the spectral
decrease. For these two correlations, the location of the
normal and pathological samples of the training set is shown
in Figure 12. Based on this distribution, it has been chosen to
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evaluate to what extent the sum of the two correlations could
separate the normal and pathological samples.

The distribution of this sum for the samples of the
training set is represented in Figure 13. As for the “One
Correlation Case,” it may be possible to split the two
populations by thresholding the sum of the two correlations.
The ROC for thresholds uniformy distributed between lower
and upper limits of this sum is computed in the same way
as for the previous case and is shown in Figure 14. The same



16 EURASIP Journal on Advances in Signal Processing
Tr

u
e

p
os

it
iv

e
ra

te
(%

)

0

0.2

0.4

0.6

0.8

1

False positive rate (%)

0 0.2 0.4 0.6 0.8 1

Receiver operator curve
Crossing point
No discrimination line
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remarks that in the first case can be made about the meaning
of the curve. Moreover, when comparing the two curves,
one may observe that, for a same value of TPR, the second
configuration is better that the first one for TPR values below
0.92 and the contrary for higher values.

A particular point is highlighted in the ROC (black
square), corresponding to the threshold located at the cross-
ing point of the two distributions in Figure 13 (threshold =
−0.5). For this threshold, the confusion matrix is shown in
Table 7 (Acc = 0.9335). One may remark that, comparing
to Table 2, the correct classification rate is lower for the
pathological class (correct classification decreased by 1.2%)
but remains unchanged for the normal class. The same
threshold has been applied on the sum of the two correlations
for the samples in the test set. The results are shown in
Table 8 (Acc = 0.9394). One can see that the performance
is in the same order as for the training set although the
chosen correlation and its threshold again lead to slightly
lower classification performance for the pathological samples
and unchanged classification performance for the normal
ones.

The 10 training and test sets of validation defined in
the “One Correlation Case” have been used to assess the
validity of the “Two Correlations Case” approach. For each
training set, the Fisher analysis has been performed and it
turned out that the two most discriminant correlations are
always the correlation between the first spectral tristimulus
in the Bark scale and the spectral decrease and the correlation
between the relative loudness in the first Bark band and
the spectral decrease. Moreover, it appeared that the same
threshold than the one corresponding to the crossing point
of the distributions in Figure 13 could be appropriate for the
classification task. Therefore this threshold has been applied
on the sum of the chosen correlations for the 10 pairs of
training and test sets and the associated confusion matrices

Table 7: Confusion matrix for the two correlations case (Training
set).

Manual pathological Manual normal

Auto pathological 0.935 0.088

Auto normal 0.065 0.912

Table 8: Confusion matrix for the two correlations case (Test set).

Manual pathological Manual normal

Auto pathological 0.938 0.105

Auto normal 0.062 0.895

Table 9: Mean confusion matrix for the 10 training sets (Two
correlations case).

Manual pathological Manual normal

Auto pathological 0.930 0.106

Auto normal 0.070 0.894

Table 10: Mean confusion matrix for the 10 test sets (Two
correlations case).

Manual pathological Manual normal

Auto pathological 0.945 0.074

Auto normal 0.055 0.926

Table 11: Accuracy for the 10 pairs of training and test sets (Two
correlations case).

Number Training set Test set

1 0.933 0.934

2 0.933 0.934

3 0.931 0.939

4 0.925 0.951

5 0.931 0.938

6 0.927 0.947

7 0.920 0.960

8 0.927 0.947

9 0.929 0.943

10 0.929 0.943

have been computed. Tables 9, 10, and 11 show, respectively,
the mean confusion matrix for the 10 training sets, the mean
confusion matrix for the 10 test sets, and the accuracy for the
10 pairs of sets.

Concerning the mean confusion matrices, the classifi-
cation performance for the pathological samples is in both
cases lower than in the “One Correlation Case” (see Table 5).
When looking at the accuracies, one can see that they are
lower than the ones in the “One Correlation Case” for all the
pairs of sets (see Table 6).

7.3. Discussion. The application of a feature selection on
the correlations between acoustic descriptors has proved its
ability to separate the normal and pathological samples in
the MEEI database. When comparing the “One Correlation
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Case” and the “Two Correlations Case,” one may say that
the first one is better than the second one. This decision is
supported by different considerations. Firstly the ROC of the
first configuration is better than the ROC of the second one
for TPR higher than 0.92. Although it corresponds to higher
FPR, this result is better because the FPR is more sensitive to
misclassification than TPR (because #Normal is lower than
#Pathological). Secondly, when comparing the confusion
matrices, it has been found that the second configuration
leads to lower classification performance than the first one
for the pathological samples and unchanged performances
for the normal ones. It is of significant importance since
it is more important to detect all the pathological samples
than all the normal ones. Thirdly, when comparing the
accuracies, they are always lower for the second configuration
than for the first one. The accuracy depending on #Normal
and #Pathological, a lower number of correctly classified
pathological samples induces a smaller accuracy than a lower
number of correctly classified normal samples. The second
configuration is thus characterized, by means of accuracy, by
a higher number of misclassified pathological samples than
the first configuration. Fourthly, the first configuration has
the advantage to keep more facilities of interpretation than
the second configuration (only one correlation instead of the
sum of two correlations). Finally, the first configuration only
requires the computation of two spectral features and one
correlation while the second one requires the computation
of three spectral features and two correlations.

Some interpretations can be given about the features
selected in the first configuration. As shown in Figure 10, the
normal samples are characterized by correlation values con-
centrated around−0.75. That means that the evolution of the
spectral decrease and the first spectral tristimulus are fairly
strong linked for a large majority of the samples, although
this link is not perfect (because the correlation is not −1
but −0.75). The pathological samples are characterized by a
larger dispersion of the correlation value, meaning that for
some samples the two features are fairly slightly linked and
for others no link exists at all. Although the trend is clearer
for normal samples than for the pathological ones, one must
keep in mind that the number of normal samples is much
lower than the number of pathological ones in the database.

Concerning the speech utterances used in this work, it
is interesting to discuss about the sense of jointly assess
sustained and continuous speech samples since these two
kinds of samples are included in the MEEI database. On
the one hand, the sustained vowel offers the advantage to
be acquired in relatively stable conditions, meaning that the
characteristics of the source and the vocal tract are quite
stable. This enables computing features and especially their
perturbation in an easier way than in the case of continuous
speech. The correlation between features is also easier to
understand and to interpret. Besides, analyzing the sustained
vowels also allows the computation and the interpretation
of features to be relatively less influenced than continuous
speech by intonation, stress, or phonetic context. On the
other hand, continuous speech reflects more the dynamics
of speech production since the characteristics of source and
vocal tract are no longer stable. This production includes

onset, terminations, variation of pitch and amplitude, and
voice breaks. According to clinicians, this kind of informa-
tion is also informative about the presence of pathology and
more representative of the every-day life of a patient than
the sustained vowel. Assessing jointly sustained vowels and
continuous speech seems to make sense because these two
kinds of productions describe different (but complementary)
conditions: the sustained vowel is more relative to stable
conditions while continuous speech is more relative to
dynamic conditions.

Apart from the discussion above, it must be emphasized
that the output of the analysis system presented in this
paper is a normal/pathological factor (see the overview of
the system in Section 1). When a new subject is presented
at the analysis system, this output could be the value of
the most discriminant correlation and the position of the
subject according to the distribution of this correlation in
the test database. The aim would be not to provide an
unilateral decision about the presence of pathology or not
but to provide an indication to the clinician, who remains
the person who has the final appreciation.

8. Conclusion

A classification scheme between normal and pathological
voices has been presented in this paper. When applied
on speech samples extracted from the MEEI database,
this system provides a correct classification rate of 94.7%
for pathological samples and 89.5% for normal samples.
Regarding to litterature, these results are slightly below those
offered by methods basing on this database but our method
is unique in several aspects: the considered features are not
based on the estimation on the fundamental period, they
come from both the normal/pathologic voice assessment
and Music Information Retrieval domains, the correlation
between selected features is used to discriminate normal and
pathological samples instead of using a complex classifier.
Besides, a potential use of our system is the computation of a
normal/pathological factor, aiming at giving an indication to
the clinician about the location of a subject according to the
database.

Among the future works, the test of this classification
system on larger databases is planned in order to see if
using correlation remains powerful for the discrimination
between the two populations. Using the mutual information
for estimating the link between features will also been
investigated since it has not been considered in this study.
Finally some features provided by the source-tract separation
of speech could be integrated in the system in order to see if
they are relevant for classification purposes.
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Preliminary call for papers

The 2011 European Signal Processing Conference (EUSIPCO 2011) is the
nineteenth in a series of conferences promoted by the European Association for
Signal Processing (EURASIP, www.eurasip.org). This year edition will take place
in Barcelona, capital city of Catalonia (Spain), and will be jointly organized by the
Centre Tecnològic de Telecomunicacions de Catalunya (CTTC) and the
Universitat Politècnica de Catalunya (UPC).
EUSIPCO 2011 will focus on key aspects of signal processing theory and

li ti li t d b l A t f b i i ill b b d lit

Organizing Committee

Honorary Chair
Miguel A. Lagunas (CTTC)

General Chair
Ana I. Pérez Neira (UPC)

General Vice Chair
Carles Antón Haro (CTTC)

Technical Program Chair
Xavier Mestre (CTTC)

Technical Program Co Chairsapplications as listed below. Acceptance of submissions will be based on quality,
relevance and originality. Accepted papers will be published in the EUSIPCO
proceedings and presented during the conference. Paper submissions, proposals
for tutorials and proposals for special sessions are invited in, but not limited to,
the following areas of interest.

Areas of Interest

• Audio and electro acoustics.
• Design, implementation, and applications of signal processing systems.

l d l d d

Technical Program Co Chairs
Javier Hernando (UPC)
Montserrat Pardàs (UPC)

Plenary Talks
Ferran Marqués (UPC)
Yonina Eldar (Technion)

Special Sessions
Ignacio Santamaría (Unversidad
de Cantabria)
Mats Bengtsson (KTH)

Finances
Montserrat Nájar (UPC)• Multimedia signal processing and coding.

• Image and multidimensional signal processing.
• Signal detection and estimation.
• Sensor array and multi channel signal processing.
• Sensor fusion in networked systems.
• Signal processing for communications.
• Medical imaging and image analysis.
• Non stationary, non linear and non Gaussian signal processing.

Submissions

Montserrat Nájar (UPC)

Tutorials
Daniel P. Palomar
(Hong Kong UST)
Beatrice Pesquet Popescu (ENST)

Publicity
Stephan Pfletschinger (CTTC)
Mònica Navarro (CTTC)

Publications
Antonio Pascual (UPC)
Carles Fernández (CTTC)

I d i l Li i & E hibiSubmissions

Procedures to submit a paper and proposals for special sessions and tutorials will
be detailed at www.eusipco2011.org. Submitted papers must be camera ready, no
more than 5 pages long, and conforming to the standard specified on the
EUSIPCO 2011 web site. First authors who are registered students can participate
in the best student paper competition.

Important Deadlines:

P l f i l i 15 D 2010

Industrial Liaison & Exhibits
Angeliki Alexiou
(University of Piraeus)
Albert Sitjà (CTTC)

International Liaison
Ju Liu (Shandong University China)
Jinhong Yuan (UNSW Australia)
Tamas Sziranyi (SZTAKI Hungary)
Rich Stern (CMU USA)
Ricardo L. de Queiroz (UNB Brazil)

Webpage: www.eusipco2011.org

Proposals for special sessions 15 Dec 2010
Proposals for tutorials 18 Feb 2011
Electronic submission of full papers 21 Feb 2011
Notification of acceptance 23 May 2011
Submission of camera ready papers 6 Jun 2011


