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We study the radial Schrédinger equation for a particle of nmads the field of a singular attractivg?/r*
potential with particular emphasis on the bound-states problem. Using the regularization method oéBeane
al. [Phys. Rev. A64, 042103(2001)], we solve analytically the corresponding “renormalization-group flow”
equation. We find in agreement with previous studies that its solution exhibits a limit cycle behavior and has
infinitely many branches. We show that a continuous choice for the solution corresponds to a given fixed
number of bound states and to low-energy phase shifts that vary continuously with energy. We study in detail
the connection between this regularization method and a conventional method modifying the short-range part
of the potential with an infinitely repulsive hard core. We show that both methods yield bound-states results in
close agreement even though the regularization method of Betamledoes not include explicitly any new
scale in the problem. We further illustrate the use of the regularization method in the computation of electron
bound states in the field of neutral polarizable molecules without dipole moment. We find the binding energy
of sswave polarization bound electrons in the field ofy@nolecules to be 17 meV for a scattering length
corresponding to a hard-core radius of the size of the molecule ré&diB87 A). This result can be further
compared with recent two-parameter fits using the Lennard-Jones potential yielding binding energies ranging
from 3 to 25 meV.
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I. INTRODUCTION to the renormalization-group flow equation. Egghexhibits

The renormalization of attractive singular potentials of the? limit cycle behavior with, however, a period that depends
form 1/r" with n=2 was recently studied by Beamt al.  °" the cutoff radiufR. Furthermore,, takes the valuar in

[1]. We shall in the following refer to this renormalization the limit R:Q' . . . . .
method as the R method. The purpose of this work is tq 2+ A continuous choice of solution, obtained by jumping
analyze in more detail the case4 with particular emphasis from one branch to the next chsest branch below with de-
on the bound-states problem. On the physical side, this pd coo 9 values of the cutoff radius, corresponds to a renor-
tential describes the long-range part of the polarizability po-gqvﬂ'rziﬁn t\,r;/ghe?] grlverllef\'/)é?gvﬂﬁr?hb: :N%fakl)((élsj? giﬁbﬁaes.eﬂg;/v .
tential in atomic and molecular systems and is relevant to th  ony 9y 9 9y

o fs insensitive to the value of the cutoff radius.
de;cn_pﬂon OT the long-range proton-deu.teron' eleg:trpmag- 3. A numerical computation shows good agreements be-
netic interaction. From a more formal viewpoint, it is of tween the physicain the sense discussed in Sec) Bbund-
interest to study how the regularization method of Rél.  gates spectrum obtained with the R method and the corre-
for the 1/ potential compares with the results obtained forsponding spectrum obtained in a conventional method
the 1/ potential[2,3], and whether it agrees with previous parametrizing the scattering length with a hard-core radius.
renormalization schemes for the same interacti®d]. In \When applied to the problem of bound electrons in the field
this work, we follow Ref.[2] in order to find an analytic of polarizable molecules without dipole moment, we find in
form of the solution to the renormalization-group flow equa-particular that the R method yields a binding energy of 17
tion. We then compute both the bound-states spectrum angleV for s-wave polarization bound electrons in the field of
the low-energy phase shifts arising from the renormalizedCg, molecules.
potential and compare the R method to a conventional Our paper is organized as follows. In Sec. Il, we present
method using a hard-core radius for regularizing purposeshe R method proposed in Refl] and we obtain the
We then use the R method to discuss the binding energy atnormalization-group flow equation for the singular attrac-
s-wave polarization bound electrons in the field of neutraltive 1/r* potential. In Sec. lll, we discuss the bound-states
molecules with zero dipole moment. Our main results are thepectrum of the regularized potential and discuss in Sec. IV
following: its connection with a conventional method modifying the
1. There are infinitely many solutions, (n=1, 2, 3,..) short-range part of the potential by means of a hard-core
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radius. In Sec. V, we discuss the application of the R method 12

to the calculation of electron binding energies in the field of R S e i
polarizable neutral molecules with zero dipole moment. In 10 —_.!_ﬂ,f Ny a
Sec. VI we show that the low-energy phase shifts are, as V:, Y 7
expected, insensitive to the cutoff radius. Some concluding ¢ |l o e R _
remarks are reported in Sec. VIL. ‘/ / // //”'_ |

Il. RENORMALIZATION METHOD < 6 -/}// / /

In this paper, we follow the R method proposed by Beane
et al.[1] to obtain analytically the renormalization-group be-
havior of the coupling constant of the short-range attractive
square well used to regularize the singular attractive® 1/

potential. 41 3
We start with thes-wave reduced radial Schrodinger 0 T
equation for one particle bound by a central potential G 0203 04 05 06 07 08
V(r)(=2m=1), @
2 FIG. 1. The running coupling constaptas a function ofa™!
ar2 - V(r) = *|y(r) =0, (1)  =R/g for n=1,2,3 and¢=1. The regions labeled=1,2,3,4 are
r discussed in Sec. Ill. Quantities on both axes are dimensionless.
with «=+-E and wherd1]
2 2 Ag(t) =\ (1) + 2ot (10)
R 0
Vi) =- 9 R -1 - T b1 - R (a0 > 0), (2) 2
1-t
that is, the attractivéaR)2/r* is cut off at a short distance ANO=1+30t |nm, (11
radiusR by an attractive square well. As in Rél], we first
solve Eq.(1) for the zero energy solutiofk=0) in order to _ 5 2 2 20
find the corresponding wave functiafy(r). This solution is 0n(0) = Ag(0)? + N, 12)
given by The integem is fixed on a given branch. The functioy
r are given in Fig. 1 fom=1, 2, 3 as a function oR. For
o(r) =Asin(as§), r<R, (3) computational ease, we choge=1. We only keemm>0 so-

lutions asw in formula(9) is unrestricted. It appears that the
R coupling constant of the square-well potential is a discon-

- R tinuous function ofR for a givenn. A similar behavior was
o) =Br Cos(“r " qb)’ r=R @ observed in the case of the renormalization of the singular
1/r? potential. Note, however, two important differences: on
the one hand, the period of oscillations, which changes with
tan¢ = L/g, (5) R, is no longer log periodi¢1-3]; on the other handg,
takes the valuew in the limit R— 0 for all n. Indeed, the
coupling constanty=aR, of the 1/ potential is fixed for a
given physical systenffor example,g could be taken to be
essentially the electrical polarizability, see Seg. €onse-
quently, « varies withR and is infinite in the limitR— 0.
alotas=1+atana+ ¢). (6) This leads to a vanishing, see Eq.(9), and Q,(t) is then
real yielding8,=n [the sign ofg,,, and thus ofa, does not
play a role, see Eq2)].

(w—1)12 1t dt These results are consistent with the results of the study of
Bo= % Tex ;f arng(t)T , wo>1, (7)
0

where ¢ is the zero energy pha$#&] and is given by

wherelL is the scattering lengtf9] andg=aR.

The usual matching condition of the wave function and its
derivative atr =R then yields the renormalization-group flow
equation

We can solve analytically Eq6) as in Ref.[2] to obtain

the renormalization of long-range attractive potentials in Ref.
[4]. As already discussed in R¢fL], one can also choose,
L g to be a continuous function &. This implies jumping from
t one branch of the solution to the next one just below at the
=xnmexp — | argQ,()— |, —-»<o< +x, ) ; L X i .
P T P(Wfo 942() t ) e * point of discontinuity as illustrated in Fig. 1. The respective
merits of these two solutions were recently discussed in the

n=1,2,..., 8 literature in the case of the singularr? interaction[2,3].
where we denoted by, the infinite set of solutiong, and
we have Ill. BOUND STATES
1 The renormalization method described in Sec. Il only
1) 1+atar(at @), © makes sense if the low-energy observalflesuind states and
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number of bound states present in the regularized potential.
Since the states for which the binding energy varies With
have no physical meaning and since the binding energy and
the mean-square radius of the state with the weakest binding
energy are insensitive t8 and the number of bound states,
there is no clear reason to choose a renormalization with a
fixed number of bound states instead of a renormalization
with a fixed branch since the latter does not introduce a mini-
mal value for the cutoff radiuR. Similar conclusions were
drawn in the study of the singular attractiverd potential
[2,3]. We therefore conclude that the R method used here
yields bound-states solutions independenRa&nd indepen-
dent of the particular branch of the solution to the

renormalization-group equation. We shall thus refer to these
renormalized solutions as physical, and dismiss the deeply
@ bound,R-dependent solutions as unphysical.

Now, according to our numerical analysis, the binding
gnergiesEg of these physical solutions fab=1 are given by
Eg=«? with k given by

gk = 0.83.

FIG. 2. The bound-states spectrum as a function d=R/g for
a constant number of bound states fixed to 3. Quantities on bot
axes are dimensionless.

(13

The form of formula(13) is counterintuitive, as it implies
that the renormalized binding eneripcreasesvith decreas-
ing g. This behavior is, nevertheless, simple to understand
since a decrease gfdoes not lead to an overall decrease of
As can be seen from Fig. 1, discontinuities &f appear the regularized potential. The i part of the regularized
for singularities ofw [see Eq.(9)]. For R large enough, the potential, see Eq(2), is indeed less attractive but the square-
function |a tan(a+ ¢)| is smaller than 1 and no singularity well part of the potential, which depends also @rsee Eq.
can appear fow. The functiong, is then continuous. This (6), can be more attractive. The relati¢h3d) is consistent
region is noted as 1 in Fig. 1. With the formula giving the with a WKB analysis of the Schrédinger equation as shown
number of bound states of the regularized potential obtaineth Appendix B.
in Appendix A, it is clear that in this region we hauéound
states if the coupling constant of the square well is obtained V- CONNECTION WITH HARD-CORE POTENTIALS

with B,(g=¢=1). In the region noted as 2 in Fig. 1, formula ¢ is of interest to compare results from the R method to

(A5) shows that the number of bound states has increased hiose obtained with conventional methods where the polar
1 upon crossing a discontinuity @,. Thus we must jump to jzability potential «"e?/(2r%) is modified at the origin by

phase shifts, for examplare insensitive to the value of the
cutoff radiusR (for R small enough The spectrum of the

inverse square potential has been studied in dgtai3] and

it was shown that bound states with an energy aboveR1/
are indeed insensitive to the value of the cutoff.

(14)

a vaIue_,Bn_l of ag in.order to keep the number of bound means of some short-range repulsii7], «” being the
states fixed. The various regions are obviously separated Ryectric polarizability of the system. An especially simple
the various discontinuities g8,. In general, in region, the  form of such a modification is the hard-core regularization
potential has+i-1 bound states fows= 5, (9=¢=1). Ob-  \hich implies that the bound particle wave function must
viously, the number of bound states in the regiatepends  vanish at some hard-core radifs The attractive feature of
also on the value ofj and ¢ but this number always in-  this model is that the corresponding scattering lerigitan
creases by one unit in the regiofl. be computed exactly to H&]

With the analysis made above, it should be clear that a
continuous choice of the solutiom (hence mixing several L= \/zco(< \/ER*)
branches with different values of) corresponds to a renor- ag ag
malization with a fixed number of bound states. This is illus- ) ) .
trated in Fig. 2, where the evolution of the energy levels as §/Nered, is the Bohr radius. For a given value bf Eq. (14)
function of R is given when three bound states are present ird!Ves the corre_spo_n_dm% value @f for a given value of the
the regularized potential. electrical polarl_zab|lltya . On the other hand, thel scattering

However, it is also clear that fixing the number of bound!€ngthL determines the value @b from formula(S) in the R
states in the potential yields a minimal val&g,, for the me;hod. ComparIS_OH between E'(B).and(l4), and remem-
cutoff radiusR. For example, if we fix this number to (g bering thatg is defined modular, indicates that we have the
=¢=1), we must stay in the region 1 of Fig. 1 withg correspondence
computed withg;. Thi.s leads td?minz.O.GZ'i;]. A grucial out- _ g
come of our calculations as shown in Fig. 2 is the observa- R= m (15
tion that the state with the weakest binding energy is insen-
sitive to the value oR. The binding energy, as well as the with ¢ € [0,7] ands=1,2,3,.. In Table |, we show a com-
mean-square radius, of this state is also insensitive to thearison between the binding energies and root-mean-square
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TABLE |. Comparison between the binding energlg=«?) 32
and the root-mean-square radii obtained with the R methadth s8] R = 0.10 (4 bound states)
index R) and with the hard-core regularization proced(wéth in- — — —  R=0.15 (3 bound states)
dexR). The values of¢ andR/g on the same line correspond to 2.4 A — ——— R =0.50 (2 bound states)
the same value df from formulas(5) and(14). 20 — — —+ R =0.75 (1 bound states)
¢ RIg  (@Ir  (@Ir  (PAYgr ()Y S 16 1
0.1 0.21681 3.09 3.14 0.545 0.548 1.2 A
0.2 0.22161 2.73 2.82 0.577 0.583 0.8
0.4 0.23189 2.18 2.23 0.666 0.672
0.6 024317 169 171 0.794 0.796 041
0.8 0.25560 1.23 1.24 0.982 0.984 0.0 -
1 0.26937 0.830 0.834 1.300 1.300 0
1.2 0.28471 0.484  0.486 1.960 1.961
1.4 0.30190 0.196 0.196 4.175 4.176

FIG. 3. Theswave phase shiffy as a function ofjk for various
values of R and for ¢=1. Quantities on both axes are
dimensionless.

1.5 0.31130 0.0755 0.0755 10.09 10.01

radii obtained from both methods for the same values of the - .
scattering length., or equivalently forR and ¢ related by electron binding energy between 3 and 25 meV according to
Eq. (15) with s:1’ the value of the parameters describing the short-range part of

We see from Table | that the R method and the hard-coréhe interaction. We find a physical bound state at 17 meV

potential yield bound-states values in excellent agreement. W!EE b= ch_ggze_spo“%gl to a scattet_rmg |Iﬁngé|hg/ tan¢ I
is important to note, however, that this agreement holds fot"" gpgz“/rg‘f 275;‘% h -na cor;ye; lonhat har -porebaqa yé
physicalbound states, as defined above. This agreement alst> & - a, the same binding energy Is obtaine

holds for any value o§. This integer is actually equal to the with an effe(_:tlve Fad'!JS of @_@3@3_37 A for_ the Q"O
number of nodes of the wave function of the state with the™olecule. This radius is obtained with the relatid$) with
weakest binding energy obtained with the hard-core poterS=1- Larger values of yield the same binding energy but
tial. However, there are significant differences between théh€ €ffective radius has no longer a physical interpretation.
two methods. The bound-states wave function in the oreover, this weakly bouqd state is certalnly_a grount_j state
method has nodes corresponding to the number of unphysi/]- The value of the effective radius found with Eg5) is

cal (deeply bounii states and this number is actually arbi- Cl0S€ t0 the experimental value of the mean radius of ife C
trary. The number of nodes of the hard-core wave function ign°lecule 3.55 A10]. If this experimental value is used as
contrained by the value oR which should correspond to effective radius, we find with Eq(15) $=1.192 and the
some characteristic length of the system. The correspondenfiding energy is then equal to 6 melthe relation(13)
between the two methods leads to a further understanding G€comes for this value af, g«=0.50]. Note that, as already
relation(13). Indeed R decreases witly in Eq. (15) leading clear from the results of Table I, the blndlng energy dep'ends
to an increase of the binding energy. Moreover, since th&rondly on the value op. Thus the scattering length, which
number of nodes of the wave function obtained with the RA€termines the value op [see Eq.(5)] should be known
method varies wittR (and the number of unphysical states wnh enoug_h precision to aII_ow .deflmte predictions and com-
whereas the binding energy and mean-square radius stay iR&rsons with other regularization methods.

sensitive to this parameter, it is not easy to determine if the

stable(physica) state is a ground state or an excited state. If VI. LOW-ENERGY PHASE SHIFTS
the system considered has a given characteristic length, rela- ) ) )
tions (14) and (15) can be used to determirg[since ¢ is Anothe_r test of the method descnbe_d in S_ec. Il is the
then known from Eq(5)] and then the position of the state in cOmputation of the low-energy phase shift. In Fig. 3, we plot
the spectrum. This is illustrated in the next section. thes-wave phase shifé, as a function ofjk (k= VE>0) for
different values oR. One can see again théj is insensitive
V. POLARIZATION BOUND STATES to the value ofR for gk<1, even though the number of

bound stategphysical and nonphysical, as defined abhove

In this section we apply the renormalization R method tovaries from 1 to 4. From the viewpoint of the renormaliza-
the computation of weakly bound electron states in the fieldion method, only onéweakly bound state is physical and
of polarizable neutral molecules with zero dipole moment.leads tod,= for a vanishing energy.
The Gso molecule is one of the few possible candidates with
such propertied6]. In the conventional approach, bound
states are computed by solving the Schrddinger equation
with a two-parameter Lennard-Jones poterfidl Taking the In this paper we studied, with due emphasis on the bound-
electrical polarizabilitya” of Cg, to be 558a8 leads to an states problem, the renormalization of the singular* o-

VII. CONCLUSIONS
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tential using the method of Bears al. [1]. We found, in APPENDIX B: WKB ANALYSIS
agreement with previous works, that the solutigp to
renormalization-group flow equation exhibits a limit cycle
behavior and has infinitely many branches. We discussed t
form of the bound-states spectrum as a functiorBgfand .
discussed the connection between the R method and a con- f dr\s"E——V(r): (n-1/2), (B1)
ventional method using a hard-core radius to modify the r
short-range part of the interaction. We then applied the R
method to calculate the energy of polarization bound elecwheren=1, 2, 3,... andr, are the solution t&e=V(r,). We
trons to a neutral polarizable molecule without dipole mo-then get from Eq(2)
ment. When applied to theggmolecule, we found that only
very accurate values for the scattering length could discrimi- R (ag)? r+ G
nate between results from the R method and those obtained f dry/E+ R +f dry/E+ i (n-1/2m.

0 R

from a polarization potential with hard core.

The general formula giving the energy spectrum of a cen-
Héal potential in the WKB approximation is

(B2
APPENDIX A: NUMBER OF BOUND STATES OF THE
RENORMALIZED POTENTIAL Performing the integrations in EqB2) and writing x
) ) =R/r,, we find
It is well known that the number of bound states in a
central potential is equal to the number of zeroes of the zero 9 { \5'7:1“(3/4)
energy wave function in the interval<Or <« (see, for ex- VER + (g + = | - ——— +xy-1+1K*
ample, Ref[11]). Equivalently, we count the number of ex- M+ 2I'(5/4)
trema of this wave function. Thus we have to count the num- B(x*,3/4,1/2
ber of zeroes of the derivative of the zero energy wave A — =(n-1/2m, (B3)
function,
) r where B(x,a,b) is the beta function. Assuming thé&t re-
tho(r) ~ C05<as§>’ forr <R, (A1) mains finite asR— 0 and using the formulas for— 0,
—_— 1 X 453
Po(r) ~ cos(% + ¢> + %sin(% + ¢>, forr >R. XV=1+1k" = x 2 andB(x',3/4,1/2 = 3 (B4)

(A2)  we eventually get, keeping the leading termRas: 0,

The number of extremdl; of the zero energy wave function ARG 2
in the interval 0<r <R is simply given as J-E= _{_] [a +9_ m(n- 1/2)} . (B5)
| '(3/4) °* R
Ny={q %542 A3
YVllx 2| (A3) From Egs.(A3) and (A5), we find thathm= as+g/R+¢ in

] ] ) the limit R— 0, so that we finally get from EdB5)
where{{x}} is the integer part ok. To find the number of

extremaN, of the zero energy wave function in the interval — 4alrEmw]?
R<r <, we count the number of zeroes of the expression gk=gV-E= {—] [¢+1/2]%. (B6)
cogx+ ¢) +x sin(x+ ¢) for x< . Equivalently we search for I'(3/4)

the number of solutions of the equation

™
Equation(B6) has the same functional form as H@3). It

Xtanx+ ¢)=-1x< a. (A4) does not of course yield the same numerical value for the

. . _ ) _binding energy.
The solutions are the intersection of a tangent function with

a hyperbola. The number of solutions of EA4) is given b
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