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We study the radial Schrödinger equation for a particle of massm in the field of a singular attractiveg2/ r4

potential with particular emphasis on the bound-states problem. Using the regularization method of Beaneet
al. fPhys. Rev. A64, 042103s2001dg, we solve analytically the corresponding “renormalization-group flow”
equation. We find in agreement with previous studies that its solution exhibits a limit cycle behavior and has
infinitely many branches. We show that a continuous choice for the solution corresponds to a given fixed
number of bound states and to low-energy phase shifts that vary continuously with energy. We study in detail
the connection between this regularization method and a conventional method modifying the short-range part
of the potential with an infinitely repulsive hard core. We show that both methods yield bound-states results in
close agreement even though the regularization method of Beaneet al. does not include explicitly any new
scale in the problem. We further illustrate the use of the regularization method in the computation of electron
bound states in the field of neutral polarizable molecules without dipole moment. We find the binding energy
of s-wave polarization bound electrons in the field of C60 molecules to be 17 meV for a scattering length
corresponding to a hard-core radius of the size of the molecule radiuss,3.37 Åd. This result can be further
compared with recent two-parameter fits using the Lennard-Jones potential yielding binding energies ranging
from 3 to 25 meV.
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I. INTRODUCTION

The renormalization of attractive singular potentials of the
form 1/rn with nù2 was recently studied by Beaneet al.
f1g. We shall in the following refer to this renormalization
method as the R method. The purpose of this work is to
analyze in more detail the casen=4 with particular emphasis
on the bound-states problem. On the physical side, this po-
tential describes the long-range part of the polarizability po-
tential in atomic and molecular systems and is relevant to the
description of the long-range proton-deuteron electromag-
netic interaction. From a more formal viewpoint, it is of
interest to study how the regularization method of Ref.f1g
for the 1/r4 potential compares with the results obtained for
the 1/r2 potentialf2,3g, and whether it agrees with previous
renormalization schemes for the same interactionf4,5g. In
this work, we follow Ref.f2g in order to find an analytic
form of the solution to the renormalization-group flow equa-
tion. We then compute both the bound-states spectrum and
the low-energy phase shifts arising from the renormalized
potential and compare the R method to a conventional
method using a hard-core radius for regularizing purposes.
We then use the R method to discuss the binding energy of
s-wave polarization bound electrons in the field of neutral
molecules with zero dipole moment. Our main results are the
following:

1. There are infinitely many solutionsbn, sn=1, 2, 3,…d

to the renormalization-group flow equation. Eachbn exhibits
a limit cycle behavior with, however, a period that depends
on the cutoff radiusR. Furthermore,bn takes the valuenp in
the limit R=0.

2. A continuous choice of solution, obtained by jumping
from one branch to the next closest branch below with de-
creasing values of the cutoff radius, corresponds to a renor-
malization with a given fixed number of bound states. How-
ever, only the energy level with the weakest binding energy
is insensitive to the value of the cutoff radius.

3. A numerical computation shows good agreements be-
tween the physicalsin the sense discussed in Sec. IIId bound-
states spectrum obtained with the R method and the corre-
sponding spectrum obtained in a conventional method
parametrizing the scattering length with a hard-core radius.
When applied to the problem of bound electrons in the field
of polarizable molecules without dipole moment, we find in
particular that the R method yields a binding energy of 17
meV for s-wave polarization bound electrons in the field of
C60 molecules.

Our paper is organized as follows. In Sec. II, we present
the R method proposed in Ref.f1g and we obtain the
renormalization-group flow equation for the singular attrac-
tive 1/r4 potential. In Sec. III, we discuss the bound-states
spectrum of the regularized potential and discuss in Sec. IV
its connection with a conventional method modifying the
short-range part of the potential by means of a hard-core
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radius. In Sec. V, we discuss the application of the R method
to the calculation of electron binding energies in the field of
polarizable neutral molecules with zero dipole moment. In
Sec. VI we show that the low-energy phase shifts are, as
expected, insensitive to the cutoff radius. Some concluding
remarks are reported in Sec. VII.

II. RENORMALIZATION METHOD

In this paper, we follow the R method proposed by Beane
et al. f1g to obtain analytically the renormalization-group be-
havior of the coupling constant of the short-range attractive
square well used to regularize the singular attractive 1/r4

potential.
We start with thes-wave reduced radial Schrödinger

equation for one particle bound by a central potential
Vsrds"=2m=1d,

S d2

dr2 − Vsrd − k2Dcsrd = 0, s1d

with k=Î−E and wheref1g

Vsrd = −
sasd2

R2 usR− rd −
saRd2

r4 usr − Rd sas,a . 0d, s2d

that is, the attractivesaRd2/ r4 is cut off at a short distance
radiusR by an attractive square well. As in Ref.f1g, we first
solve Eq.s1d for the zero energy solutionsk=0d in order to
find the corresponding wave functionc0srd. This solution is
given by

c0srd = A sinSas
r

R
D, r , R, s3d

c0srd = Br cosSa
R

r
+ fD, r . R, s4d

wheref is the zero energy phasef1g and is given by

tanf = L/g, s5d

whereL is the scattering lengthf9g andg=aR.
The usual matching condition of the wave function and its

derivative atr =R then yields the renormalization-group flow
equation

ascotas = 1 +a tansa + fd. s6d

We can solve analytically Eq.s6d as in Ref.f2g to obtain

b0 = ±
sv − 1d1/2

v
expS 1

p
E

0

1

argL0std
dt

t D, v . 1, s7d

bn = ± np expS 1

p
E

0

1

argVnstd
dt

t D, – ` , v , + `,

n = 1,2,…, s8d

where we denoted bybn the infinite set of solutionsas and
we have

1

v
= 1 +a tansa + fd, s9d

L0std = lstd + 1
2vtip, s10d

lstd = 1 + 1
2vt ln

1 − t

1 + t
, s11d

Vnstd = L0std2 + n2p2v2t2. s12d

The integern is fixed on a given branch. The functionsbn
are given in Fig. 1 forn=1, 2, 3 as a function ofR. For
computational ease, we chosef=1. We only keepn.0 so-
lutions asv in formula s9d is unrestricted. It appears that the
coupling constant of the square-well potential is a discon-
tinuous function ofR for a givenn. A similar behavior was
observed in the case of the renormalization of the singular
1/r2 potential. Note, however, two important differences: on
the one hand, the period of oscillations, which changes with
R, is no longer log periodicf1–3g; on the other hand,bn
takes the valuenp in the limit R→0 for all n. Indeed, the
coupling constant,g=aR, of the 1/r4 potential is fixed for a
given physical systemsfor example,g could be taken to be
essentially the electrical polarizability, see Sec. Vd. Conse-
quently, a varies withR and is infinite in the limitR→0.
This leads to a vanishingv, see Eq.s9d, and Vnstd is then
real yieldingbn=np fthe sign ofbn, and thus ofas does not
play a role, see Eq.s2dg.

These results are consistent with the results of the study of
the renormalization of long-range attractive potentials in Ref.
f4g. As already discussed in Ref.f1g, one can also chooseas
to be a continuous function ofR. This implies jumping from
one branch of the solution to the next one just below at the
point of discontinuity as illustrated in Fig. 1. The respective
merits of these two solutions were recently discussed in the
literature in the case of the singular 1/r2 interactionf2,3g.

III. BOUND STATES

The renormalization method described in Sec. II only
makes sense if the low-energy observablessbound states and

FIG. 1. The running coupling constantb as a function ofa−1

=R/g for n=1,2,3 andf=1. The regions labeledi =1,2,3,4 are
discussed in Sec. III. Quantities on both axes are dimensionless.
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phase shifts, for exampled are insensitive to the value of the
cutoff radiusR sfor R small enoughd. The spectrum of the
inverse square potential has been studied in detailf1–3g and
it was shown that bound states with an energy above −1/R2

are indeed insensitive to the value of the cutoff.
As can be seen from Fig. 1, discontinuities ofbn appear

for singularities ofv fsee Eq.s9dg. For R large enough, the
function ua tansa+fdu is smaller than 1 and no singularity
can appear forv. The functionbn is then continuous. This
region is noted as 1 in Fig. 1. With the formula giving the
number of bound states of the regularized potential obtained
in Appendix A, it is clear that in this region we haven bound
states if the coupling constant of the square well is obtained
with bnsg=f=1d. In the region noted as 2 in Fig. 1, formula
sA5d shows that the number of bound states has increased by
1 upon crossing a discontinuity ofbn. Thus we must jump to
a valuebn−1 of as in order to keep the number of bound
states fixed. The various regions are obviously separated by
the various discontinuities ofbn. In general, in regioni, the
potential hasn+ i −1 bound states foras=bn sg=f=1d. Ob-
viously, the number of bound states in the regioni depends
also on the value ofg and f but this number always in-
creases by one unit in the regioni +1.

With the analysis made above, it should be clear that a
continuous choice of the solutionas shence mixing several
branches with different values ofnd corresponds to a renor-
malization with a fixed number of bound states. This is illus-
trated in Fig. 2, where the evolution of the energy levels as a
function ofR is given when three bound states are present in
the regularized potential.

However, it is also clear that fixing the number of bound
states in the potential yields a minimal valueRmin for the
cutoff radiusR. For example, if we fix this number to 1sg
=f=1d, we must stay in the region 1 of Fig. 1 withas

computed withb1. This leads toRmin<0.63g. A crucial out-
come of our calculations as shown in Fig. 2 is the observa-
tion that the state with the weakest binding energy is insen-
sitive to the value ofR. The binding energy, as well as the
mean-square radius, of this state is also insensitive to the

number of bound states present in the regularized potential.
Since the states for which the binding energy varies withR
have no physical meaning and since the binding energy and
the mean-square radius of the state with the weakest binding
energy are insensitive toR and the number of bound states,
there is no clear reason to choose a renormalization with a
fixed number of bound states instead of a renormalization
with a fixed branch since the latter does not introduce a mini-
mal value for the cutoff radiusR. Similar conclusions were
drawn in the study of the singular attractive 1/r2 potential
f2,3g. We therefore conclude that the R method used here
yields bound-states solutions independent ofR and indepen-
dent of the particular branch of the solution to the
renormalization-group equation. We shall thus refer to these
renormalized solutions as physical, and dismiss the deeply
bound,R-dependent solutions as unphysical.

Now, according to our numerical analysis, the binding
energiesEB of these physical solutions forf=1 are given by
EB=k2 with k given by

gk . 0.83. s13d

The form of formulas13d is counterintuitive, as it implies
that the renormalized binding energyincreaseswith decreas-
ing g. This behavior is, nevertheless, simple to understand
since a decrease ofg does not lead to an overall decrease of
the regularized potential. The 1/r4 part of the regularized
potential, see Eq.s2d, is indeed less attractive but the square-
well part of the potential, which depends also ong, see Eq.
s6d, can be more attractive. The relations13d is consistent
with a WKB analysis of the Schrödinger equation as shown
in Appendix B.

IV. CONNECTION WITH HARD-CORE POTENTIALS

It is of interest to compare results from the R method to
those obtained with conventional methods where the polar-
izability potential −aPe2/ s2r4d is modified at the origin by
means of some short-range repulsionf6,7g, aP being the
electric polarizability of the system. An especially simple
form of such a modification is the hard-core regularization
which implies that the bound particle wave function must
vanish at some hard-core radiusR. The attractive feature of
this model is that the corresponding scattering lengthL can
be computed exactly to bef8g

L =ÎaP

a0
cotSÎaP

a0
R−1D s14d

wherea0 is the Bohr radius. For a given value ofL, Eq. s14d
gives the corresponding value ofR for a given value of the
electrical polarizabilityaP. On the other hand, the scattering
lengthL determines the value off from formulas5d in the R
method. Comparison between Eqs.s5d ands14d, and remem-
bering thatf is defined modulop, indicates that we have the
correspondence

R =
g

ss+ 1/2dp − f
, s15d

with fP f0,pg ands=1,2,3,… In Table I, we show a com-
parison between the binding energies and root-mean-square

FIG. 2. The bound-states spectrum as a function ofa−1=R/g for
a constant number of bound states fixed to 3. Quantities on both
axes are dimensionless.
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radii obtained from both methods for the same values of the
scattering lengthL, or equivalently forR and f related by
Eq. s15d with s=1.

We see from Table I that the R method and the hard-core
potential yield bound-states values in excellent agreement. It
is important to note, however, that this agreement holds for
physicalbound states, as defined above. This agreement also
holds for any value ofs. This integer is actually equal to the
number of nodes of the wave function of the state with the
weakest binding energy obtained with the hard-core poten-
tial. However, there are significant differences between the
two methods. The bound-states wave function in the R
method has nodes corresponding to the number of unphysi-
cal sdeeply boundd states and this number is actually arbi-
trary. The number of nodes of the hard-core wave function is
contrained by the value ofR which should correspond to
some characteristic length of the system. The correspondence
between the two methods leads to a further understanding of
relations13d. Indeed,R decreases withg in Eq. s15d leading
to an increase of the binding energy. Moreover, since the
number of nodes of the wave function obtained with the R
method varies withR sand the number of unphysical statesd,
whereas the binding energy and mean-square radius stay in-
sensitive to this parameter, it is not easy to determine if the
stablesphysicald state is a ground state or an excited state. If
the system considered has a given characteristic length, rela-
tions s14d and s15d can be used to determines fsincef is
then known from Eq.s5dg and then the position of the state in
the spectrum. This is illustrated in the next section.

V. POLARIZATION BOUND STATES

In this section we apply the renormalization R method to
the computation of weakly bound electron states in the field
of polarizable neutral molecules with zero dipole moment.
The C60 molecule is one of the few possible candidates with
such propertiesf6g. In the conventional approach, bound
states are computed by solving the Schrödinger equation
with a two-parameter Lennard-Jones potentialf7g. Taking the
electrical polarizabilityaP of C60 to be 558a0

3 leads to an

electron binding energy between 3 and 25 meV according to
the value of the parameters describing the short-range part of
the interaction. We find a physical bound state at 17 meV
with f=1 corresponding to a scattering lengthL=g/ tanf
with g=ÎmaPe2=a0

Î558. In a conventional hard-core analy-
sis, aPe2/2=279e2a0

3, the same binding energy is obtained
with an effective radius of 6.37a0 s,3.37 Åd for the C60

molecule. This radius is obtained with the relations15d with
s=1. Larger values ofs yield the same binding energy but
the effective radius has no longer a physical interpretation.
Moreover, this weakly bound state is certainly a ground state
f7g. The value of the effective radius found with Eq.s15d is
close to the experimental value of the mean radius of the C60
molecule 3.55 Åf10g. If this experimental value is used as
effective radius, we find with Eq.s15d f=1.192 and the
binding energy is then equal to 6 meVfthe relations13d
becomes for this value off ,gk.0.50g. Note that, as already
clear from the results of Table I, the binding energy depends
strongly on the value off. Thus the scattering length, which
determines the value off fsee Eq.s5dg should be known
with enough precision to allow definite predictions and com-
parisons with other regularization methods.

VI. LOW-ENERGY PHASE SHIFTS

Another test of the method described in Sec. II is the
computation of the low-energy phase shift. In Fig. 3, we plot
thes-wave phase shiftd0 as a function ofgk sk;ÎE.0d for
different values ofR. One can see again thatd0 is insensitive
to the value ofR for gk,1, even though the number of
bound statessphysical and nonphysical, as defined aboved
varies from 1 to 4. From the viewpoint of the renormaliza-
tion method, only onesweakly boundd state is physical and
leads tod0=p for a vanishing energy.

VII. CONCLUSIONS

In this paper we studied, with due emphasis on the bound-
states problem, the renormalization of the singular 1/r4 po-

TABLE I. Comparison between the binding energiesEBs;k2d
and the root-mean-square radii obtained with the R methodswith
index Rd and with the hard-core regularization procedureswith in-
dex Rd. The values off andR /g on the same line correspond to
the same value ofL from formulass5d and s14d.

f R /g sgkdR sgkdR skr2l1/2/gdR skr2l1/2/gdR

0.1 0.21681 3.09 3.14 0.545 0.548

0.2 0.22161 2.73 2.82 0.577 0.583

0.4 0.23189 2.18 2.23 0.666 0.672

0.6 0.24317 1.69 1.71 0.794 0.796

0.8 0.25560 1.23 1.24 0.982 0.984

1 0.26937 0.830 0.834 1.300 1.300

1.2 0.28471 0.484 0.486 1.960 1.961

1.4 0.30190 0.196 0.196 4.175 4.176

1.5 0.31130 0.0755 0.0755 10.09 10.01
FIG. 3. Thes-wave phase shiftd0 as a function ofgk for various

values of R and for f=1. Quantities on both axes are
dimensionless.
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tential using the method of Beaneet al. f1g. We found, in
agreement with previous works, that the solutionbn to
renormalization-group flow equation exhibits a limit cycle
behavior and has infinitely many branches. We discussed the
form of the bound-states spectrum as a function ofbn and
discussed the connection between the R method and a con-
ventional method using a hard-core radius to modify the
short-range part of the interaction. We then applied the R
method to calculate the energy of polarization bound elec-
trons to a neutral polarizable molecule without dipole mo-
ment. When applied to the C60 molecule, we found that only
very accurate values for the scattering length could discrimi-
nate between results from the R method and those obtained
from a polarization potential with hard core.

APPENDIX A: NUMBER OF BOUND STATES OF THE
RENORMALIZED POTENTIAL

It is well known that the number of bound states in a
central potential is equal to the number of zeroes of the zero
energy wave function in the interval 0, r ,` ssee, for ex-
ample, Ref.f11gd. Equivalently, we count the number of ex-
trema of this wave function. Thus we have to count the num-
ber of zeroes of the derivative of the zero energy wave
function,

c08srd , cosSas
r

R
D, for r , R, sA1d

c08srd , cosSg

r
+ fD +

g

r
sinSg

r
+ fD, for r . R.

sA2d

The number of extremaN1 of the zero energy wave function
in the interval 0, r ,R is simply given as

N1 = HHas

p
+

1

2
JJ , sA3d

where hhxjj is the integer part ofx. To find the number of
extremaN2 of the zero energy wave function in the interval
R, r ,`, we count the number of zeroes of the expression
cossx+fd+x sinsx+fd for x,a. Equivalently we search for
the number of solutions of the equation

x tansx + fd = − 1 x , a. sA4d

The solutions are the intersection of a tangent function with
a hyperbola. The number of solutions of Eq.sA4d is given by

N2 = HH 1

p
Sa + f + arctan

1

a
DJJ . sA5d

The total number is thus given byN=N1+N2 with N1 andN2
defined by Eqs.sA3d and sA5d, respectively.

APPENDIX B: WKB ANALYSIS

The general formula giving the energy spectrum of a cen-
tral potential in the WKB approximation is

E
r−

r+

drÎE − Vsrd = sn − 1/2dp, sB1d

wheren=1, 2, 3,… andr± are the solution toE=Vsr±d. We
then get from Eq.s2d

E
0

R

drÎE +
sasd2

R2 +E
R

r+

drÎE +
g2

r2 = sn − 1/2dp.

sB2d

Performing the integrations in Eq.sB2d and writing x
=R/ r+, we find

ÎER2 + sasd2 +
g

r+
F−

ÎpGs3/4d
2Gs5/4d

+ xÎ− 1 + 1/x4

+
Bsx4,3/4,1/2d

2
G = sn − 1/2dp, sB3d

where Bsx,a,bd is the beta function. Assuming thatE re-
mains finite asR→0 and using the formulas forx→0,

xÎ− 1 + 1/x4 .
1

x
−

x3

2
andBsx4,3/4,1/2d .

4x3

3
, sB4d

we eventually get, keeping the leading term asR→0,

gÎ− E =
4

p
FGs5/4d

Gs3/4dG2Fas +
g

R
− psn − 1/2dG2

. sB5d

From Eqs.sA3d and sA5d, we find thatnp.as+g/R+f in
the limit R→0, so that we finally get from Eq.sB5d

gk ; gÎ− E .
4

p
FGs5/4d

Gs3/4dG2

ff + 1/2g2. sB6d

EquationsB6d has the same functional form as Eq.s13d. It
does not of course yield the same numerical value for the
binding energy.
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