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Mountain pass algorithm with projector [10] Examples of cones and projectors
Let X be a Hilbert space, £ : X — R a functional and K C X a closed convex cone pointed at 0 (not necessarily salient). n K={ue€ H(%(Q) | u > 0}. Beware: P (u) # u™. In 1D, for the
We seek nontrivial critical points of £ lying in K ie., u € K\ {0} sqch that 0& (1) = 0. norm ||u|| := (fQ|M/!2)1/2, one has Py (u) = u — conv u
For all u € X, we denote Pr(u) the projection of u on K, i.e. the unique element of K such that a K= {u:R — R | u is non-decreasing}. The associated projector
_ — mi _ : t =+
lu — Pg(u)|| = 1;%1[1“(1““ v is Pe(u) =t [y(u'(s)) " ds.
/ s K={u|VgeG, Vx e RN, u(gx) = u(x)} where G is a group
Definition. A map ¢ : K\ {0} — K\ {0} is said to be a K-peak selection for ¢ acting on RY.
& iff for every u € K\ {0}, ¢(u) is a local maximum of the energy £ on the
halfline {tu : t > 0} and @(Au) = @(u) for all A > 0. K - :
Symmetries of ground states
£ : X — R has the appropriate “geometry” if _ At = |u|P~24 on a ball with
(Ep) Vu € X, E(Px(u)) < E(u); Dirichlet boundary conditions. The
(E;) there exists a continuous K-peak selection ¢ : K\ {0} — K\ {0} for &; solutions must be radially
(E3) 0 ¢ Im ¢; symmetric (thanks to the “moving
(Ey) inf{E(u) |u € Img} > —oo; plane” method [4]).
(E5) €& satisfies the Palais-Smale condition i.e., any sequence (u;) C X such
that (£(uy)) converges and VE(uy;) — 0 possesses a convergent b2 .
subsequence. —Au = |u|P7“u on an annulus with
Dirichlet boundary conditions.
Definition. Let uy € K and / When p — 2%, least energy
S VE (up) f;,"a""“ solutions u are non-radial [3]. They
S (ug) = {s > 0 | Px(us) # 0 and E(@ o Px(us)) — E(ug) < —=||VE(up) H} where ug:=uy—s LA are nonetheless foliated Schwarz
2 [VE(up)|| symmetric.
The stepsize set S(ug) at ug is defined as S| (ug) N ]%sup S| (up), +ool.
. . . —Au = |x|*|u|P~2u on a ball with
Theorem. The sequence (un)anN C K defined by the following algorithm /é,'ui%%%‘it Citwdilet Bovndany conditions
Choose ug € Im ¢ 4%%‘5%%%%%‘5%‘ When « is “large”, least energy
If VE(uy) = 0 th,en . %%ggﬁ%ﬁa{ solutions are not radial [8]. They
e | I are foliated Schwarz symmetric [9].
) Stop: uy is a critical point
else N y
U, 1:=@oP (u —S VE (un) ) where s; € S(uy) KF T h
converges up to a subsequence. Any limit point of (1) is a critical point of £ in K\ {0}. % A function u: RN = R : x > u(x) is
foliated Schwarz symmetric if it only
Lemma (Computational deformation lemma). If VE (1) # O then there exists some sy > 0 such that for any s € |0, 5| A depends on
VE (MO) X
E(p o Prlus)) — E(ug) < —3s||VE(u where Ug := uy—Ss . r = |x| and9:arccos(—-d),
((P K( 5)) ( 0) 2 ” ( O)H S 0 va(uO)H |.'Xf|
Lemma. If ug € Im ¢ is such that VE(ug) # 0, then there exists a neighborhood V of ug and a positive sq such that for a certain unit vector d, and u is
S(u) C [sg, +oo| for all u € VNIm g. non-increasing in 6.
N J o\ J
B : N i
Nodal algorithm [7] Nodal line
) v Level curves of “the” least energy
Choose a sign changing vy and set ug := (p(var) + ¢(vy ) B o(vT) + @(v7) nodal solution of —Au = |u|P~%u
If VE(uy) = 0, then PO )|t * on a ball with Dirichlet boundary
Stop: 10 | ritical doint ‘ conditions. When p — 2, the nodal
X Op: Hn 15 a cHitical po : line is a diameter [6]. It is widely
else | believed that it is still the case for
_ VE(u . , . 3 large p but it is not proved at the
| Uy := @)+ @(v") where v =1u,; —sy ”VgEuZ;H and sy is a “good” step size mo%nel;t. P
— o + 0~ with ot - p(0)  oF
where v = 0" 40~ with 7 >0 and v < 0. When the domain is convex and p 5 2, nodal lines of least en-
Despite working reasonably well in practice, this algorithm is not proved convergent. ergy nodal solutions touch the boundary [5]. It is conjectured to
N /| still be true for simply connected domains.
p

Some condition on the domain is nonetheless required as we show
that the nodal line of the of least energy nodal solution of —Au =
u|P~2u on the domain Q below, u = 0 on 9, does not touch 00
Least energy nodal solutions of —Au = |u|P~?u with for p close to 2 [5]. This does not seem to persist as p increases.
Dirichlet boundary conditions are never radial, even
on a ball [1]. They are foliated Schwarz

/Symmetries of least energy nodal solutions

symmetric [2] and, for p =5 2, are odd in the
direction d [6] (d is the unit vector of the Schwarz
= symmetry).
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