Minimax algorithms: convergence and applications

Christophe Troestler
Institute of Mathematics, University of Mons (Belgium)

Mountain pass algorithm with projector [10]

Let X be a Hilbert space, $\mathcal{E}: X \rightarrow \mathbb{R}$ a functional and $K \subseteq X$ a closed convex cone pointed at 0 (not necessarily salient). We seek nontrivial critical points of \mathcal{E} lying in K i.e., $u \in K \backslash\{0\}$ such that $\partial \mathcal{E}(u)=0$.
For all $u \in X$, we denote $P_{K}(u)$ the projection of u on K, i.e. the unique element of K such that

$$
\left\|u-P_{K}(u)\right\|=\min _{v \in K}\|u-v\|
$$

Definition. A map $\varphi: K \backslash\{0\} \rightarrow K \backslash\{0\}$ is said to be a K-peak selection for \mathcal{E} iff for every $u \in K \backslash\{0\}, \varphi(u)$ is a local maximum of the energy \mathcal{E} on the halfline $\{t u: t>0\}$ and $\varphi(\lambda u)=\varphi(u)$ for all $\lambda>0$.

$\mathcal{E}: X \rightarrow \mathbb{R}$ has the appropriate "geometry" if
(E_{1}) $\forall u \in X, \mathcal{E}\left(P_{K}(u)\right) \leqslant \mathcal{E}(u)$;
$\left(\mathbf{E}_{2}\right)$ there exists a continuous K-peak selection $\varphi: K \backslash\{0\} \rightarrow K \backslash\{0\}$ for \mathcal{E};
(\mathbf{E}_{3}) $0 \notin \overline{\operatorname{Im} \varphi} ;$
$\left(\mathbf{E}_{4}\right) \inf \{\mathcal{E}(u) \mid u \in \operatorname{Im} \varphi\}>-\infty$;
(\mathbf{E}_{5}) \mathcal{E} satisfies the Palais-Smale condition i.e., any sequence $\left(u_{n}\right) \subseteq X$ such that $\left(\mathcal{E}\left(u_{n}\right)\right)$ converges and $\nabla \mathcal{E}\left(u_{n}\right) \rightarrow 0$ possesses a convergent subsequence.

Definition. Let $u_{0} \in K$ and

$$
S_{\downarrow}\left(u_{0}\right):=\left\{s>0 \mid P_{K}\left(u_{s}\right) \neq 0 \text { and } \mathcal{E}\left(\varphi \circ P_{K}\left(u_{s}\right)\right)-\mathcal{E}\left(u_{0}\right)<-\frac{s}{2}\left\|\nabla \mathcal{E}\left(u_{0}\right)\right\|\right\} \quad \text { where } \quad u_{s}:=u_{0}-s \frac{\nabla \mathcal{E}\left(u_{0}\right)}{\left\|\nabla \mathcal{E}\left(u_{0}\right)\right\|} .
$$

The stepsize set $S\left(u_{0}\right)$ at u_{0} is defined as $\left.S_{\downarrow}\left(u_{0}\right) \cap\right] \frac{1}{2} \sup S_{\downarrow}\left(u_{0}\right),+\infty[$.

Theorem. The sequence $\left(u_{n}\right)_{n \in \mathbb{N}} \subseteq K$ defined by the following algorithm

$$
\left\{\begin{array}{l}
\text { Choose } u_{0} \in \operatorname{Im} \varphi, \\
\text { If } \nabla \mathcal{E}\left(u_{n}\right)=0 \text {, then } \\
\quad \text { Stop: } u_{n} \text { is a critical point } \\
\text { else } \\
\quad u_{n+1}:=\varphi \circ P_{K}\left(u_{n}-s_{n} \frac{\nabla \mathcal{E}\left(u_{n}\right)}{\left\|\nabla \mathcal{E}\left(u_{n}\right)\right\|}\right), \quad \text { where } s_{n} \in S\left(u_{n}\right)
\end{array}\right.
$$

converges up to a subsequence. Any limit point of $\left(u_{n}\right)$ is a critical point of \mathcal{E} in $K \backslash\{0\}$
Lemma (Computational deformation lemma). If $\nabla \mathcal{E}\left(u_{0}\right) \neq 0$ then there exists some $s_{0}>0$ such that for any $\left.s \in\right] 0, s_{0}$

$$
\mathcal{E}\left(\varphi \circ P_{K}\left(u_{s}\right)\right)-\mathcal{E}\left(u_{0}\right)<-\frac{1}{2} s\left\|\nabla \mathcal{E}\left(u_{0}\right)\right\| \quad \text { where } \quad u_{s}:=u_{0}-s \frac{\nabla \mathcal{E}\left(u_{0}\right)}{\left\|\nabla \mathcal{E}\left(u_{0}\right)\right\|}
$$

Lemma. If $u_{0} \in \operatorname{Im} \varphi$ is such that $\nabla \mathcal{E}\left(u_{0}\right) \neq 0$, then there exists a neighborhood V of u_{0} and a positive s_{0} such that $S(u) \subseteq\left[s_{0},+\infty[\right.$ for all $u \in V \cap \operatorname{Im} \varphi$.

Nodal algorithm [7]

```
Choose a sign changing \(v_{0}\) and set \(u_{0}:=\varphi\left(v_{0}^{+}\right)+\varphi\left(v_{0}^{-}\right)\)
If \(\nabla \mathcal{E}\left(u_{n}\right)=0\), then
    Stop: \(u_{n}\) is a critical point
else
    \(u_{n+1}:=\varphi\left(v^{+}\right)+\varphi\left(v^{-}\right) \quad\) where \(v=u_{n}-s_{n} \frac{\nabla \mathcal{E}\left(u_{n}\right)}{\left\|\nabla \mathcal{E}\left(u_{n}\right)\right\|}\) and \(s_{n}\) is a "good" step size
```

where $v=v^{+}+v^{-}$with $v^{+} \geqslant 0$ and $v^{-} \leqslant 0$

Despite working reasonably well in practice, this algorithm is not proved convergent

Symmetries of least energy nodal solutions

Least energy nodal solutions of $-\Delta u=|u|^{p-2} u$ with Dirichlet boundary conditions are never radial, even on a ball [1]. They are foliated Schwarz symmetric [2] and, for $p \xrightarrow{>} 2$, are odd in the direction d [6] (d is the unit vector of the Schwarz symmetry).

References

[1] A. Aftalion and F. Pacella. Qualitative properties of nodal solutions of semilinear
elliptic equations in radially symmetric domains. C. . A.
elliptic equations in radially symmetric domains. C.R.A.S., 339:339-344, 2004
[2] T. Bartsch, T. Weth, and M. Willem. Partial symmetry of least energy nodal solut
to some variational problems. Iournal d'Analyse Mathématique $96(1): 1-18$, 2005.
to some variational problems. Journal d'Analyse Mathématique, 96(1):1-18, 2005. [3] H. Brezis and L. Nirenberg. Positive solutions of nonlinear elliptic equations involving
critical Sobolev exponents. Comm. Pure Appl. Math., 36(4):437-477, 1983.
[4] B. Gidas, W. M. Ni, and L. Nirenberg. Symmetry and related properties via the maximum principle. Comm. Math. Phy., 68:209-243, 1979.
[5] C. Grumiau and C. Troestler. Nodal line structure of least energy nodal solutions for Cne-emden problem. submitted to C.R.A.S., 2009.
[6] C. Grumiau and C. Troestler. Oddness of least energy nodal solution on radial domains. To appear in Elec. Journal of differential equations, 2009 .
[7] J. M. Neuberger. A numerical method for finding sign-changing solutions of
superlinear dirichlet problems. Nonlinear World, 4(1):73-83, 1997
[8] D. Smets, J. Su, and M. Willem. Non-radial ground states for the Hénon equation.
Chtenp. Math., 4:467-480, 2002.
[9] D. Smets and M. Willem. Partial symmetry and asymptotic behavior for some elliptic variational problems. Calc. Var. Partial Differential Equations, 18:57-75, 2003.
[10] N. Tacheny and C. Troestler. A mountain pass algorithm with projector. submitted to J. Comput. Appl. Math., 2009.

Perspectives \& future work

Symmetry breaking curves

Symmetries, uniqueness, and multiplicity of solutions for Neumann boundary conditions
Wrinkling shapes of thin elastic films on water or polymer substrates Minimize

$$
\mathcal{E}: X \rightarrow \mathbb{R}: \gamma \mapsto \frac{1}{2} B \underbrace{\int_{0}^{L}\left\|\partial_{s}^{2} \gamma(s)\right\|^{2} \mathrm{~d} s}_{\text {bending energy }}+\frac{1}{2} K \underbrace{\int_{0}^{L}\left(\gamma_{2}(s)\right)^{2} \partial_{s} \gamma_{1}(s) \mathrm{d} s}_{\text {potential energy }}
$$

where B and K are constants and X is the space of configurations
$X=\left\{\gamma \in H^{2}(] 0, L\left[; \mathbb{R}^{2}\right) \mid \forall s \in\right] 0, L\left[,\left\|\partial_{s} \gamma(s)\right\|=1\right.$ et

$$
\gamma(0)=(0,0), \partial_{s} \gamma(0)=(1,0)
$$

$$
\left.\gamma(L)=(L-\delta, 0), \partial_{s} \gamma(L)=(1,0)\right\}
$$

$\left.\gamma(L)=(L-\delta, 0), \partial_{s} \gamma(L)=(1,0)\right\}$.
$-\Delta u=|u|^{p-2} u$ on a ball with Dirichlet boundary conditions. The solutions must be radially symmetric (thanks to the "moving plane" method [4]).
$-\Delta u=|u|^{p-2} u$ on an annulus with Dirichlet boundary conditions When $p \rightarrow 2^{*}$, least energy solutions u are non-radial [3]. They are nonetheless foliated Schwarz symmetric.
$-\Delta u=|x|^{\alpha}|u|^{p-2} u$ on a ball with Dirichlet boundary conditions When α is "large", least energy solutions are not radial [8]. They are foliated Schwarz symmetric [9]

Foliated Schwarz symmetry

A function $u: \mathbb{R}^{N} \rightarrow \mathbb{R}: x \mapsto u(x)$ is foliated Schwarz symmetric if it only depends on
$r=|x|$ and $\theta=\arccos \left(\frac{x}{|x|} \cdot d\right)$,
for a certain unit vector d, and u is non-increasing in θ.

Nodal line

Level curves of "the" least energy nodal solution of $-\Delta u=|u|^{p-2} u$ on a ball with Dirichlet boundary conditions. When $p \rightarrow 2$, the noda line is a diameter [6]. It is widely believed that it is still the case for large p but it is not proved at the moment.

When the domain is convex and $p \xrightarrow{>} 2$, nodal lines of least energy nodal solutions touch the boundary [5]. It is conjectured to still be true for simply connected domains.

Some condition on the domain is nonetheless required as we show that the nodal line of the of least energy nodal solution of $-\Delta u=$ $|u|^{p-2} u$ on the domain Ω below, $u=0$ on $\partial \Omega$, does not touch $\partial \Omega$ for p close to 2 [5]. This does not seem to persist as p increases.

