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Abstract. Albertson [1] defines the imbalance of an edge (i, j) ∈ E of a
graph G = (V, E) as |di − dj | where dj is the degree of a vertex j ∈ V , and
the irregularity irr(G) of G as the sum of imbalances of its edges. Exploiting
conjectures of the system AutoGraphiX, an upper bound on irr(G) is derived,
which is tight for all numbers n = |V | and m = |E| of vertices and edges
compatible with the existence of a graph :

irr(G) ≤ d(n− d)(n− d + 1) + t(t− 2d− 1)

where

d = bn− 1

2
−
r

(n− 1

2
)2 − 2mc

and
t = m− (n− d)d− d(d− 1)/2.

Extremal graphs are shown to be fanned split graphs, i.e., complete split
graphs with the possible addition of edges all incident with the same vertex.

1. Introduction

Let G = (V,E) denote a simple, loopless, undirected graph with vertex set V
and edge set E; let further n = |V | and m = |E| denote G’s number of vertices
and edges, and dj , j = 1, 2, . . . , n the degree of (or number of edges incident with)
vertex j ∈ V . If all dj are equal G is regular. Otherwise G is irregular ; however,
it is of interest to measure how irregular it is. Several measures (which do not
always agree) have been proposed for that purpose : Collatz and Sinogowitz [10]
suggest to use the difference between the spectral radius λ1 of the adjacency matrix
and average degree 2m

n (they conjectured that stars maximize this difference, which
was refuted by Cvetković and Rowlinson [11] using the system GRAPH ); Bell
[3] contrasts this measure with the variance of the degree sequence; Albertson [1]
recently defined the imbalance of edge (i, j) as

imbij = |di − dj |
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i.e., the difference of the degrees of that edge’s end vertices, in absolute value, and
the irregularity irr(G) of a graph G as the sum of all edges imbalances :

irr(G) =
∑

(i,j)∈E

imbij =
∑

(i,j)∈E

|di − dj |.

Note that all three measures are equal to zero for regular graphs. Tight upper
bounds on the first two, expressed as functions of n and m for both connected and
disconnected graphs are provided in [3] together with families of graphs for which
these bounds are attained. It is shown in [1] that

irr(G) <
4n3

27
,

and that this bound may be approached arbitrarily closely. However, no bound in
function of n and m is given. It is the purpose of the present paper to fill in this
gap by providing a formula which is best possible in the strong sense, i.e., which is
tight for all values of n and m compatible with the existence of a graph. Moreover,
extremal graphs are characterized and belong to a single well-defined family of split
graphs.

These results were obtained using the system AutoGraphiX (AGX ) [8] [9] for
computed-assisted or (fully) automated graph theory. The aims of AGX are the
following :

(1) Find graphs satisfying given constraints;
(2) Find graphs with optimal or near-optimal value of some invariant subject

to constraints;
(3) Refute a conjecture;
(4) Find (or suggest) a new conjecture (or sharpen an existing one);
(5) Suggest a proof strategy.

These aims are attained by generating a large number of extremal or near-
extremal graphs, using the Variable Neighborhood Search metaheuristic [15] [16];
then algebraic and / or structural conjectures are obtained interactively or auto-
matically. Further details on AGX, and the three ways it uses to derive conjectures
automatically are given in [8] [9]. Applications to graph theory are presented in
these papers as well as in [2] [5] [12]. Moreover AGX is used to find and to help
prove conjectures in chemical graph theory in [4] [6] [13] [14]. To find ideas of
proof, the program is run with severe restrictions on the moves allowed within the
heuristic (e.g. only rotation, or displacement, of a single edge at a time). If such
moves suffice for obtaining again the extremal graphs previously found, the effort
can be focused on proving that they suffice in general.

The paper is organized as follows : first experiments with AGX and their
results, in terms of extremal graphs and 4 conjectures automatically obtained are
described in the next section. They lead to conjecture a characterization of the
family of extremal graphs and an upper bound on irr(G) in terms of n and m,
presented in Section 3. Proofs of these conjectures are given in Section 4. A brief
discussion concludes the paper in Section 5.

2. Experiments and automated conjectures

A short routine for computing the value of irr(G) was first programmed and
added to AGX. Then it was asked to find graphs with maximal irregularity for
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3 ≤ n ≤ 12 and n − 1 ≤ m ≤ n(n−1)
2 , as well as diagrams of these graphs, curves

of values for a given n, and whatever conjectures might follow automatically. To
find extremal graphs, the descent routine of AGX was used with the following
neighborhoods: move of an edge, rotation of an edge, split and insertion; and
a number of neighborhoods kmax = 10 (see [8] for details). To find conjectures
on extremal graphs, the invariants ω(G) (clique number, or maximum number of
pairwise adjacent vertices), α(G) (independence number, or maximum number of
pairwise non-adjacent vertices), χ(G) (chromatic number or minimum number of
colors to be assigned to the vertices of G in order not to have two adjacent vertices of
the same color), r (radius of G or minimum over all vertices of G of the maximum
distance to another vertex of G), ∆ (maximum degree), and a few others were
computed.

Then the numerical method described in [7] [9] was applied to find automat-
ically a basis of affine relations between these invariants, satisfied by all extremal
(or near-extremal) graphs found.

A subset of the 230 graphs obtained is presented in Figure 1; the corresponding
curves of irr(G) for 9 ≤ n ≤ 12, are drawn in Figure 2. Moreover, AGX provided
the following 4 conjectures, which we group for conciseness :

Conjectures 1 to 4. If G is a graph with n vertices, m edges, clique number
ω(G), independence number α(G), chromatic number χ(G), maximum degree ∆,
radius r and maximum irregularity irr(G), then

ω(G) = χ(G),(2.1)
n = ∆ + 1,(2.2)
r = 1,(2.3)

ω(G) + α(G) = ∆ + 2.(2.4)

3. Interpretation and new conjectures

From the basis of affine relations given in Conjectures (2.1) to (2.4) one derives :

(3.1) ω(G) + α(G) = n + 1;

so G comprises a clique C with ω(G) vertices and an independent set I with α(G)
vertices which have a vertex in common. This implies they are specific split graphs.
Indeed split graphs consist of a clique on n1 vertices, a disjoint independent set on
n2 = n− n1 vertices and possibly some edges joining a vertex of one set to one of
the other. If all such edges are present G is a complete split graph. Replacing n by
n1 + n2 in (3.1) and as α = n2 by definition of a split graph,

ω(G) = n1 + 1.

In other words, one vertex of the independent set is adjacent to all vertices of the
clique in the split graph.

Moreover, one vertex at least is joined to all others, as ∆ = n − 1; this last
relation implies r = 1 and conversely. Finally, the structure described implies
χ(G) = ω(G) as χ(G) ≥ ω(G) and a coloring in ω(G) colors can be obtained by
giving the same color to all of the n2 vertices of I and a different color to each
remaining vertex.

This gives fairly good information on the structure of extremal graphs. How-
ever, a glance at these graphs themselves (see again Figure 1), and particularly at
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N = 7 M = 6
 = 30Irr

N = 7 M = 7
 = 28Irr

N = 7 M = 8
 = 28Irr

N = 7 M = 9
 = 30Irr

N = 7 M = 10
 = 34Irr

N = 7 M = 11
 = 40Irr

N = 7 M = 12
 = 36Irr

N = 7 M = 13
 = 34Irr

N = 7 M = 14
 = 34Irr

N = 7 M = 15
 = 36Irr

N = 7 M = 16
 = 30Irr

N = 7 M = 17
 = 26Irr

N = 7 M = 18
 = 24Irr

N = 7 M = 19
 = 16Irr

N = 7 M = 20
 = 10Irr

N = 7 M = 21
 = 0Irr

N = 8 M = 7
 = 42Irr

N = 8 M = 8
 = 40Irr

N = 8 M = 9
 = 40Irr

N = 8 M = 10
 = 42Irr

N = 8 M = 11
 = 46Irr

N = 8 M = 12
 = 52Irr

N = 8 M = 13
 = 60Irr

N = 8 M = 14
 = 56Irr

N = 8 M = 15
 = 54Irr

N = 8 M = 16
 = 54Irr

N = 8 M = 17
 = 56Irr

N = 8 M = 18
 = 60Irr

N = 8 M = 19
 = 54Irr

N = 8 M = 20
 = 50Irr

Figure 1. Some extremal graphs found by AGX
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Figure 2. Values of Irregularity for some extremal graphs found
by AGX

Figure 3. An example of fanned split graph with n = 8, m = 20,
d = 3 (¥) and t = 2 (N)

successive ones with the same n and increasing m, shows one can say more. Indeed,
they appear to be complete split graphs with a clique of d vertices, an independent
set of n − d vertices and possibly 1 ≤ t ≤ n − d − 1 additional edges joining a
vertex of the (previously) independent set to others of this set. We call such graphs
fanned split graphs (as the addition of successive edges at a vertex is reminiscent of
opening a fan). An example of a fanned split graph is presented in Figure 3 where
n = 8, m = 20, d = 3 and t = 2. The three vertices of the clique are the black
squares, and the dotted lines are the edges added from a vertex not in the clique to
two other ones noted by triangles. So we can formulate the next conjecture (which
is computer-aided, not automated, but for which the largest part of the job was
clearly done by computer) :
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Conjecture 5. A graph G with n vertices and m edges has maximum irregularity
if and only if it is a fanned split graph.

A fanned split graph has

d vertices of degree n− 1;
1 vertex of degree d + t;
t vertices of degree d + 1;
n− d− t− 1 vertices of degree d.

Moreover, G has d(d−1)
2 edges joining pairs of vertices of the clique, with imbalance

0; d edges joining vertices of the clique to the (first, if t = 1) vertex of degree d + t,
with imbalance n − d − t − 1; dt edges joining vertices of the clique to vertices of
degree d + 1, with imbalance n − d − 2; d(n − d − t − 1) edges joining a vertex of
the clique to a vertex of degree d, with imbalance n− d− 1; and t edges joining a
vertex of degree d + t to a vertex of degree d + 1 with imbalance t− 1.

Summing, one obtains for a fanned split graph G = FSdt an irregularity of

irr(FSdt) = d(n− d− t− 1) + dt(n− d− 2) + d(n− d− 1)(n− d− t− 1) + t(t− 1).

A few algebraic manipulations then lead to

(3.2) irr(FSdt) = d(n− d)(n− d− 1) + t(t− 2d− 1).

So, if t = 0 one gets the irregularity of a complete split graph with a clique on
d vertices and an independent set on n− d vertices, i.e., d(n− d)(n− d− 1). The
effect of the additional t edges will reduce irr(G) if t < 2d + 1, let it unchanged if
t = 2d + 1 and increase it if t > 2d + 1. As shown on Figure 2, the local maxima
for irregularity are obtained for complete split graphs.

From the definition of fanned split graph, one may easily compute d and t :
indeed summing edges in the clique and between the clique and the independent
set gives that d is the largest integer such that

d(d− 1)
2

+ d(n− d) ≤ m

from where it follows that

(3.3) d = bn− 1
2
−

√
(n− 1

2
)2 − 2mc

where bbc denotes the largest integer not larger than b and

(3.4) t = m− (n− d)d− d(d− 1)/2.

Note that these graphs are unique for fixed numbers n of vertices and m of edges.
We summarize these results in the following conjecture :

Conjecture 6. For all graphs G with n vertices and m edges the irregularity

(3.5) irr(G) ≤ d(n− d)(n− d− 1) + t(t− 2d− 1)

where d and t are given by (3.3) and (3.4). Moreover, the bound is attained for all
n and 0 ≤ m ≤ n(n−1)

2 .
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rot(u,v,w)
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Figure 4. A rotation rot(u, v, w)

4. Proofs

Before looking for a proof of the conjectures, we ran AGX with only one move
allowed within the heuristic : we chose the simplest one for which the number of
vertices and edges are not altered, i.e., rotation of a single edge. Let G be a graph
and u, v, w three different vertices of G such that (u, v) ∈ E(G) and (u,w) /∈ E(G);
one can define the graph G′ obtained after rotation rot(u, v, w) is applied to G as
follows :

G′ = G− (u, v) + (u,w).

Such a move is represented in Figure 4.
With this restriction, AGX found again systematically the fanned split graphs

as extremal graphs. This observation led us to use the graphical interface of AGX,
which permits to modify the graphs manually and see how the invariants change in
consequence. Such manipulation, together with the information on the structure
of the fanned split graph collected before, led us to write the following algorithm
which transform any graph G with n vertices and m edges into a fanned split graph
with the same number of vertices and edges, using only rotation.

FannedSplitGraph(G):
Input: a graph G with n vertices and m edges.
Output: a fanned split graph with the same numbers of vertices and edges.

(1) Initialization.
(a) Let F be the set of vertices of G with a degree equal to n − 1. We

call them the fixed vertices in the next steps.
(b) Stop ← FALSE.
(c) Choose w. Choose a non-fixed vertex w with maximum degree.

(2) Make a move. While Stop is FALSE, do
(a) Choose u. Choose a non-fixed vertex u 6= w, not adjacent to w.

(i) If du > |F |, choose any non-fixed vertex v such that (u, v) ∈
E(G) and do rot(u, v, w).

(ii) Else (du = |F |), try to find an edge (v1, v2) where {v1, v2} /∈
F ∪ w and dv1 ≥ dv2 .
(A) If such an edge exists, do rot(v1, v2, u) followed by rot(u, v1, w).

(B) If not, Stop ← TRUE.
(b) Update F . If dw = n − 1, F = F ∪ w and choose a new w as a

non-fixed vertex of maximum degree.

Lemma 4.1. Algorithm FannedSplitGraph terminates if and only if G has
been transformed into a fanned split graph.
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Proof. Let x1, x2, . . . xf be the fixed vertices of G (with degree equal to n−1).
Let w be the vertex of maximum degree < n−1. We see that in step 2, a move will
always increase the degree of w. Indeed this algorithm will stop only if we can no
more add an edge to w, i.e. if f = d and if there is no more edge (v1, v2) between
vertices of the set V (G)\F \w. This situation occurs only when G is a fanned split
graph with the value d and t defined above.

Note that if m < n−1 this algorithm will construct a graph composed of a star
with m + 1 vertices and n −m − 1 isolated vertices which is a fanned split graph
also. Moreover if G is not connected and if m ≥ n − 1, this algorithm will choose
w as the vertex of maximum degree until dw = n− 1. At this step G will be (and
remain) connected.

Remark also that u, a vertex non-adjacent to w, can always be chosen in step
2a because dw < n − 1 (otherwise w would be fixed) and if du > |F |, a vertex v
can always be found because u is adjacent to the f fixed vertices and has at least
one another edge to a vertex 6= w. ¤

We can now verify what AGX suggest to us. To do this, let us define some
notations introduced by Albertson [1]. If u ∈ V (G),

d>
u = |{x : (x, u) ∈ E(G) and du > dx}|,

d=
u = |{x : (x, u) ∈ E(G) and du = dx}|,

and
d<

u = |{x : (x, u) ∈ E(G) and du < dx}|.
Remark that du = d>

u + d=
u + d<

u .

Lemma 4.2 (Edge Rotation Lemma). Let u, v, w be three different vertices of
G. If (u, v) ∈ E(G) and (u,w) /∈ E(G), set G′ = G− (u, v)+ (u,w). Then we have
the following results:

If du ≥ dv and du > dw irr(G′) = irr(G) + 2[d<
v + d=

v − d<
w − 1] + k Case 1

If du ≥ dv and du ≤ dw irr(G′) = irr(G) + 2[d<
v + d=

v + d>
w + d=

w − du] + k Case 2
If du < dv and du > dw irr(G′) = irr(G) + 2[du − d>

v − d<
w ] + k Case 3

If du < dv and du ≤ dw irr(G′) = irr(G) + 2[d>
w + d=

w − d>
v + 1] + k Case 4

where k = 2 if (v, w) ∈ E(G) and dv = dw + 1, and k = 0 otherwise.

Proof. Suppose first that there is no edge between v and w. The imbalance
of the edges of G′ will change only on the edges adjacent with the vertices v and
w in G. We will compute the contribution of the moving edge (u, v) → (u,w), of
the edges adjacent with w in G and of the edges adjacent to v in G different from
(u, v).

• The contribution of the moving edge will be

(4.1) |du − (dw + 1)| − |du − dv|.
• The total contribution of the edges adjacent with w in G will be

(4.2) d>
w + d=

w − d<
w .

• Finally, the contribution of the edges adjacent with v different from (u, v)
will be

d<
v + d=

v − d>
v − 1 if du ≥ dv(4.3)

d<
v + d=

v − d>
v + 1 if du < dv(4.4)
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because the moving edge, for which the imbalance has already been com-
puted, counts for one in d<

v + d=
v if du ≥ dv or in d>

v otherwise.
Summing these contributions leads to the four cases (with k = 0) and where

we compare du and dw also to remove the absolute value in expression (4.1).
Suppose now that there exist an edge (v, w). The contributions will be similar

of the previous one but we count the edge (v, w) twice : once in (4.2) and once in
(4.3) or (4.4). In fact, the contribution of this edge will be

(4.5) |(dv − 1)− (dw + 1)|.
Depending of dv and dw, this leads to several cases where we look how this edge
was counted twice, the contribution already counted in the previous sum, and the
value of imbvw induced by (4.5) :

Assumption Counted in previous count imbvw

dv > dw + 1 d>
v and d<

w −2 −2
dv = dw + 1 d>

v and d<
w −2 0

dv = dw d=
v and d=

w 2 2
dv < dw d<

v and d>
w 2 2

There is only a difference when dv = dw + 1, which justifies the values of k in
Lemma 4.2. ¤

Lemma 4.3. Running the FannedSplitGraph algorithm on any graph G which
is not a fanned split graph will strictly increase irregularity.

Proof. If G is a fanned split graph, the algorithm will not do any move.
Otherwise, there will be at least one move. So we only have to prove that steps
2(a)i and 2(a)ii will strictly increase irregularity of G.

Let f = |F | be the number of vertices of degree n− 1. As in steps 1c or 2b w
is chosen such as dw is maximum among the non-fixed vertices :

d<
w = f ;(4.6)

d<
y ≥ f ;(4.7)

d>
y + d=

y + d<
y ≤ d>

w + d=
w + d<

w ;(4.8)

for any non-fixed vertex y. Expressions (4.6) and (4.7) give

(4.9) d<
w ≤ d<

y

and, subtracting in both sides of (4.8)

(4.10) d>
y + d=

y ≤ d>
w + d=

w .

Let u be the vertex chosen in step 2a.
• Suppose first that du > f . In this case, a vertex v is selected in step 2(a)i

and rotation rot(u, v, w) applied on G.
By the choice of w and u, it is easy to check that du < dw, and we

have two cases :
– If du < dv, we are in Case 4 of Lemma 4.2 ,

irr(G′) = irr(G) + 2[d>
w + d=

w − d>
v + 1] + k,

and as v is non-fixed (4.10) implies that irr(G′) > irr(G).



262 PIERRE HANSEN AND HADRIEN MÉLOT

– If du ≥ dv, we are in Case 2 :

irr(G′) = irr(G) + 2[d<
v + d=

v + d>
w + d=

w − du] + k,

and as du < dw,

d<
v + d=

v + d>
w + d=

w − du > d<
v + d=

v + d>
w + d=

w − dw = d<
v + d=

v − d<
w

which is positive as d<
v ≥ d<

w by (4.9). Again, irr(G′) > irr(G).
• Suppose now that du = f . In this case, one tries to find an edge (v1, v2) in

step 2(a)ii such that {v1, v2} /∈ F ∪w and dv1 ≥ dv2 . Then two rotations
are applied on G. Let G′ be the graph obtained after rotation rot(v1, v2, u)
is applied on G and G′′ the graph obtained after rotation rot(u, v1, w) is
applied on G′. As some degrees will change after the first rotation, we
will note them d′i in G′. By construction dv1 ≥ dv2 > du = f which means
that we are in Case 1 of Lemma 4.2 for the first rotation :

irr(G′) = irr(G) + 2[d<
v2

+ d=
v2
− d<

u − 1] + k

where k = 0 because there is no edge (v2, u) and where d<
u = du = f . So,

(4.11) irr(G′) = irr(G) + 2[d<
v2

+ d=
v2
− f − 1].

Let us see now how the degrees have changed before the second rota-
tion. It is clear that

(4.12) d′u = du + 1, d′v1
= dv1 and d′w = dw

but some other changes can happen in the decomposition of these degrees
in the sets d<, d> and d=. There are three different possible configura-
tions :
(1) dv1 > dv2 . As dv2 ≥ du+1 and by (4.12) we have d′v1

> d′u. Moreover,
d′w ≥ d′u and we are in Case 4 of Lemma 4.2:

irr(G′′) = irr(G′) + 2[d>′
w + d=′

w − d>′
v1

+ 1] + k

where k ≥ 0 and where d>′
v1

= d>
v1

, d>′
w = d>

w and d=′
w = d=

w . Finally,
replacing irr(G′) by (4.11) gives

irr(G′′) = irr(G) + 2[d<
v2

+ d=
v2
− f − 1 + d>

w + d=
w − d>

v1
+ 1] + k.

which is strictly greater than zero because d<
v2
≥ f + 1 (the f edges

from v2 to the fixed vertices, plus the edge (v1, v2)) and d>
w +d=

w ≥ d>
v1

by (4.10).
(2) dv1 = dv2 and dv2 > du +1. We are again in Case 4 but the difference

here is that d>′
v1

= d>
v1

+ 1 :

irr(G′′) = irr(G) + 2[d<
v2

+ d=
v2
− f − 1 + d>

w + d=
w − d>

v1
] + k.

which is strictly greater than zero because d<
v2
≥ f +1, d>

w +d=
w ≥ d>

v1

as before and d=
v2
≥ 1 due to the edge (v1, v2).

(3) dv1 = dv2 and dv2 = du + 1. In this last case, d′v1
= d′u and d′w ≥ d′u,

so we are in Case 2 :

irr(G′′) = irr(G′) + 2[d<′
v1

+ d=′
v1

+ d>′
w + d=′

w − d′u] + k.
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One can check that k = 0, d′u = f + 1, d=′
v1

= 1, d<′
v1

= f , d>′
w = d>

w

and d=′
w = d=

w . Putting these values in the previous expression and
replacing irr(G′) by (4.11) leads to

irr(G′′) = irr(G) + 2[d<
v2

+ d=
v2

+ d>
w + d=

w − f − 1],

which is strictly positive because d=
v2

= 1, d<′
v2

= f and d>
w > 0.

¤

Theorem 4.4. (Conjectures 5 and 6) For any graph G with n vertices, m edges
and irregularity irr(G),

irr(G) ≤ d(n− d)(n− d + 1) + t(t− 2d− 1)

where

d = bn− 1
2
−

√
(n− 1

2
)2 − 2mc

and
t = m− (n− d)d− d(d− 1)/2.

Moreover, this value is attained if and only if G is a fanned split graph.

Proof. From Lemma 4.1, algorithm FannedSplitGraph applied to any graph
G ends with the unique fanned split graph with n vertices and m edges. From
Lemma 4.3 all rotations or pairs of rotations applied increase strictly the irregular-
ity of the graph. It follows that fanned split graphs are extremal (which is Conjec-
ture 5). Then the bound follows from the computations preceeding Conjecture 6.
The fact that it is best possible and that extremal graphs can be characterized as
fanned split graphs follows also from Lemmas 4.1 and 4.3. ¤

5. Concluding remarks

The problem of finding a best possible bound on the irregularity of graphs
G with n vertices and m edges, as defined by Albertson [1], is entirely solved.
Moreover, extremal graphs are characterized.

These results could be obtained through three of the main capacities of the
system AutoGraphiX [8] [9] :

(1) Finding extremal or near extremal graphs. In this case AGX obtained
230 graphs which were extremal, without one exception.

(2) Finding automatically conjectures. Four such conjectures were obtained,
from which it follows that extremal graphs are split graphs with one vertex
of largest possible degree.

Using these results and the representation of graphs found, a new
family of graphs was identified : fanned split graphs, which are complete
split graphs with possibly some additional edges all incident with a same
vertex. The 230 graphs obtained all belong to this family, which has
one and only one member for each pair of numbers n of vertices and
m of edges compatible with existence of a graph. The conjectures that
extremal graphs always belong to this family, as well as a numerical bound
on irregularity, follow.
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(3) Suggesting proof strategies. The extremal graphs obtained could be found
once again using only the edge rotation move, which is the simplest one
leaving n and m unchanged. This suggested an algorithm to go from any
graph G to a fanned split graph with the same number of vertices and
edges, using only moves which increase irregularity. Such an algorithm
using one or two rotations at each step could be obtained, with help of
the interactive component of AGX. The two conjectures were thus proved.

We believe the “simulated algorithm” type of proof used here to be worthy of
further study.
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