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Dark strings have recently been suggested to exist in new models of dark matter that explain the

excessive electronic production in the Galaxy. We study the interaction of these dark strings with

semilocal strings which are solutions of the bosonic sector of the standard model in the limitsin2�w ¼
1, where �w is the Weinberg angle. While embedded Abelian-Higgs strings exist for generic values of the

coupling constants, we show that semilocal solutions with nonvanishing condensate inside the string core

exist only above a critical value of the Higgs to gauge boson mass ratio when interacting with dark strings.

Above this critical value, which is greater than unity, the energy per unit length of the semilocal-dark

string solutions is always smaller than that of the embedded Abelian-Higgs-dark string solutions and we

show that Abelian-Higgs-dark strings become unstable above this critical value. Different from the

noninteracting case, we would thus expect semilocal strings to be stable for values of the Higgs to gauge

boson mass ratio larger than unity. Moreover, the one-parameter family of solutions present in the

noninteracting case ceases to exist when semilocal strings interact with dark strings.

DOI: 10.1103/PhysRevD.80.123502 PACS numbers: 98.80.Cq, 95.35.+d

I. INTRODUCTION

It is intriguing that approximately 95% of the energy
density of the Universe has never been observed directly.
Only 5% are made out of standard atoms, while there is
strong observational evidence [1] that roughly 23% of the
total energy density is dark matter, while the remaining
72% are dark energy. The best candidate for dark energy is
a positive cosmological constant, while dark energy is now
believed to be made out of particles that only weakly
interact with standard matter, so-called weakly interacting
massive particles (WIMPs). These type of particles appear
e.g. in extensions of the standard model. Within this con-
text, recent astrophysical observations [2] have shown an
excess electronic production in the Galaxy with electrons
having energies between a few GeV and a few TeV. Since
this excess could not be explained with standard theories a
new model has been proposed [3] that allows for the
annihilation of dark matter into electrons. In this model,
the standard model is coupled to the dark sector via an
attractive interaction term, which is of the form of a direct
coupling between the Uð1Þ field strength tensor of the dark
matter sector and the Uð1Þ field strength tensor of electro-
magnetism below the GeV scale. Since we do not observe a
‘‘dark photon’’ background in the Universe, the Uð1Þ sym-
metry of the dark sector has to be spontaneously broken.
Since the breaking of a Uð1Þ symmetry leads to the exis-
tence of stringlike solutions, these ‘‘dark strings’’ have
been discussed in [4].

Next to magnetic monopoles and domain walls, cosmic
strings are topological defects that could have formed in

the early Universe via the Kibble mechanism [5]. Magnetic
monopoles and domain walls, however, are far too heavy to
exist in large numbers in the Universe, while cosmic
strings with energy per unit length low enough are accept-
able. Because of topological arguments, cosmic strings
are either infinitely long or exist in the form of closed
loops. Networks of cosmic strings form in the early
Universe. During the expansion of the Universe, the strings
intersect and form loops which then decay under the emis-
sion of gravitational radiation. This allows the network to
reach a scaling solution, i.e. the contribution of cosmic
strings to the total energy density of the Universe becomes
constant. This behavior has been observed in numerical
simulations.
Since cosmic strings are an acceptable remnant from the

early Universe, it was believed that they could be respon-
sible for the structure formation and consequently the
fluctuations in the cosmic microwave background
(CMB). However, precise measurements of the CMB
with Wilkinson Microwave Anisotropy Probe (WMAP)
have clearly shown that the theoretical power spectrum
associated to cosmic strings differs significantly from the
observed power spectrum. In recent years, cosmic strings
have, however, gained renewed interest due to their pos-
sible link to the fundamental entities of string theory [6].
There are different hints that the fundamental strings of
string theory might exist on cosmic scales, which would be
one (and maybe the only) possibility to observe string
theory directly. Witten excluded the existence of perturba-
tive fundamental strings on cosmic scales [7]. These ob-
jects would simply be too heavy and in addition would
have been produced before inflation such that their abun-
dance would have been diluted away. However, in recent
years, models with extra dimensions have gained popular-
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ity. The important point is that these models allow to lower
the fundamental Planck scale down to the TeV scale.
Consequently, inflationary models resulting from string
theory [8] and supersymmetric grand unified theories [9]
seem to predict that cosmic strings form generically at the
end of inflation.

Different field theoretical models describing cosmic
strings have been investigated. The Uð1Þ Abelian-Higgs
model possesses stringlike solutions [10]. This is a simple
toy model that is frequently used to describe cosmic
strings. However, the symmetry breaking pattern Uð1Þ !
1 has very likely never occurred in the evolution of the
Universe. Consequently, more realistic models with gauge
group SUð2Þ �Uð1Þ and symmetry breaking SUð2Þ �
Uð1Þ ! Uð1Þ have been considered and it has been shown
that these models have stringlike solutions [11,12].
Semilocal strings are solutions of a SUð2Þglobal �
Uð1Þlocal model which—in fact—corresponds to the stan-
dard model of particle physics in the limit sin2�w ¼ 1,
where �w is the Weinberg angle. The simplest semilocal
string solution is an embedded Abelian-Higgs solution
[11]. A detailed analysis of the stability of these embedded
solutions has shown [13] that they are unstable (stable) if
the Higgs boson mass is larger (smaller) than the gauge
boson mass. In the case of equality of the two masses, the
solutions fulfill a Bogomol’nyi-Prasad-Sommerfield (BPS)
[14] bound such that their energy per unit length is directly
proportional to the winding number. Interestingly, it has
been observed [13] that in this BPS limit, a one-parameter
family of solutions exists: the Goldstone field can form a
nonvanishing condensate inside the string core and the
energy per unit length is independent of the value of this
condensate. These solutions are also sometimes denomi-
nated ‘‘skyrmions’’ and have been related to the zero-mode
present in the BPS limit.

In this paper, we consider the interaction of dark strings
with stringlike solutions of the standard model in the
specific limit sin2�W ¼ 1. The two sectors interact via an
attractive interaction that couples the two Uð1Þ field
strength tensors to each other. This type of interaction
has been studied before in [15], where the interaction
between Abelian-Higgs strings and dark strings has been
investigated. It has been found that a BPS bound exists that
depends on the interaction parameter and that Abelian-
Higgs strings and dark strings can form bound states.

Our paper is organized as follows: in Sec. II, we give the
model, the equations of motion, the boundary conditions
and the asymptotics. In Sec. III, we present our numerical
results and Sec. IV contains our conclusions.

II. MODEL

We study the interaction of a SUð2Þglobal �Uð1Þlocal
model, which has semilocal strings solutions [11] with
the low energy dark sector, which is a Uð1Þ Abelian-
Higgs model.

The matter Lagrangian Lm reads:

Lm ¼ ðD��ÞyD��� 1

4
F��F

�� � �1

2
ð�y�� �2

1Þ2

þ ðD��Þ�D��� 1

4
H��H

�� � �2

2
ð���� �2

2Þ2

þ "

2
F��H

�� (1)

with the covariant derivatives D�� ¼ r��� ie1A��,

D�� ¼ r��� ie2a�� and the field strength tensors

F�� ¼ @�A� � @�A�, H�� ¼ @�a� � @�a� of the two

Uð1Þ gauge potential A�, a� with coupling constants e1
and e2.� ¼ ð�1; �2ÞT is a complex scalar doublet, while �
is a complex scalar field. The gauge fields have masses

MW;i ¼
ffiffiffi
2

p
ei�i, i ¼ 1; 2, while the Higgs fields have

masses MH;i ¼
ffiffiffiffiffiffiffi
2�i

p
�i, i ¼ 1; 2. The term proportional

to " is the interaction term [4]. To be compatible with
observations, " should be on the order of 10�3.

A. Ansatz

For the matter and gauge fields the ansatz in cylindrical
coordinates ðt; �; ’; zÞ reads [10,11,13]:

�1ð�;’Þ ¼ �1h1ð�Þein’; �2ð�Þ ¼ �1h2ð�Þ;
�ð�;’Þ ¼ �2fð�Þeim’

(2)

A�dx
� ¼ 1

e1
ðn� Pð�ÞÞd’;

a�dx
� ¼ 1

e2
ðm� Rð�ÞÞd’:

(3)

n andm are integers indexing the vorticity of the two Higgs
fields around the z axis. In the following, we will refer to
solutions with h2ð�Þ � 0 as ‘‘embedded Abelian-Higgs
solutions,’’ while solutions with h2ð�Þ � 0 will be referred
to as ‘‘semilocal solutions.’’ Note that in the case " ¼ 0,
the solutions of the semilocal sector of our model are often
also denominated ‘‘skyrmions.’’

B. Equations of motion

We define the following dimensionless variable x ¼
e1�1�, which measures the radial distance in units of

MW;1=
ffiffiffi
2

p
.

Then, the total Lagrangian Lm ! Lm=ð�4
1e

2
1Þ depends

only on the following dimensionless coupling constants

	i ¼ �i

e21
¼ M2

H;i

M2
W;1

�2
1

�2
i

; i ¼ 1; 2;

g ¼ e2
e1

; q ¼ �2

�1

:

(4)

Varying the action with respect to the matter fields we
obtain a system of five nonlinear differential equations.
The Euler-Lagrange equations for the matter field func-
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tions read:

ðxh01Þ0 ¼
P2h1
x

þ 	1xðh21 þ h22 � 1Þh1 (5)

ðxh02Þ0 ¼
ðn� PÞ2h2

x
þ 	1xðh21 þ h22 � 1Þh2 (6)

ðxf0Þ0 ¼ R2f

x
þ 	2xðf2 � q2Þf (7)

ð1� "2Þ
�
P0

x

�0 ¼ 2
h21P

x
� 2

ðn� PÞh22
x

þ 2"g
Rf2

x
; (8)

ð1� "2Þ
�
R0

x

�0 ¼ 2g2
f2R

x
þ 2"g

�
Ph21
x

� ðn� PÞh22
x

�
;

(9)

where the prime now and in the following denotes the
derivative with respect to x.

C. Energy per unit length and magnetic fields

The nonvanishing components of the energy-momentum
tensor are (we use the notation of [16])

T0
0 ¼ es þ ev þ ew þ u; Tx

x ¼ �es � ev þ ew þ u

T’
’ ¼ es � ev � ew þ u; Tz

z ¼ T0
0 (10)

where

es ¼ ðh01Þ2 þ ðh02Þ2 þ ðf0Þ2;

ev ¼ ðP0Þ2
2x2

þ ðR0Þ2
2g2x2

� "

g

R0P0

x2
;

ew ¼ h21P
2

x2
þ h22ðn� PÞ2

x2
þ R2f2

x2

(11)

and

u ¼ 	1

2
ðh21 þ h22 � 1Þ2 þ 	2

2
ðf2 � q2Þ2: (12)

We define as inertial energy per unit length of a solution
describing the interaction of a semilocal string with wind-
ing n and a dark string with winding m:

�ðn;mÞ ¼
Z ffiffiffiffiffiffiffiffiffiffi�g3

p
T0
0dxd’ (13)

where g3 is the determinant of the (2þ 1)-dimensional
space-time given by ðt; x; ’Þ. This then reads:

�ðn;mÞ ¼ 2

Z 1

0
xðes þ ev þ ew þ uÞdx: (14)

Note that the string tension T ¼ R ffiffiffiffiffiffiffiffiffiffi�g3
p

Tz
zdxd’ is equal

to the energy per unit length. There are a few special cases,
in which energy bounds can be given:

(1) For h2ðxÞ � 0, the energy per unit length of the
solution is given by

�ðn;mÞ ¼ 2
n�2
1g1ð	1Þ þ 2
m�2

1g2ð	2Þ (15)

where g1 and g2 are functions that depend only
weakly on 	1 and 	2, respectively. The energy
bound is fulfilled, when the functions g1 and g2
become equal to unity. This happens at 	1 ¼ 	2 ¼
1=ð1� "Þ and n ¼ m [15].

(2) For " ¼ 0 and h2ðxÞ � 0, the energy per unit length
of the solution is given by

�ðn;mÞ ¼ 2
n�2
1 þ 2
m�2

2g2ð	2Þ (16)

where g2 is a function that depends only weakly on
	2 with g2ð1Þ ¼ 1. Note that the solution of the
semilocal sector exists only for 	1 ¼ 1 and fulfills
the BPS bound for all choices of h2ð0Þ.

The magnetic fields associated to the solutions are given
by [15]

BzðxÞ ¼
�P0ðxÞ þ "

g R
0ðxÞ

e1x
and

bzðxÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� "2

p R0ðxÞ
e2x

;

(17)

respectively, where we have used the fact that the part of
the Lagrangian containing the field strength tensors can be
rewritten as [4]

� 1

4
F��F

�� � 1

4
H��H

�� þ "

2
F��H

��

) � 1

4
G��G

�� � 1

4
ð1� "2ÞH��H

�� (18)

with G�� ¼ @� ~A� � @� ~A� where ~A� ¼ A� � "a�. The

corresponding magnetic fluxes
R
d2xB are

� ¼ 2


e1

�
n� "

g
m

�
and c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� "2

p 2
m

e2
; (19)

respectively. Obviously, these magnetic fluxes are not
quantized for generic ".

D. Boundary conditions and asymptotics

The requirement of regularity at the origin leads to the
following boundary conditions:

h1ð0Þ ¼ 0; h02ð0Þ ¼ 0; fð0Þ ¼ 0;

Pð0Þ ¼ n; Rð0Þ ¼ m:
(20)

For h2ð0Þ ¼ 0, the semilocal strings correspond to em-
bedded Abelian-Higgs strings. Here, we are mainly inter-
ested in constructing solutions that are truly semilocal, i.e.
we require h2ð0Þ � 0. The finiteness of the energy per unit
length requires:
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h1ð1Þ ¼ 1; h2ð1Þ ¼ 0; fð1Þ ¼ q;

Pð1Þ ¼ 0; Rð1Þ ¼ 0:
(21)

The asymptotic behavior for x ! 1 depends crucially
on whether the function h2ðxÞ � 0 or h2ðxÞ � 0.

(1) For h2ðxÞ � 0 we find:

Pðx ! 1Þ ¼ � ffiffiffi
x

p
m12½C1 expð�x	þÞ

þ C2 expð�x	�Þ� þ � � � : (22)

Rðx ! 1Þ ¼ ffiffiffi
x

p ½C1m11ð	þÞ expð�x	þÞ
þ C2m11ð	�Þ expð�x	�Þ� þ � � �

(23)

where C1 and C2 are constants, m11ð	�Þ ¼
ð1� "2Þ	2� � 2 and m12 ¼ �2"q2g. The 	� are
positive and are given by

	2� ¼ 1þ q2g2 � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1� q2g2Þ þ 4"q2g2
p
1� "2

: (24)

The numerical evaluation (see below) shows that for
specific values of the coupling constants the con-
stants C1 and C2 have opposite sign. Hence, the
function RðxÞ can possess a node asymptotically
which we have confirmed numerically. However,
the numerics has shown that these types of solutions
exist only for values of " of order one. Hence, we do
not present them here since we believe that they are
unphysical.
For the scalar fields, we find

h1ðx ! 1Þ ¼ 1þ C3ffiffiffi
x

p expð�x
ffiffiffiffiffiffiffiffiffi
2	1

p Þ

þ cþ
x

expð�2x	þÞ

þ c�
x

expð�2x	�Þ þ � � � (25)

fðx!1Þ ¼ qþ C4ffiffiffi
x

p expð�x
ffiffiffiffiffiffiffiffiffi
2	2

p Þ

þ dþ
x

expð�2x	þÞþ d�
x

expð�2x	�Þ
þ � � � (26)

C3 and C4 are two constants, while c�, d� depend
on the constants C1; . . . ; C4 and on 	1 and 	2.

(2) For h2ðxÞ � 0 we find:

Pðx ! 1Þ ¼ nc2

x2n
þ � � � ;

Rðx ! 1Þ ¼ cR
x2nþ2

þ � � �
(27)

for the gauge field functions. Here c, cR are con-
stants that depend on the values of the coupling

constants. For the scalar and Higgs field functions
we have

h1ðx ! 1Þ ¼ 1� c2

2

1

x2n
þ � � � ;

h2ðxÞ ¼ c

xn
þ � � � ;

fðx ! 1Þ ¼ q� c2R
2q	2

1

x4nþ6
þ � � � : (28)

Obviously, the presence of the scalar field h2ðxÞ
changes the asymptotics drastically. While for
h2ðxÞ � 0, the gauge and Higgs fields decay expo-
nentially, they have power-law decay for h2ðxÞ � 0.

E. Stability

Following the investigation in the case " ¼ 0 [13], we
are interested in the stability of the embedded Abelian-
Higgs string coupled to a dark string. In order to do that we
will study the normal mode along a very specific (but
standard) direction in perturbation space about the em-
bedded Abelian-Higgs string coupled to a dark string. We
consider the perturbation

h1ðxÞ ¼ ~h1ðxÞ; h2ðxÞ ¼ ei!t�ðxÞ; PðxÞ ¼ ~PðxÞ;
RðxÞ ¼ ~RðxÞ; fðxÞ ¼ ~fðxÞ (29)

where the tilded functions denote the profiles of an em-
bedded Abelian-Higgs string coupled to a dark string, i.e.
solutions to the equations (5) and (7)–(9) for h2ðxÞ � 0.
The perturbation is denoted by � and the parameter ! is
real. Inserting this perturbation into (6) and keeping only
the linear terms in � leads to the linear eigenvalue equa-
tion:�
� d2

dx2
� 1

x

d

dx
þ Veff

�
�ðxÞ ¼ !2�ðxÞ;

Veff ¼ ðn� ~PðxÞÞ2
x2

þ 	1ð~h1ðxÞ2 � 1Þ: (30)

The spectrum of the linear operator entering in (30) con-
sists of a continuum for !2 > 0 and of a finite number of
bound states (or normalizable solutions) for !2 < 0. In the
latter case, the solutions fulfill

�ð0Þ ¼ 1;

�0ð0Þ ¼ 0 with �ðxÞ ! e�j!jx for x ! 1
(31)

where we have fixed the arbitrary normalization by choos-
ing �ð0Þ ¼ 1.
Only bound states are of interest to us since they signal

the presence of an instability. It should be pointed out that

the functions ~PðxÞ, ~h1ðxÞ entering in the effective potential
feel the effect of the dark sector since the corresponding
equations are directly coupled.
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III. NUMERICAL RESULTS

For all our numerical calculations, we have chosen q ¼
g ¼ 1.

A. Stability of the embedded Abelian-Higgs-dark
strings

We have first studied the stability of the embedded
Abelian-Higgs strings coupled to dark strings by investi-
gating the bound states of (30) for different values of ". Our
results for n ¼ m ¼ 1 and 	2 ¼ 1 are shown in Fig. 1.

For " ¼ 0 we recover the result of [13] that the
embedded-Abelian-Higgs strings are unstable for 	1 > 1.
For " � 0, we observe that the larger ", the larger the ratio
of Higgs to gauge boson mass 	1 at which the embedded
Abelian-Higgs strings coupled to dark strings become
unstable. In the following, we will denote by 	cr

1 the value
of 	1 at which !2 ¼ 0. With view to the observations for
the " ¼ 0 case, we would thus expect additional solutions
with h2ðxÞ � 0 for 	1 >	cr

1 . In Sec. III B, we will discuss
the properties of these solutions.

Let us also remark that our analysis does not reveal the
occurrence of additional unstable modes in the sector ex-
plored. This does not, of course, exclude the existence of
additional unstable modes if more general perturbations
are considered. However, this is not the aim of this paper.

B. Properties of semilocal-dark strings

In the case " ¼ 0, the two sectors do not interact and for
the semilocal sector two different types of solutions are
possible: (a) embedded Abelian-Higgs solutions with
h2ðxÞ � 0 which exist for generic choices of 	1 [11] and
(b) semilocal strings (skyrmions) with h2ðxÞ � 0 which
exist only for 	1 ¼ 1 [13]. In the latter case, it was shown
that there is a zero mode associated to the fact that the

energy of the skyrmions does not depend on the value of
h2ð0Þ.
The case with " � 0 and h2ðxÞ � 0 corresponds hence

to the case of an embedded Abelian-Higgs string interact-
ing with a dark string. The equations of motion that de-
scribe this case are exactly those studied in [15]. In [15],
the interaction of a dark string with an Abelian-Higgs
string has been studied in detail. Since the only difference
between an Abelian-Higgs string and an embedded
Abelian-Higgs string is the stability—see Sec. III A—we
do not discuss this case in detail in this paper and focus on
the case of semilocal strings interacting with dark strings.
We have solved the differential equations subject to the
boundary conditions numerically using the ordinary differ-
ential equation (ODE) solver COLSYS [17].
To see the difference between embedded Abelian-

Higgs-dark string solutions and semilocal-dark string so-
lutions, we present the energy density T0

0 , the effective

energy density xT0
0 as well as the magnetic field Bz [see

(17)] in Fig. 2 for " ¼ 1=6,	1 ¼ 3 and 	2 ¼ ð1� "Þ�1 ¼
1:2. Clearly, the effective energy density tends to zero very
quickly for the embedded-Abelian-Higgs-dark string,
while for the semilocal-dark string it has a long tail which
results from the power-law falloff of the functions.
Moreover, the magnetic field Bz tends to zero exponen-
tially for the embedded Abelian-Higgs-dark strings, while
it falls off powerlike for the semilocal-dark strings. Hence,
the core of the magnetic flux tube of the latter solution is
not well defined.
While for " ¼ 0 solutions with h2ðxÞ � 0 exist only for

	1 ¼ 1, the situation is different here. For " � 0, we find
solutions for generic values of 	1, i.e. different from unity.

FIG. 1. We give the value of !2 [see (30)] as a function of 	1

for three different choices of " including the noninteracting case
" ¼ 0. Here n ¼ m ¼ 1 and 	2 ¼ 1.

FIG. 2 (color online). We give the profiles of the energy
density T0

0 , the effective energy density x � T0
0 as well as the

magnetic field Bz [see (17)] for " ¼ 1=6, 	1 ¼ 3 and 	2 ¼
ð1� "Þ�1 ¼ 1:2. We compare semilocal-dark string solutions
with h2ð0Þ> 0 (black lines) and embedded Abelian-Higgs-dark
string solutions with h2ð0Þ ¼ 0 [gray (red) lines].
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In fact, the solutions exist only for 	1 larger than a critical
value, 	cr

1 , which depends on the choice of the winding

numbers and other coupling constants, in particular ".
Moreover, we observe that the 	1 at which semilocal-
dark strings exist is a function of h2ð0Þ. While for " ¼ 0,
	1 ¼ 1 for all choices of h2ð0Þ, we find that for " � 0 the
choice of h2ð0Þ fixes the value of 	1.

At 	cr
1 the branch of solutions describing a semilocal

string in interaction with a dark string bifurcates with the
branch of solutions describing the interaction of an em-
bedded Abelian-Higgs string with a dark string. This is
shown in Figs. 3 and 4 for " ¼ 0:1 and " ¼ 0:5, respec-
tively. Note that 	cr

1 is exactly the value at which the

embedded Abelian-Higgs-dark strings become unstable.
Here, we give the value of h2ð0Þ as a function of 	1 for

n ¼ m ¼ 1 and 	2 ¼ 1:0. Clearly at some 	cr
1 , h2ð0Þ tends

to zero which means that h2ðxÞ � 0. Here the semilocal-
dark string solutions bifurcate with the embedded Abelian-
Higgs-dark string solutions. We also compare the energy
per unit length of the two types of solutions. Clearly,
whenever semilocal-dark string solutions exist, they have
lower energy than the corresponding embedded Abelian-
Higgs-dark string solutions. Moreover, the larger 	1, the
bigger the difference between the two energies per unit
length. We would thus expect the semilocal solutions to be
stable with respect to the decay into the embedded Abelian
solutions when coupled to dark strings. We also present the
values of the asymptotic constants c and cR [see (27) and
(28)]. These vanish identically at 	1 ¼ 	cr

1 .
In general,	cr

1 will depend on the choice of 	2, n andm:

	cr
1 ð	2; n; mÞ. As shown in [15] in the limit h2ðxÞ � 0 a

BPS bound exists for 	1 ¼ 	2 ¼ ð1� "Þ�1 and n ¼ m. In
this limit, the energy per unit length (in units of 2
�2

1) is
just nþm ¼ 2n. We have studied the dependence of the
energy per unit length on 	1 for 	2 ¼ ð1� "Þ�1 where
" ¼ 1=6 and " ¼ 0:5, respectively. We have chosen n ¼
m ¼ 1. Our results are given in Fig. 5. Interestingly, we
find that the branch of semilocal-dark string solutions

FIG. 3 (color online). The energy per unit length �ð1;1Þ (in
units of 2
�2

1) as well as the value of h2ð0Þ and the asymptotic

constants c and cR [see (27) and (28)] of the semilocal-dark
string solutions are shown as a function of 	1 for " ¼ 0:1, 	2 ¼
1 and n ¼ m ¼ 1 (dashed lines). For comparison, we also give
the energy per unit length of the embedded Abelian-Higgs-dark
string solution (solid line).

FIG. 4 (color online). The energy per unit length �ð1;1Þ (in
units of 2
�2

1) as well as the value of h2ð0Þ and the asymptotic

constants c and cR [see (27) and (28)] of the semilocal-dark
string solution are shown as a function of 	1 for " ¼ 0:5, 	2 ¼ 1
and n ¼ m ¼ 1 (dashed lines). For comparison, we also give the
energy per unit length of the embedded Abelian-Higgs-dark
string solution (solid line).

FIG. 5 (color online). The energy per unit length �ð1;1Þ (in
units of 2
�2

1) is shown for semilocal strings interacting with

dark strings as function of 	1 for 	2 ¼ ð1� "Þ�1 with " ¼ 0:5
and " ¼ 1=6, respectively (dashed lines). For comparison, we
also give the energy per unit length of the corresponding em-
bedded Abelian-Higgs solutions interacting with dark strings
(solid lines).
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bifurcates with the branch of embedded Abelian-Higgs-
dark string solutions exactly at 	1 ¼ 	2 ¼ ð1� "Þ�1. For
	1 > ð1� "Þ�1, the energy per unit length of the
semilocal-dark string solutions is always smaller than
that of the corresponding embedded Abelian-Higgs-dark
string solutions, for 	1 < ð1� "Þ�1 no semilocal-dark
string solutions exist at all. Hence, we find that

	cr
1 ð	2 ¼ ð1� "Þ�1; 1; 1Þ ¼ ð1� "Þ�1: (32)

We have also studied the dependence of 	cr
1 on the

winding of the dark string and the Higgs to gauge boson
ratio 	2 of the Uð1Þ model describing the dark string in
more detail. Our results are shown in Fig. 6. Obviously, 	cr

1

increases with increasing ". This is related to the fact that
the core width of the strings decreases with increasing ".
This means more gradient energy and hence we have to
choose larger values of	1 to be able to compensate for this
increase by decrease in potential energy.

For	1 ¼ 1:0, which in fact corresponds to the BPS limit
of the Uð1Þ dark string model for " ¼ 0, the value of 	cr

1

increases for increasing winding m of the dark string.
Again increasing m increases gradient energy such that
we have to choose larger values of 	1 to compensate the
increase by decrease in potential energy. This is also true
when increasing 	2. Increasing 	2 decreases the core size
of the dark string, this increases gradient energy and we
again have to compensate by increasing the value of 	1.

IV. CONCLUSIONS

In this paper we have shown that the interaction of
semilocal strings with dark strings has important effects
on the properties of the former. While embedded Abelian-

Higgs strings exist for all values of the Higgs to gauge
boson ratio when interacting with dark strings, semilocal
strings with a condensate inside their core exist only above
a critical value of the Higgs to gauge boson ratio. At this
critical value, the embedded Abelian-Higgs-dark strings
become unstable. The critical value of the ratio depends on
the choice of the Higgs to gauge boson ratio of the dark
string and the windings. In the limit where the ratio tends to
the critical ratio, the condensate vanishes identically and
the branch of semilocal-dark string solutions bifurcates
with the branch of embedded Abelian-Higgs-dark string
solutions. Apparently, the presence of the condensate low-
ers the energy in such a way that whenever semilocal-dark
strings exist, they are lower in energy than their embedded
Abelian-Higgs-dark string counterparts. The value of the
Higgs to gauge boson ratio for which semilocal-dark
strings exist depends on the value of the condensate on
the string axis and increases for increasing values of the
condensate. All these results are quite different from what
is observed in the noninteracting case. In the noninteract-
ing case, semilocal strings exist only for Higgs to gauge
boson ratio equal to unity and in this limit, the energy per
unit length is independent of the value of the condensate
and in addition fulfills a BPS bound. To state it differently:
when not interacting with dark strings, semilocal strings
and embedded Abelian-Higgs strings are degenerate in
energy, while the former are lower in energy as soon as
they interact with dark strings. Since the branch of
semilocal-dark string solutions bifurcates with the branch
of embedded Abelian-Higgs-dark strings at the self-dual
point of the embedded Abelian-Higgs-dark strings—at
which these fulfill an energy bound [15]—we expect that
semilocal-dark strings are stable. Moreover, they are stable
for all choices of the Higgs to gauge boson ratio for which
they exist and not just—as in the noninteracting case—for
Higgs to gauge boson ratio smaller or equal to unity. Since
all current observations point to the fact that the Higgs
boson mass is larger than the gauge boson masses, semi-
local strings could still be stable when interacting with dark
strings. Interestingly—as mentioned above—semilocal
strings can lower their energy by forming a nonvanishing
condensate inside their core. This could be important for
the evolution of cosmic string networks since next to the
formation of bound states [18] this would be a further
mechanism for the network to lose energy.
We did not study the gravitational properties of the

solutions since we believe that the qualitative features are
similar to the case studied in [15]. Since semilocal-dark
strings have lower energy per unit length than their em-
bedded Abelian-Higgs-dark string counterparts, we would
expect the deficit angle created by the former to be smaller
than that of the latter. Furthermore, the critical value of the
gravitational coupling at which the solutions become sin-
gular is larger for the semilocal-dark strings than for the
embedded Abelian-Higgs-dark strings.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
1
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β 1cr
m=1, β

2
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FIG. 6. The value of 	cr
1 at which the branch of semilocal

solutions bifurcates with the branch of embedded Abelian-Higgs
solutions is shown as function of " for m ¼ 1, m ¼ 2, respec-
tively, and 	2 ¼ 1:0, 	2 ¼ 2:0, respectively.
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