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Introduction : Why should we modify general relativity ?

Despite consequential success . . .
Offer a geometrical explanation of gravitational process [elegant]
Allow to explain many phenomenons :

1 Mercury perihelion problem
2 Existence and shape of gravitational waves : GW150914 (2016)
3 Gravitational lensing : Event Horizon telescope (2019)

[many experimental checks]
. . . there are unexplained phenomena within General Relativity (GR) :

Origin and value of the cosmological constant
Low intensity of gravitational interaction
Existence of singularities within space-time
Origin and composition of dark matter and dark energy
Accelerated expansion of the universe

Not all of them reduces to quantum correction problems !
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Introduction : How should we modify general relativity ?

There exist numerous attempts to answer this question.

One of them is to consider that the unrated phenomena are due to
unknown degrees of freedom (that can be interpreted as new particles or
as a new component in the description of gravity).

In GR, all the degrees of freedom are encoded in the metric gµν .
But, formally, the equivalence principle does not rule out the possible
existence of other kind of fields in the model.
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Introduction : How should we modify general relativity ?

The simplest candidate for these degrees of freedom is a scalar field.

Simplest covariant object
Important element of many models :
• Cosmology
• Standard model of particle physics
• Kaluza-Klein reduction
• Effective theory
• ...

Also experimentally motivated since the Brout-Englert-Higgs boson’s
discovery (CERN 2012)
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Introduction : Why not considering the simplest case ?

Why not just using LEKG = κ (R− 2Λ)− 1
2∇µφ∇

µφ− V (φ) ?
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Introduction : Why not considering the simplest case ?

No Scalar-Hair Theorem (Schematically)
Consider an asymptotically flat black hole spacetime

Hypothesis 1 : (Symmetries of spacetime)

Hypothesis 2 : (Symmetries of the scalar field)

Hypothesis 3 : (Coupling condition)

Hypothesis 4 : (Energetic condition)

Then, the scalar field must be trivial : φ (xµ) = φ0, ∀xµ.

See [Herdeiro 2015] for a review.
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Introduction : Why not considering the simplest case ?
No Scalar-Hair Theorem (Example; due to Bekenstein)
Consider an asymptotically flat black hole spacetime

Hypothesis 1 : (Symmetries of spacetime)
The spacetime is stationnary
Hypothesis 2 : (Symmetries of the scalar field)
The scalar field shares the space-time symmetries.
Hypothesis 3 : (Coupling condition)

S =
∫

M

[
F (gµν , ∂αgµν , . . . )−

1
2∇µφ∇

µφ− V (φ)
]√
−g dnx

Hypothesis 4 : (Energetic condition)
Ex : φV ′ (φ) ≥ 0 ∀φ, with V ′ (φ) = dV/dφ, & φV ′ (φ) = 0 for some
discrete values of φ, say φi.

Then, the scalar field must be trivial : φ (xµ) = φ0, ∀xµ.

Note : In general, the proof makes no use of the Einstein’s equations.
It just uses the scalar field equation defined thanks to hypothesis 3.
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Skeleton of the proof.

1 Construct a positively defined integral.∫
E
F (φ,∇µφ)

√
−g d4x ≥ 0,

where E denotes the black-hole exterior spacetime region.
2 Prove that, on-shell, this integral should vanish.

Eφ ≈ 0 =⇒
∫
E
F (φ,∇µφ)

√
−g d4x ≈ 0.

(where ≈ denotes an on-shell equality)
3 Use the form of the integrand to conclude that the scalar field must

be trivial.∫
E
F (φ,∇µφ)

√
−g d4x = 0 =⇒ φ(xµ) = φ0,∀xµ ∈ E.
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Horndeski

“What is the most general theory (arising from a variational principle)
including a single real scalar field, a single metric tensor with a Levi-Civita

connexion and giving second order Euler-Lagrange equation ?”

Gregory Walter Horndeski (1970’s)
m

(Generalized) Galileon Theory (2000’s)

S =
∫

M
L
√
−g d4x
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Horndeski

L =K(φ, ρ)−G3(φ, ρ)�φ+G4(φ, ρ)R+G4,ρ(φ, ρ)
[
(�φ)2 − (∇µ∇νφ)2

]
+G5(φ, ρ)Gµν∇µ∇νφ

− 1
6G5,ρ(φ, ρ)

[
(�φ)3 − 3�φ (∇µ∇νφ)2 + 2 (∇µ∇νφ)3

]
,

where
ρ = ∇µφ∇µφ,

and where the functions Gi(φ, ρ) (i ∈ {3, 4, 5}) & K(φ, ρ) are arbitrary
functions.
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Horndeski
Construction : schematically

Let us briefly discuss the steps in the discovery/construction of this
lagrangian density from the (more recent) point of view of Galileon theory.

“What is the most general theory including a single real scalar field, and
giving second order equation ?”

→ First, consider the study of a scalar field on flat spacetime (fixed
Minkowski background), see [Nicolis 2008] :

0 Realise that the most general lagrangian density giving second order
derivatives on the equations will contain ∂µ∂νφ terms.

1 Figure out how one can avoid higher order derivatives in the EEL for a
lagrangian density polynomial in the ∂µ∂νφ’s.

2 Carefully construct the most general expression satisfying the condition.
One then gets the lagrangian density for the (generalized) Galileon.
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Horndeski
Construction : schematically

“What is the most general theory including a single real scalar field, and
giving second order equation ?”

→ First, consider the study of a scalar field on flat spacetime (fixed
Minkowski background) :
One then gets the lagrangian density for the (generalized) Galileon.

→ To introduce gravity in the picture, one should allow the metric to be
dynamical, see [Deffayet 2011] :

1 The first attempt/step consist in performing the replacement
ηµν → gµν and ∂µ → ∇µ.

2 Since covariant derivatives does not commute, this lead to higher
order EEL. One should then kill them by adding the (unique)
appropriate counter terms built with the curvature tensor.

One then gets the lagrangian density for the covariant (generalized)
Galileon.
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Horndeski
Construction : schematically

Horndeski had “cracked” the problem from a completely different starting
point
(He directly asked the question of the most general lagrangian density [in
4D] presenting at most second order equations for gµν and φ)

but it can be proved that the covariant generalized Galileon theory is
equivalent to Horndeski’s result, see [Kobayashi 2011].

↑ ↑ ↑ ↑ ↑
This result is non-trivial.

Even though the generalized Galileon provided the most general
lagrangian density with second order field equation for φ on flat

spacetime there was a priori no reasons why its covariant extension
should still be the most general possibility on curved spacetime !
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Even though the generalized Galileon provided the most general
lagrangian density with second order field equation for φ on flat

spacetime there was a priori no reasons why its covariant extension
should still be the most general possibility on curved spacetime !
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Horndeski

Has a final note on this construction, let us come back to the Horndeski
lagrangian density and emphasize the link between the different terms.

Especially, let us emphasize which terms necessitate the introduction of an
approrpiated counter term

L =K(φ, ρ)−G3(φ, ρ)�φ +G4(φ, ρ)R+G4,ρ(φ, ρ)
[
(�φ)2 − (∇µ∇νφ)2

]
+G5(φ, ρ)Gµν∇µ∇νφ

−1
6G5,ρ(φ, ρ)

[
(�φ)3 − 3�φ (∇µ∇νφ)2 + 2 (∇µ∇νφ)3

]
,

where
ρ = ∇µφ∇µφ,

and where the functions Gi(φ, ρ) (i ∈ {3, 4, 5}) & K(φ, ρ) are arbitrary
functions.
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Horndeski
Examples
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]
+G5(φ, ρ)Gµν∇µ∇νφ

− 1
6G5,ρ(φ, ρ)

[
(�φ)3 − 3�φ (∇µ∇νφ)2 + 2 (∇µ∇νφ)3

]
,

With G3 = 0 = G5, G4 = κ = c4/16πG and
K(φ, ρ) = −1

2ρ− V (φ)− 2κΛ, one gets

LEKG = κ (R− 2Λ)− 1
2∇µφ∇

µφ− V (φ)
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]
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− 1
6G5,ρ(φ, ρ)

[
(�φ)3 − 3�φ (∇µ∇νφ)2 + 2 (∇µ∇νφ)3

]
,

If Gi (φ, ρ) = Gi (ρ) ,∀i ∈ {3, 4, 5} and K (φ, ρ) = K (ρ), the system
possesses an invariance under φ→ φ+ c (shift-symmetry), with c ∈ R,
and the EOM for φ reduces to a conservation law (Nœther) :

∇µJµ = 0.
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Plan

1 Introduction
Context
No hair theorem(s)

2 Horndeski

3 Non-minimal coupling to the Gauss-Bonnet invariant
Shift-symmetry (F(φ) = γ1φ)
Spontaneous scalarization (F(φ) = γ2φ

2)
Unified pattern (F(φ) = γ1φ+ γ2φ

2)

4 Non-minimal derivative coupling to the Einstein tensor

5 Conclusions & Outlooks

Ludovic Ducobu Scalar Tensor Gravity 9–10 March 2022 17 / 30



Introduction Horndeski Gauss-Bonnet Derivative coupling Conclusions

Plan

1 Introduction
Context
No hair theorem(s)

2 Horndeski

3 Non-minimal coupling to the Gauss-Bonnet invariant
Shift-symmetry (F(φ) = γ1φ)
Spontaneous scalarization (F(φ) = γ2φ

2)
Unified pattern (F(φ) = γ1φ+ γ2φ

2)

4 Non-minimal derivative coupling to the Einstein tensor

5 Conclusions & Outlooks

Ludovic Ducobu Scalar Tensor Gravity 9–10 March 2022 17 / 30



Introduction Horndeski Gauss-Bonnet Derivative coupling Conclusions

Coupling to the Gauss-Bonnet invariant

A first interesting subclass of the Horndeski lagrangian is given by

L = R− 1
2 gµν∇µφ∇νφ+ F(φ)LGB, (1)

where
LGB = R2 − 4RµνRµν +RµνλσR

µνλσ

is the Gauss-Bonnet invariant.

Note

s

:
(1) can be obtained from the Horndeski lagrangian via specific choice
of the arbitrary functions and some integrations by parts. This has
been established in [Kobayashi 2011].
In 4D, it is well known that LGB = ∇µGµ.
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Introduction Horndeski Gauss-Bonnet Derivative coupling Conclusions

Coupling to the Gauss-Bonnet invariant

→ An interesting feature of this model is that the curvature of spacetime
will source the scalar field and (almost certainly) force it to be
non-trivial :

�φ = −F ′(φ)LGB.

This mechanism is known as “curvature induced scalarization”.

→ In the specific case F(φ) = γ1φ, the model enjoy a shift-symmetry for
the scalar field φ→ φ+ c for c ∈ R.

→ In the following, we will focus our review on asymptotically flat
spherically symmetric black hole solutions.
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Linear coupling (F(φ) = γ1φ)
The first explicit construction of asymptotically flat, spherically symmetric
black hole solutions presenting a shift-symmetry in the context of
Horndeski gravity has been provided in [Sotiriou 2013, Sotiriou 2014].

In this case,

Regularity of the scalar field derivative at the event horizon, φ′(rh),
require to fix φ′(rh) as solution of a quadratic polynomial equation.
⇒ φ′(rh) ∈ R can only be ensured if the discriminant of the equation
∆ ≥ 0.
This fixes a maximal value for the coupling constant γ1 ≤ γ1,max.
Scalarized solutions can be numerically constructed for all
γ1 ∈ [0, γ1,max].
There are no excited solutions.
The scalar hair is of secondary type (scalar charge ↔ black hole
mass).
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Quadratic coupling (F(φ) = γ2φ
2)

Asymptotically flat, spherically symmetric black hole solutions have also
been studied in [Silva 2017] under the assumption of a quadratic
non-minimal coupling to the Gauss-Bonnet invariant.

In this case, the spectrum of solutions is drastically different from the
former case :

Regularity of φ′(rh) still require to fix φ′(rh) as solution of a
quadratic polynomial equation. ⇒ φ′(rh) ∈ R can only be ensured if
the discriminant of the equation ∆ ≥ 0.
But this time, one should also have that φ(rh) 6= 0 and γ2 6= 0.
Solutions can only be found if γ2 lies in a band γ2 ∈ [γ2,c, γ2,max] with
γ2,c > 0.
This is because ∆ −→

γ2→γ2,c
0 and φ(rh) −→

γ2→γ2,max
0.

Excited solutions exist.
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Quadratic coupling (F(φ) = γ2φ
2)

In a nutshell, the reason for this difference of pattern can be seen from the
scalar field equation.

�φ = −2γ2LGB φ

⇔D̂φ = γ2φ.

When studying the perturbative regime (on a fixed Schwarzschild
background), the equation reduces to an eigen value equation

D̂|Schδφ = γ2δφ,

where D̂|Sch stands for D̂ formulated on Schwarzschild spacetime and δφ
the scalar field perturbation.
=⇒ In this limit, γ2 corresponds to an eigen value of D̂|Sch. This will
correspond to the values of γ2,max.
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Quadratic coupling (F(φ) = γ2φ
2)

Schematically, the existence of solution is then limited by the following
pattern
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Generic linear + quadratic coupling (F(φ) = γ1φ + γ2φ
2)

To understand the difference of pattern between the shift-symmetric and
spontaneously scalarized black holes, my collaborator Y.Brihaye and I
have looked at F(φ) = γ1φ+ γ2φ

2 in [Brihaye 2018].

This can be seen as the most general quadratic expansion of a generic
F(φ) = F(0) + F ′(0)φ+ F ′′(0)

2 φ2 +O
(
φ3).

(Remember that we can assume F(0) = 0 without loss of generality
since LGB = ∇µGµ).
We obtained a pattern of spherically symmetric hairy black holes
extrapolating between the shift-symmetric and spontaneously
scalarized black holes.
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Derivative coupling to the Einstein tensor

In [Babichev 2013], the authors found exact spherically symmetric black
hole solutions for a subclass of the shift-symmetric sector of the Horndeski
lagrangian

L = κ R− η gµν∇µφ∇νφ+ β Gµν∇µφ∇νφ− 2Λ,

where κ, η, β and Λ are real constants.

Their construction was achieved by allowing a linearily time dependent
scalar field φ(t, r) = Qt+ F (r), with Q a real constant.

An important point in the construction was to ensure the regularity of the
current Jµ = (ηgµν − βGµν)∇νφ (associated to the shift-symmetry) at
the event horizon.
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Derivative coupling to the Einstein tensor
Examples of solutions

L = κ R− η gµν∇µφ∇νφ+ β Gµν∇µφ∇νφ− 2Λ

→ In the case η = 0 = Λ, the authors found a stealth Schwarzschild
solution (i.e. a solution for which the spacetime metric is a
Schwarzschild metric but such that the scalar field is not constant)

→ They also found that, if Q2 = (κη + βΛ)/(βη), one can get a stealth
Schwarzschild-de-Sitter solution with effective cosmological constant
Λeff = −κη/β.
In this case, to fit with the observational evidences on the
cosmological constant, one needs a fine tuning of the parameters in
the model.
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Conclusions

Going beyond GR is a hard (but necessary) task.
Classical modifications of GR provide a useful playground.
The study of black hole solutions in scalar-tensor gravity reveals a
vast range of scalarized solutions from the numerical and analytical
point of view.

Outlooks

This can serve as an inspiration for the study of other
“scalar-to-gravity” couplings. For example, in the context of

1 Teleparallel theories (see Sebastian Bahamonde’s talk)
2 Metric affine gravity

In these enhanced contexts, it would be interesting to study the
behaviour of compact objects
(black holes, boson stars, neutron stars, . . . ).
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Thank you for your attention !

Stay tuned for the next talk !
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L =K(φ, ρ)−G3(φ, ρ)�φ+G4(φ, ρ)R+G4,ρ(φ, ρ)
[
(�φ)2 − (∇µ∇νφ)2

]
+G5(φ, ρ)Gµν∇µ∇νφ

− 1
6G5,ρ(φ, ρ)

[
(�φ)3 − 3�φ (∇µ∇νφ)2 + 2 (∇µ∇νφ)3

]
,

One can show, see [Kobayashi 2011], that, given a function F(φ), the
choice

K = 2F (4)ρ2 (3− ln |ρ/2|) ,
G3 = −2F (3)ρ (7− 3 ln |ρ/2|) ,
G4 = −2F (2)ρ (2− ln |ρ/2|) ,
G5 = −4F (1) ln |ρ/2|,

where F (n) = dnF/dφn, will lead, after several integrations by part, to a
non-minimal coupling of the form

F(φ)
(
R2 − 4RµνRµν +RµνλσR

µνλσ
)
.
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No Scalar-Hair Theorem (Example)

Eφ = ∇µ∇µφ− V ′ (φ) ≈ 0.

Skeleton of the proof (for the example).

1 Construct a positively defined integral.
Here, we will take F (φ,∇µφ) = ∇µφ∇µφ+ φV ′ (φ) so that∫

E

(
∇µφ∇µφ+ φV ′ (φ)

)√
−g d4x ≥ 0,

where E denotes the black-hole exterior spacetime region.
This comes from the fact that, under our assumptions, each term of the
integrand has a definite sign over E :
→ ∇µφ∇µφ ≥ 0 since the scalar field shares the spacetime symmetries,
→ φV ′ (φ) ≥ 0 due to our assumption on the potential.
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Eφ = ∇µ∇µφ− V ′ (φ) ≈ 0.

Skeleton of the proof (for the example).

2 Prove that, on-shell, this integral should vanish.
Multiplying the scalar field equation by φ and integrating over the
black-hole exterior spacetime region E, one precisely gets, after integration
by parts ∫

E

(
∇µφ∇µφ+ φV ′ (φ)

)√
−g d4x ≈ 0.
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No Scalar-Hair Theorem (Example)

Eφ = ∇µ∇µφ− V ′ (φ) ≈ 0.

Skeleton of the proof (for the example).

3 Use the form of the integrand to conclude that the scalar field must
be trivial.

The only way to have∫
E

(
∇µφ∇µφ+ φV ′ (φ)

)√
−g d4x ≈ 0,

is to have that, on-shell, φ is constant (i.e. ∇µφ ≈ 0⇔ φ (xµ) ≈ φ0) and
correspond to a value for which φ0V

′(φ0) = 0.
We then get φ(xµ) ≈ φ0 everywhere on E.
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