
SoftwareX 12 (2020) 100590

S

d
s

t

Contents lists available at ScienceDirect

SoftwareX

journal homepage: www.elsevier.com/locate/softx

Original software publication

Sismic—A Python library for statechart execution and testing
Alexandre Decan ∗, Tom Mens
oftware Engineering Lab, University of Mons, Belgium

a r t i c l e i n f o

Article history:
Received 15 May 2019
Received in revised form 9 March 2020
Accepted 14 September 2020

Keywords:
Statechart
Executable modelling
Behaviour-driven development
Design by contract
Runtime verification

a b s t r a c t

Statecharts are a well-known visual modelling language for representing the executable behaviour of
complex reactive event-based systems. The essential complexity of statechart models solicits the need
for advanced model testing and validation techniques, such as test-driven development, behaviour-
driven development, design by contract, and property statecharts for monitoring of violations of
behavioural properties during statechart execution. Sismic is an open-source Python library providing
a tool suite to define, simulate, execute and test statecharts with all of the aforementioned techniques.

© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Current code version
Code metadata

Current code version 1.4.1 (commit d61e748)
Permanent link to code/repository used for this code version https://github.com/ElsevierSoftwareX/SOFTX_2019_181
Code Ocean compute capsule Not applicable
Legal Code Licence GNU Lesser General Public Licence version 3.0 (LGPLv3)
Code versioning system used git
Software code languages, tools, and services used Python
Compilation requirements, operating environments & dependencies Python 3.5+; ruamel.yaml, schema, behave, typing
If available Link to developer documentation/manual https://sismic.readthedocs.io
Support email for questions alexandre.decan@lexpage.net

Current executable software version
Software metadata

Current software version 1.4.1
Permanent link to executables of this version https://github.com/AlexandreDecan/sismic
Legal Software Licence GNU Lesser General Public Licence version 3.0 (LGPLv3)
Computing platforms/Operating Systems Linux, OS X, Microsoft Windows
Installation requirements & dependencies Python 3.5+; ruamel.yaml, schema, behave, typing
If available, link to user manual–if formally published include a reference to the
publication in the reference list

https://sismic.readthedocs.io

Support email for questions alexandre.decan@lexpage.net

1. Motivation and significance

Statecharts are a visual executable modelling language intro-
uced by David Harel [1] as an extension of hierarchical finite
tate machines with characteristics of both Mealy and Moore

∗ Corresponding author.
E-mail addresses: alexandre.decan@umons.ac.be (A. Decan),

om.mens@umons.ac.be (T. Mens).

automata. Statecharts are part of the UML standard and constitute
a popular notation for representing the executable behaviour
of complex reactive event-based systems. They are frequently
used in industry for the development of real-time systems and
embedded systems, relying on commercial tools such as IBM
Rational Rhapsody, The Mathworks Stateflow, itemis Yakindu Stat-
echart Tools, IAR Systems visualSTATE, and QuantumLeaps QM.
Most of these tools support visualisation, modification and sim-
ulation of statecharts, as well as code generation from statechart
https://doi.org/10.1016/j.softx.2020.100590
2352-7110/© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.softx.2020.100590
http://www.elsevier.com/locate/softx
http://www.elsevier.com/locate/softx
http://crossmark.crossref.org/dialog/?doi=10.1016/j.softx.2020.100590&domain=pdf
http://creativecommons.org/licenses/by/4.0/
https://github.com/ElsevierSoftwareX/SOFTX_2019_181
https://sismic.readthedocs.io
mailto:alexandre.decan@lexpage.net
https://github.com/AlexandreDecan/sismic
https://sismic.readthedocs.io
mailto:alexandre.decan@lexpage.net
mailto:alexandre.decan@umons.ac.be
mailto:tom.mens@umons.ac.be
https://doi.org/10.1016/j.softx.2020.100590
http://creativecommons.org/licenses/by/4.0/


A. Decan and T. Mens SoftwareX 12 (2020) 100590

m
d

a
T
b
(
‘
i
d

a
C
v
B
v
S
e
s
t
e
a

2

e
p
a
s

odels. The more advanced tools also provide support for model
ebugging and model verification.
A wide variety of testing techniques and associated tools is

vailable for developing source code in programming languages.
hese techniques include test-driven development (TDD) [2],
ehaviour-driven development (BDD) [3], and design by contract
DbC) [4]. These techniques have proven their usefulness for
‘classical’’ programming languages. Since the statechart formal-
sm is Turing-complete [5], such techniques can also be beneficial
uring the development of executable statecharts.
For this purpose, we have developed Sismic (a recursive

cronym for Sismic Interactive Statechart Model Interpreter and
hecker), a modular Python library for executing, testing and
alidating executable statecharts based on the techniques of TDD,
DD, DbC, and property statecharts that allow to monitor for
iolations of behavioural properties during statechart execution.
ismic targets both researchers and practitioners interested in
xploring and putting these techniques into practice in their
oftware development projects. Sismic provides a flexible API
o facilitate its use in regular Python code or to facilitate its
xtension by other researchers. Sismic has been validated through
controlled user study in [6] and is used by multiple companies.

. Software description

Sismic is a statechart library for Python (version 3.5 or higher)
providing a set of tools to define, execute and test statecharts.
The library is distributed through the Python Package Index.1

Its source code is available on GitHub2 under the open-source
licence LGPLv3. Sismic is extensively documented on sismic.re
adthedocs.ioand comes with an extensive test suite with high
code coverage. The tests, examples and code fragments of the
documentation are automatically executed as part of a continuous
integration process.

2.1. Software functionalities

Sismic provides an easy way to define and import statecharts,
based on the human-friendly YAML markup language. Visuali-
sation of these statecharts is realised through an interface with
PlantUML.

Sismic ’s statechart interpreter offers a discrete, step-by-step,
observable simulation engine, supporting the main statechart
concepts. The default interpreter uses an inner-first/source-state
and run-to-completion semantics (a.k.a. big step semantics [7]),
but it can be tuned to other semantics by subclassing this in-
terpreter. To support timed events, the interpreter comes with
controllable simulation clock that supports both real and simu-
lated time. Statechart actions and guards can be expressed using
regular Python code as the action language, but Sismic can be
xtended to support other action languages as well. Sismic also
rovides support for communication between statecharts, as well
s for allowing regular Python code to be called from within
tatecharts and vice versa.
With respect to statechart testing, Sismic supports regular unit

testing of statecharts; a DbC approach to specify invariants, pre-
and postconditions on states and transitions [4]; BDD [3]; and
runtime checking of behavioural properties that are expressed as
statecharts themselves.

1 pypi.org/project/sismic.
2 github.com/AlexandreDecan/sismic.

2.2. Software architecture

Sismic provides a modular, easily extensible architecture, sum-
marised in Fig. 1. Experienced Python developers may choose
to directly create and manipulate statecharts through the sis-
mic.model API. In practice, it is more convenient to create stat-
echarts using either a text-based markup editor or an external
visual editor, and import these models through the sismic.io
API. This API has support for exporting statecharts to PlantUML
(plantuml.com) in order to visualise them by means of automatic
layout features. This is how Fig. 2 has been generated.

Sismic ’s main component is the sismic.interpreter module. In
order to execute a statechart model, an interpreter must be
instantiated. This interpreter relies on an action code evaluator
to execute any code contained in the actions or guards of the
statechart specification. Module sismic.code provides such an
evaluator to express action code using regular Python.

The interpreter supports run-time monitoring of contract vi-
olations. Contracts are specified directly as part of the state-
chart description using the language supported by the action
code evaluator, and can use a range of predefined predicates.
The interpreter also provides built-in support for runtime mon-
itoring properties expressed as statecharts. These properties are
expressed as statecharts that express functional properties of the
intended behaviour in terms of the events that are consumed or
sent, or in terms of the states that are entered or exited by a
statechart being monitored. Finally, module sismic.bdd provides
support for BDD by providing a flexible way to define, map and
execute BDD scenarios.

3. Illustrative example

To illustrate the use of Sismic , consider the example of a
simplified microwave controller in Fig. 2, visually rendered with
PlantUML. The code fragment below shows part of the YAML
description of this statechart:

statechart:
name: Simple microwave controller
root state:
name: microwave controller
initial: door closed
on entry: timer = 0
states:
- name: door opened
on entry: send(’lamp_on’)
on exit: send(’lamp_off’)
transitions:
- event: door_closed
target: door closed

This statechart can be executed through API calls to Sismic ’s
interpreter:

from sismic.io import import_from_yaml
from sismic.interpreter import Interpreter
statechart = import_from_yaml(filepath=’microwave.yaml’)
interpreter = Interpreter(statechart)
interpreter.queue(’timer_inc’, ’cooking_start’)
interpreter.execute()
assert ’cooking’ in interpreter.configuration

Contracts are defined as part of the statechart. At runtime, the
interpreter will verify the conditions specified by the contracts.
The example below shows a contract for the ‘‘cooking’’ state of
the microwave:

contract:
- before: timer > 0
- after: received(’door_opened’) or timer == 0
2

https://sismic.readthedocs.io/en/latest/
https://sismic.readthedocs.io/en/latest/
https://sismic.readthedocs.io/en/latest/
https://sismic.readthedocs.io/en/latest/
https://sismic.readthedocs.io/en/latest/
https://sismic.readthedocs.io/en/latest/
https://sismic.readthedocs.io/en/latest/
https://sismic.readthedocs.io/en/latest/
https://sismic.readthedocs.io/en/latest/
https://sismic.readthedocs.io/en/latest/
https://sismic.readthedocs.io/en/latest/
https://sismic.readthedocs.io/en/latest/
https://sismic.readthedocs.io/en/latest/
https://sismic.readthedocs.io/en/latest/
https://sismic.readthedocs.io/en/latest/
https://sismic.readthedocs.io/en/latest/
https://sismic.readthedocs.io/en/latest/
https://sismic.readthedocs.io/en/latest/
https://sismic.readthedocs.io/en/latest/
https://sismic.readthedocs.io/en/latest/
https://sismic.readthedocs.io/en/latest/
https://pypi.org/project/sismic/
https://github.com/AlexandreDecan/sismic
https://plantuml.com/


A. Decan and T. Mens SoftwareX 12 (2020) 100590

u

S

4

f
p
T
n
f
m
d
w
o
o

t
a
t
t
b

e
m

Fig. 1. High-level architectural overview of Sismic .

Fig. 2. Visual representation of a simplified microwave controller.

Sismic supports BDD to express scenarios or test cases by
domain experts in natural language. This allows designers to
focus on the purpose of the model rather than the technical
details. Given an appropriate mapping, the following scenario
can be executed and checked by Sismic using the command-line
tility sismic-bdd:

cenario: Heating is on while cooking
Given I open the door
And I place an item in the oven
And I close the door
And I press increase timer button 5 times
When I press start button
Then heating turns on

. Impact

We have carried out a controlled user study to evaluate the
easibility, usefulness and adequacy of using Sismic for the pur-
ose of defining, validating and testing executable statecharts [6].
he thirteen participants to the study indicated that the tech-
iques implemented by Sismic were easy to use. The received
eedback provided evidence that BDD scenarios and runtime
onitoring of contracts and property statecharts are beneficial
uring statechart design. Most participants indicated that they
ere likely to use these techniques in the future for the purpose
f creating new statecharts, or for verifying or modifying existing
nes.
Sismic is being used successfully by several companies, no-

ably for model-in-the-loop testing and simulations, for workflow
nd business process support, and for the execution and valida-
ion of concurrent distributed statecharts. We also use Sismic in
he classroom for teaching executable behavioural modelling to
achelor students.
Since Sismic is a pure Python implementation of a statechart

xecution engine, its performance mainly depends on the perfor-
ance of the underlying Python engine. By construction, Sismic

is an interpreter inside an interpreter and as such, has some
overhead compared to plain Python code. So far, none of the
Sismic users has reported any limitation related to performance.

Sismic could be extended with more advanced automated
support for statechart testing, such as the generation of state-
charts from scenarios, the generation of contracts for a given
statechart (similar to the automated generation of contracts over
programmes [8]), the generation of tests from contract specifi-
cations [9], the use of mutation testing and concolic testing at
the level of statecharts [10,11], the detection and improvement
of quality problems in statechart and contract specifications, and
so on.

5. Conclusions

To conclude, Sismic is an open source and extensible Python
library with full-fledged support for defining and executing stat-
echarts, and these statecharts can be validated using a portfolio of
techniques including unit testing, behaviour-driven development,
design by contract, and property statecharts for monitoring of
violations of behavioural properties during execution.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgement

This paper was carried out in the context of Excellence of Sci-
ence project O.0157.18F-RG43 ‘‘SECO-Assist’’ financed by Fonds
de la Recherche Scientifique—FNRS.
3



A. Decan and T. Mens SoftwareX 12 (2020) 100590

R
eferences

[1] Harel D. On visual formalisms. Commun ACM 1988;31(5):514–30. http:
//dx.doi.org/10.1145/42411.42414.

[2] Beck K. Test-driven development by example. Addison-Wesley; 2002, http:
//dx.doi.org/10.5555/579193.

[3] North D. Behavior modification: The evolution of behavior-driven
development. Better Softw 2006.

[4] Meyer B. Applying ‘‘design by contract’’. IEEE Comput 1992;25(10):40–51.
http://dx.doi.org/10.1109/2.161279.

[5] Lu H, Yu S. On the computing power of statecharts. In: Proceedings of
the international conference on foundations of computer science (FCS).
Citeseer; 2011, p. 1.

[6] Mens T, Decan A, Spanoudakis NI. A method for testing and validating
executable statechart models. Softw Syst Model 2019;18(2):837–63. http:
//dx.doi.org/10.1007/s10270-018-0676-3.

[7] Esmaeilsabzali S, Day NA, Atlee JM, Niu J. Deconstructing the semantics
of big-step modelling languages. Requir Eng 2010;15(2):235–65. http:
//dx.doi.org/10.1007/s00766-010-0102-z.

[8] Ernst MD, Perkins JH, Guo PJ, McCamant S, Pacheco C, Tschantz MS,
Xiao C. The daikon system for dynamic detection of likely invariants.
Sci Comput Program 2007;69(1–3):35–45. http://dx.doi.org/10.1016/j.scico.
2007.01.015.

[9] Meyer B. Contract-driven development. In: Int’l conf. fundamental ap-
proaches to software engineering (FASE). Lect. notes in computer science,
vol. 4422, Springer; 2007, p. 11. http://dx.doi.org/10.1007/978-3-540-
71289-3_2.

[10] Fabbri SCPF, Maldonado JC, Sugeta T, Masiero PC. Mutation testing applied
to validate specifications based on statecharts. In: Int’l symp. software
reliability engineering (ISSRE). IEEE Computer Society; 1999, p. 210–9.
http://dx.doi.org/10.1109/ISSRE.1999.809326.

[11] Sen K. Concolic testing. In: Int’l conf. automated software engineering.
ACM; 2007, p. 571–2. http://dx.doi.org/10.1145/1321631.1321746.
4

http://dx.doi.org/10.1145/42411.42414
http://dx.doi.org/10.1145/42411.42414
http://dx.doi.org/10.1145/42411.42414
http://dx.doi.org/10.5555/579193
http://dx.doi.org/10.5555/579193
http://dx.doi.org/10.5555/579193
http://refhub.elsevier.com/S2352-7110(20)30303-4/sb3
http://refhub.elsevier.com/S2352-7110(20)30303-4/sb3
http://refhub.elsevier.com/S2352-7110(20)30303-4/sb3
http://dx.doi.org/10.1109/2.161279
http://refhub.elsevier.com/S2352-7110(20)30303-4/sb5
http://refhub.elsevier.com/S2352-7110(20)30303-4/sb5
http://refhub.elsevier.com/S2352-7110(20)30303-4/sb5
http://refhub.elsevier.com/S2352-7110(20)30303-4/sb5
http://refhub.elsevier.com/S2352-7110(20)30303-4/sb5
http://dx.doi.org/10.1007/s10270-018-0676-3
http://dx.doi.org/10.1007/s10270-018-0676-3
http://dx.doi.org/10.1007/s10270-018-0676-3
http://dx.doi.org/10.1007/s00766-010-0102-z
http://dx.doi.org/10.1007/s00766-010-0102-z
http://dx.doi.org/10.1007/s00766-010-0102-z
http://dx.doi.org/10.1016/j.scico.2007.01.015
http://dx.doi.org/10.1016/j.scico.2007.01.015
http://dx.doi.org/10.1016/j.scico.2007.01.015
http://dx.doi.org/10.1007/978-3-540-71289-3_2
http://dx.doi.org/10.1007/978-3-540-71289-3_2
http://dx.doi.org/10.1007/978-3-540-71289-3_2
http://dx.doi.org/10.1109/ISSRE.1999.809326
http://dx.doi.org/10.1145/1321631.1321746

	Sismic—A Python library for statechart execution and testing
	Motivation and significance
	Software description
	Software functionalities
	Software architecture

	Illustrative example
	Impact
	Conclusions
	Declaration of competing interest
	Acknowledgement
	References


