Magnetron sputtering of copper, silver, and gold onto oils for nanoparticle synthesis.

S. Konstantinidis 1, A. O’Reilly 1, K. Patel 1, A. Chauvin 1, 2, J. De Winter 1, D. Cornil 1

J. Cornil 1, A. Panepinto 3, J. Veselý 2, H. Alem-Marchand 4, A. Sergievskaya 1

1 University of Mons, Mons, Belgium
2 Charles University, Prague, Czech Republic
3 Materia Nova Research Center, Mons, Belgium
4 Université de Lorraine, CNRS, Nancy, France
Advantages of sputtering onto liquids for NP synthesis

1. Flexibility
 Large variety of elements can be sputtered

2. Reproducibility
 “Automatized” process + controlled environment

3. Purity
 Chemical reactants and by-products are avoided

Classic colloidal synthesis
- Solvent
- Metal salt
- Reducer
- Capping agent
- Nanoparticles
- Other reaction products
- Excess of reagents

\[+ O_2 / N_2 / \ldots \]
1. Working parameters
- Nature of sputtered material
- Nature of the liquid
- Sputter power
- Target – substrate distance
- Pressure
- Kind of sputtering process, ...

2. Plasma properties
- Particle fluxes
- Kinetic energies

3. Plasma-liquid interaction
- Deposition rates
- Heating of the liquid
- Liquid chemistry

4. Growth of nanoparticles

5. Applications of NPs

Our goal
- Collaborations with other research groups

- How do the NP grow?
- Can we control the size, shape, elemental composition?
- Are NP solutions stable?

- Nature of sputtered material
- Nature of the liquid
- Sputter power
- Target – substrate distance
- Pressure
- Kind of sputtering process, ...

- Particle fluxes
- Kinetic energies

- Deposition rates
- Heating of the liquid
- Liquid chemistry

- How do the NP grow?
- Can we control the size, shape, elemental composition?
- Are NP solutions stable?
Experimental set-up

Deposition chamber

- Magnetron

- Gas exhaust
- Turbo Pump + Primary pump
- Throttle valve

Load-lock chamber
(Outgassing the host liquid)

- Liquid Sample 4 ml
- Gate valve
- Valve
- Turbo Pump + Primary pump

Massflow Controller (Ar, O\textsubscript{2}, N\textsubscript{2})

Transfer arm

Gas exhaust
Castor oil as a host liquid

Castor oil = mixture of triglycerides
- ricinoleate ~ 90%
- oleate ~ 7%
- linoleate ~ 3%

Ricinus communis
Castor beans

Generic Triglyceride

- Withstand vacuum
- Low toxicity
- Low cost

Ricinoleate

Ricinoleic acid

Glycerol

Ricinus communis

Castor beans
Influence of the working parameters on the NP properties

Varying parameters are:
1. Deposition time
2. Sputter power
3. Kind of sputtering discharge: DCMS vs. HiPIMS
4. Viscosity of the host liquid
5. Sputtered metal (Au, Ag, Cu)

Methods of NP characterization:
1. UV-vis spectroscopy: optical properties, colloidal stability, and ageing of NP solutions
2. TEM: size and size distribution of NPs
1. Sputtering Gold on Castor oil
DC-MS of gold onto castor oil, a first look

\(p_{Ar} = 0.5 \text{ mTorr}, \text{ WD} = 20 \text{ cm}, t_s =5 \text{ min}, P = 80 \text{ W} \rightarrow \text{ Flux of metal atoms } : \Phi = (2.5 \pm 0.5) \times 10^{-7} \text{ mol} \cdot \text{cm}^{-2} \cdot \text{min}^{-1} \)

- NP continue to grow for a few days after sputtering
- NP solutions are stable for a very long time
- Good reproducibility

\[A_{\text{max}} (\text{a.u.}) \]

Stable for 1.5 year

\[\text{Absorbance (a.u.)} \]

Wavelength (nm)

0 15 min
1 day
27 days

SPR band appears with time

\[\text{Absorbance (a.u.)} \]

Wavelength (nm)

0 1 day

Sample 35
Sample 41

15 min

1 day
Effect of sputter time

\[p_{Ar} = 0.5 \text{ mTorr}, \ WD = 20 \text{ cm}, \ P = 80 \text{ W}, \rightarrow \text{ Flux of metal atoms} : \Phi = (2.5 \pm 0.5) \cdot 10^{-7} \text{ mol} \cdot \text{cm}^{-2} \cdot \text{min}^{-1} \]
Different deposition times: ageing of the NP solutions
Effect of sputter power

$p_{Ar} = 0.5\, \text{mTorr}, \ WD = 20\, \text{cm}, \ t_s = 10\, \text{min}$
Different sputter powers: ageing of the NP solutions
DC-MS vs. (unipolar) HiPIMS

$p_{\text{Ar}} = 5 \text{ mTorr}, 80 \text{ W}, 10 \text{ min}$

DC-MS:
$\Phi = (1.8 \pm 0.2) \cdot 10^{-7} \text{ moles/cm}^2 \cdot \text{min}$

HiPIMS:
$T_{\text{on}} = 20 \mu\text{s}, I_{pk} = 0.3 \text{ A/cm}^2, f = 800 \text{ Hz},$
$\Phi = (0.9 \pm 0.1) \cdot 10^{-7} \text{ moles/cm}^2 \cdot \text{min}$
Ageing of the NP solutions
Effect of the liquid viscosity

0.5 mTorr, 20 cm, 80 W, 10 min, Liquid: polymerized* rapeseed oil
* Plasma treatment prior sputtering

<table>
<thead>
<tr>
<th>Viscosity (cP)</th>
<th>60</th>
<th>200</th>
<th>440</th>
<th>630</th>
<th>1000</th>
<th>1400</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface tension</td>
<td>~ 32.7 mJ · m⁻²</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Viscosities (cP)
- Castor oil = 700 cP (35.1 mJ m⁻²)
- Water = 0.9 cP
- Honey ~ 2000 – 10 000 cP

Film is obtained like on a solid surface
Effect of the liquid viscosity

Migration of NPs in solution

5 months

Absorbance (a.u.)

Wavelength (nm)

- 60 cP
- 200 cP
- 440 cP
- 630 cP
- 1000 cP
- 1400 cP
Effect of the host liquid viscosity

No TEM data for high viscosity liquids: impossible to remove the liquid from the TEM grid

XRD data for Au films

\[d_{\text{Au}} (1000 \text{ cP}) = (10 \pm 1) \text{ nm} \]
\[d_{\text{Au}} (1400 \text{ cP}) = (13 \pm 2) \text{ nm} \]
2. What if we sputter silver onto castor oil?
DC-MS of silver target onto castor oil

0.5 mTorr, 20 cm, 80 W, 3 min
\[\Phi = (0.6 \pm 0.1) \cdot 10^{-7} \text{ moles/cm}^2 \cdot \text{min} \]
Ageing of the Ag-NP solutions

8.1 nm ± 5.0 nm.
TEM image 8 months after preparation.
Stability of nanoparticles in castor oil: Interaction energy calculations

\[E_{\text{int}} = E_{\text{surf/CO}} - [E_{\text{CO}} + E_{\text{surf}}] \]

GOLD

\[E_{\text{int}} = -0.14 \ \text{eV} \]

1/3 of triglyceride of ricinoleic acid

SILVER

\[E_{\text{int}} = +0.16 \ \text{eV} \]
DC-MS vs. Unipolar & Bipolar HiPIMS

\[P_{Ar} = 5 \text{ mTorr, } 80 \text{ W, } 10 \text{ min} \]
Flux DC-MS: \((1.8 \pm 0.2) \cdot 10^{-7} \text{ moles/cm}^2 \text{ min}\)

Flux HiPIMS: \((0.9 \pm 0.1) \cdot 10^{-7} \text{ moles/cm}^2 \text{ min}\)
\[f = 800 \text{ Hz, } T_{ON, -} = 20 \mu\text{s, } I_{pk} = 0.3 \text{ A/cm}^2 \]

Flux B-HiPIMS: \((0.2 \pm 0.1) \cdot 10^{-7} \text{ moles/cm}^2 \text{ min}\)
\[f = 800 \text{ Hz, } T_{ON, -} = 20 \mu\text{s, } I_{pk} = 0.3 \text{ A/cm}^2 \]
\[V_+ = +300\text{V, } T_{ON, +} = 250 \mu\text{s, } T_{+/-} = 10\mu\text{s} \]

Number of particles larger than 20 nm
- 0.1\% for DC-MS,
- 1.3 \% for HiPIMS (B-HiPIMS_0)
- 4.2 \% for bipolar HiPIMS (BHHiPIMS_300)
3. What if we sputter copper onto castor oil?
Oxidation of Cu-NPs in castor oil

Sample was placed in the cell without stirring.

Copper (II) oleate $\rightarrow \text{Cu}_2\text{O}$ NPs

Sputtering onto Liquids: mechanism of NP formation

- Secondary growth of NPs
- Oxidation due to reaction with host medium and/or the atmosphere
- Coagulation in case of low colloidal stability

Possible post-sputtering processes

- Ar ions
- Atoms
- Primary clusters
- NPs