
Optimal Solving of Permutation-based Optimization

Problems on Heterogeneous CPU/GPU Clusters

Jan Gmys

Mathematics and Operations Research Department

University of Mons

Mons, Belgium

jan.gmys@umons.ac.be

EXTENDED ABSTRACT

We revisit the parallelization of Branch-and-Bound (B&B)
algorithms on massively parallel and heterogeneous
architectures integrating multi-core processors and GPU
accelerators. We provide a comprehensive description of the
incremental development of a B&B-algorithm for the exact
resolution of large permutation-based combinatorial
optimization problems (COP). In order to highlight the
challenges related to the different levels of the algorithm, we
proceed incrementally by increasing the complexity of the
targeted hardware step-by-step (as shown in Fig. 1) from
sequential to multi-core, to GPUs and multi-GPU systems and
finally to heterogeneous clusters combining multi-core CPUs
and accelerator devices. On a cluster composed of 9 GPU-
accelerated compute nodes (130 000 CUDA cores) the described
methodology reduces the resolution time for a hard instance of
the flow shop scheduling problem (FSP) from 600 hours (using
300 CPUs) to 9 hours1. Three permutation problems with
different computational characteristics are used for experimental
evaluation: FSP, quadratic assignment (QAP) and the N-Queens
problem.

A. Parallel B&B for permutation problems

Many COPs that arise in industrial and economic
applications can be modeled by using permutations to represent
candidate solutions (e.g. scheduling, assignment or routing
problems). As most of these problems are NP-hard, approximate
optimization methods like (meta)heuristics are often used in
practice. While these methods find high-quality solutions within
a reasonable amount of time, they fail in general to find optimal
solutions and to provide error quantification. Conversely, exact
methods find the optimal solution(s) with a proof of optimality,
but require huge computational effort.

B&B is the most frequently used exact method to solve
COPs. The algorithm recursively decomposes the initial
problem by dynamically constructing and exploring a search-
tree. This is done using four operators: branching, bounding,
selection and pruning. The branching operator divides the

1 22 years (aggregate time) using a single CPU core.

Figure 1. Outline

initial problem into smaller subproblems and a bounding
function computes lower bounds on the minimal cost of
subproblems. Using these lower bounds, the pruning operator
eliminates subproblems from the search that cannot lead to an
improvement of the best solution found so far. The tree-traversal
is guided by the selection operator, which returns the next
subproblem to be processed according to a predefined strategy
(e.g. depth-first search).

B&B generates huge search trees, often containing billions of
nodes. For example, Taillard’s FSP instance Ta056 [1], which
consists in scheduling 50 jobs on 20 machines, requires 22 years
(aggregate time) to be solved on a single CPU processing core
[2]. Therefore, ultra-scale computing is required to solve similar
instances in a reasonable amount of time. For that, it is essential
to define an efficient data structure for the storage and
management of the “tsunami” of subproblems, dynamically
generated at runtime. In [3] an innovative data structure called
IVM (for Integer-Vector-Matrix) was proposed for the storage
of search trees of subproblems (partial permutations). Extensive
experimental evaluation has shown that IVM is effective in
terms of memory footprint and pool management time. The IVM
data structure is closely related to the encoding of permutations
using Lehmer codes and an interval-based decomposition of the
search space. In this approach, the search tree is encoded as a

factoradic interval that is decomposed into sub-intervals,
representing distinct portions of the search space that can be
explored in parallel. However, as the amount of work
(subproblems to decompose) in different parts of the search
space is highly variable and unpredictable, a static
decomposition of the search space is inefficient. Therefore, the
work stealing paradigm is used to dynamically balance the work
load between B&B processes.

B. Parallel B&B for multi-core processors

According to this interval-based decomposition/work stealing
approach each thread in the multi-core B&B-algorithm uses its
private IVM structure to locally explore a different portion of the
search space (encoded as an interval). When a thread finishes the
exploration of its interval it attempts to steal a portion of another
threads interval. In [4] we investigate several work stealing
strategies using different victim selection and granularity
policies. Experimental results show that the approach achieves
near-linear speed-ups on multi-core systems with up to 28 cores
and on Xeon Phi MIC architectures with 60 cores, even for fine-
grained problems with computationally inexpensive node
evaluation functions (e.g. N-Queens). When the bounding
operation is moderately time-consuming or when the latter is
coprocessor-accelerated, the efficient management of
subproblems becomes indeed a critical component of B&B. In
these cases, experimental results show that IVM-based B&B
algorithms can significantly outperform their counterparts based
on conventional data structures (e.g. stacks, deques).

C. GPU-centric Parallel B&B

Existing GPU-accelerated B&B algorithms in the literature can
be divided into two mainly two approaches. The first consists in
offloading active nodes for parallel evaluation to the device
while maintaining one or several work pools on the CPU. This
offloading approach requires careful design and tuning of data
transfers between host and accelerator [5]-[7]. Moreover,
especially if node evaluation costs are low, it may not be possible
to completely overlap communication and computations. The
second approach consists in exploring the B&B tree up to a
certain depth on the host processor and using the open nodes at
that depth as roots of subtrees explored in parallel on GPU [8]-
[9]. However, these approaches generally suffer from load
imbalance, as they use a static decomposition of the search space
without load balancing after the parallel GPU-based searches are
launched.

The IVM data structure, thanks to its small and constant memory
footprint allows to implement the entire B&B algorithm on the
GPU, including GPU-based dynamic load balancing
mechanisms. As shown in [10,11] such a GPU-centric approach
solves the issue of host-device data movements and load
imbalance inside the GPU. Two variants of GPU-centric B&B
are proposed, using different parallelization models for
problems with different granularities. Both variants are extended
to multi-GPU systems. We present and discuss design choices
and mapping approaches, as well as different GPU-based work
stealing strategies. For a class of ten 20-jobs-on-20-machines
FSP instances with sequential (CPU) execution times between
15 minutes and 22 hours, the resolution times using four gaming
GPUs (GTX 980) range from 1 second to 1 minute, i.e. the GPU-

centric B&B achieves speedups of up to three orders of
magnitude compared to a single CPU core execution, using
hundreds of thousands of parallel B&B searches efficiently.

D. Heterogeneous CPU/GPU cluster

As failure probability increases with each new generation of

supercomputers, fault tolerance becomes a critical issue to the

scalability and correctness of large-scale parallel programs.

Using B&B@Grid [2] (a fault-tolerant master-worker approach

designed for computational grids) as a starting point, we

integrate the previously presented multi-core and GPU-centric

algorithms into a distributed B&B for CPU-GPU clusters. For

the sake of locality of reference, the approach is hierarchical, as

multi-core processors and GPUs are seen as single workers on

the global level. Work units on the inter-node level are

redefined and load balancing, checkpointing and

communication mechanisms are revisited consequently.

Fig. 2 reports the experimental results obtained using Grid’5000

in 2006 [2], a GPU-accelerated compute node in 2015 and two

hybrid GPU-based clusters in 2017. On a cluster of 9 GPU-

accelerated compute nodes (130 000 CUDA cores) our

approach reduces the resolution time for the FSP instance

Ta056 mentioned above from 600 hours (using 300 CPUs) to 9

hours.

Figure 2. Resolutions of FSP instance Ta056 [1] on different systems. From

left to right: (2006) B&B@Grid [2] – (2015) multi-GPU-B&B (4 GTX980) –

(2017/1) 8 nodes (2 Broadwell Xeon/2 GTX1080Ti) of Grid’5000/Lille –

(2017/2) 9 OpenPower nodes (2 Power8+/4 Pascal P100) of Ouessant (IDRIS)

E. Future work

For the implementation of the presented algorithms, we used
C++ in combination with the Pthreads library, CUDA and socket
programming for the inter-node communication layer. In order
to improve the scalability (and maintainability) we plan to
investigate the use of programming interfaces using the PGAS
programming model. We also plan to hybridize our B&B
approach with metaheuristics in order to find high-quality
suboptimal solutions of hard instances of permutation problems.

Keywords– Combinatorial optimization; heterogeneous

computing; GPU computing; load balancing

ACKNOWLEDGMENT

Experiments presented in this paper were carried out
using the OpenPower prototype Ouessant hosted by the
Institute for Development and Resources in Intensive

Scientific Computing (see http://www.idris.fr/) and the
Grid'5000 testbed, supported by a scientific interest group
hosted by Inria and including CNRS, RENATER and
several Universities as well as other organizations (see
https://www.grid5000.fr).

BIOGRAPHY

JAN GMYS has received the Master’s degree (2014) in

Advanced Scientific Computing from the University of Lille

and Ph.D’s in Engineering Sciences/Computer Science (2017)

from the Universities of Mons/Lille. He is currently a research

assistant at the University of Mons. His research interests

include parallel/distributed/GPU computing and combinatorial

optimization. He is the co-author of 5 journal papers and 3

papers in international workshops/conferences.

REFERENCES

[1] E. Taillard, “Benchmarks for basic scheduling problems”, Journal of
Operational Research, vol. 64, pp. 278–285, 1993.

[2] M. Mezmaz, N. Melab and E. G. Talbi, “A grid-enabled branch and bound
algorithm for solving challenging combinatorial optimization problems”,
in 2007 IEEE International Parallel and Distributed Processing
Symposium (IPDPS), pp. 1–9, Mar. 2007.

[3] M. Mezmaz, R. Leroy, N. Melab, and D. Tuyttens, “A multi-core parallel
branch-and-bound algorithm using factorial number system”, in 28th
IEEE International Parallel and Distributed Processing Symposium
(IPDPS), pp. 1203–1212, May 2014.

[4] J. Gmys, R. Leroy, M. Mezmaz, Melab N. and D. Tuyttens, “Work
stealing with private integer-vector-matrix data structure for multi-core
branch-and-bound algorithms, Concurrency & Computation : Practice &
Experience, 28, 18, 4463-4484, 2016.

[5] I. Chakroun, N. Melab, M. Mezmaz and D. Tuyttens, “Combining multi-
core and gpu computing for solving combinatorial optimization
problems”, Journal of Parallel and Distributed Computing, vol. 73, no.
12, pp. 1563–1577, 2013.

[6] T. Vu and B. Derbel, “Parallel Branch-and-Bound in multi-core multi-
GPU heterogeneous environments”, Future Generation Comp. Syst.,
56:95-109, 2016.

[7] J. Shen, K. Shigeoka, F. Ino and K. Hagihara, “An out-of-core branch and
bound method for solving the 0-1 knapsack problem on a GPU, in
Algorithms and Architectures for Parallel Processing (ICA3PP 2017),
Lecture Notes in Computer Science, vol 10393. Springer, Cham, 2017.

[8] T. Carneiro, A. Muritiba, M. Negreiros and G. Lima de Campos, “A new
parallel schema for branch-and-bound algorithms using GPGPU”, in 23rd
International Symposium on Computer Architecture and High
Performance Computing (SBAC-PAD), pp. 41–47, 2011.

[9] A. Borisenko, M. Haidl and S. Gorlatch, “A GPU parallelization of
branch-and-bound for multiproduct batch plants optimization”, J.
Supercomput. 73, 2, pp. 639-651, 2017.

[10] J. Gmys, M. Mezmaz, N. Melab and D. Tuyttens, “IVM-based work
stealing for parallel branch-and-bound on GPU”, in Parallel Processing
and Applied Mathematics (PPAM 2015), Lecture Notes in Computer
Science, vol 9573. Springer, Cham, 2015.

[11] T. Carneiro, J. Gmys, N. Melab, F.H. de Carvalho Junior and D. Tuyttens,
“A GPU-based backtracking algorithm for permutation combinatorial
problems”, in Algorithms and Architectures for Parallel Processing
(ICA3PP 2016), Lecture Notes in Computer Science, vol 10048. Springer,
Cham, 2016.

http://www.idris.fr/
https://www.grid5000.fr/

