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Michel Voué et Dr. Christophe Caucheteur, pour leur temps et leur bienveillance,
leur intérêt pour mon travail ainsi que pour leurs questions pertinentes.

Je ne saurais trop remercier le Prof. Henri Benisty, pour son accueil chaleureux
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ont élargi mes horizons scientifiques et ont été riches en rencontres humaines.
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Summary

Parity-Time (PT ) symmetry emerged in quantum mechanics as a weaker alterna-
tive to hermiticity, a condition to ensure Hamiltonians have real eigenvalues. The
similarities between the equations of quantum mechanics and optics have naturally
led to the latter becoming a testbed for this new paradigm. In practice in optics,
PT symmetry is introduced by adding balanced gain and loss to the structure.
One of the main interests of these devices is the existence of two phases (PT -
symmetric and broken) separated by exceptional points. Our goal was to exploit
and control these characteristics and modes for novel photonic components.

In this thesis we demonstrate the switching capabilities of a PT symmetrical
grating between its two diffraction orders. Furthermore, we discover a symmetry
recovery phenomenon in a linear system. Usually the system only goes from the
symmetric to the broken phase when gain and loss increases. However, by play-
ing with the coupling constants in a multi-modal structure, a symmetric phase
revival becomes possible. Next, we investigate the unidirectional invisibility phe-
nomenon, leading to zero reflection from one side only. Originally introduced in
Bragg gratings, we investigate a different structure with side-coupled resonators,
and find that unidirectional invisibility can be broadband. Finally, we associate
PT symmetry with topological features in a quasi-periodic structure. A rich mix-
ing between the topological edge modes and band modes is uncovered, leading to
the potential of laser resonance engineering.
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1
Introduction

1.1 Introduction

Thanks to science and innovation, the world is moving faster than ever. Every
month we witness the release of new technologies or devices: smartphones, au-
tonomous cars, connected houses... All these innovations that make life easier or
consumption more efficient rely on the existence of a giant and fast data network.
The improvement of this communication network really started with the replace-
ment of the old copper cables by optical fibers. Nowadays we continue this network
upgrade with smaller and faster integrated devices.

For this purpose, over the past decades, photonics has been widely investigated.
With an increasing control of materials down to the nanoscale, we try to tailor
the flow of light over an increased path length for diverse functionalities. Apart
from telecommunications and information processing, photonic applications are
numerous: lighting, displays, solar cells, detectors, microscopy, lasers, spectroscopy
etc. A major problem for routing applications is often the inherent loss of the
materials. Thus, up to now, loss is an unwanted features and scientists try to
avoid it as much as possible.

In this context, originating from fundamental studies in quantum mechanics,
Parity-Time (PT ) symmetry is a new paradigm that can change our mindset.
Instead of avoiding loss, it judiciously combines loss with gain [1] so that new and
interesting properties emerge stemming from novel symmetries [2].

In 1998 Bender and Boettcher [3] introduced the concept of PT symmetry
in quantum mechanics. To properly represent a physical system, an Hamiltonian
must, among other things, possess real eigenvalues. Usually this condition is ful-
filled due to the hermiticity of the operator. However, hermiticity is the only
axiom used by quantum mechanics that is defined without any physical meaning.
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The initial goal of the space-time reflection operator is to replace hermiticity and
ensure real eigenvalues, while it provides a physical meaning. This leads to the con-
struction of a new formalism for quantum mechanics. However, the PT symmetry
operator ensures real eigenvalues only if it shares a common set of eigenvectors
with the Hamiltonian. If not, the eigenvalues are not necessarily real. This prop-
erty gives rise to the existence of two phases, the unbroken PT symmetry phase
and the broken one, separated by so-called exceptional points.

A decade later [4], the similarity between the equations of quantum mechanics
and optics allowed one to apply the concepts of PT symmetry towards optical
devices [5]. Briefly, PT symmetry requires that the refractive index of the optical
structures has an even real part and an odd imaginary part. The real part of the
refractive index defines the guiding properties of the structure, while the imaginary
part defines the amplification (gain) or absorption (loss) of light. An odd imagi-
nary part signifies that the structure supports the same amount of gain and loss.
Thus loss becomes a crucial element of the devices and not simply an unwanted
feature [6]. In this context many optical devices have been revisited, trying to
take advantage of the special features offered by PT symmetry [7]: the traditional
directional coupler [8–13], switching devices [14, 15], plasmonic structures [16],
Bragg reflectors with unidirectional invisibility [17–19], micro-ring resonators and
microdisks with single-mode laser operation [20–23], gratings [24–29] and others
[30–38].

One of the most salient properties of these structures is the spontaneous sym-
metry breaking at a certain loss/gain level, marking a clear transition via the
exceptional point between the broken and unbroken PT phases with very differ-
ent behaviours. All these new possibilities are obtained thanks to the presence of
the inherent loss of the materials.

This thesis draws its inspiration from known ‘passive’ optical structures, which
we adapt within the PT context. These problems are approached by rigorous
theoretical and numerical calculations, and are further described by more intu-
itive semi-analytical approaches. In the following section we describe the various
subjects addressed in this work.

1.2 Outline

This thesis is structured as follows. Chapter 2 is devoted to the basic description
of PT symmetry. We first explain the origins of this paradigm from quantum
mechanics and its ability to replace hermiticity. We briefly recall the properties
of Hamiltonians and their requirement to possess real eigenvalues. The parity and
time operators and their actions are presented. Then one of the principal interests
of PT symmetry is discussed: a phase transition (or symmetry breaking) that
induces the existence of different behaviours of the system. Subsequently, we in-
troduce PT symmetry into optics and define a condition for the structure to be
PT -symmetric. A typical example is used to clearly expose the PT properties. Fi-
nally, various representative results from the literature are exposed to demonstrate
the potential uses of PT symmetry and its capability to control the modes.

Chapter 3 addresses the background theoretical concepts relevant for the thesis.
Starting from Maxwell’s equations, we derive the Helmholtz equation to extract
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the modes of light, we present boundary conditions and Fresnel coefficients. Then,
cavities and their resonances are considered together with the mathematical tools
to describe them: Fabry-Pérot cavities and coupled mode theory. We give an
overview of the eigenmode expansion method that is used in the numerical sim-
ulation program CAMFR [39]. We introduce the scattering matrix and transfer
matrix formalisms for the description of 1D single-mode structures. And finally,
periodic structures and the Bloch theorem are addressed.

The switching capability by PT symmetry is one of the main promises in optics.
Chapter 4 is devoted to the study of the diffraction and switching properties of a
parity-time (PT ) symmetric transmission grating, and exposes the work published
in [14]. This grating operates through a limited number of guiding modes and
the resulting interference excites the various existing transmission orders. This
interferometric operation is altered by the introduction of balanced gain and loss,
leading to efficient switching around the spontaneous symmetry breaking point.
Furthermore, we investigate the influence of the longitudinal reflections, which
are not common in previously studied PT structures. In addition, we separately
tailor the periodicities of gain and loss, so that the device remains PT symmetric.
However, this gives a new way to control the mode merging phenomenon, as we
obtain interactions between previously distinct modes.

Chapter 5 is focused on the broken and unbroken PT phases and the excep-
tional points, this work is published in [8]. The Typical PT -symmetric structures
switch from the unbroken to the broken phase when gain/loss increases through
an exceptional point. In contrast, we demonstrate a system with the unusual,
reverse behaviour, where the symmetric phase is recovered after a broken phase.
We study this phenomenon analytically and numerically in the simplest possible
system, consisting of four coupled modes, and we present potential dielectric and
plasmonic implementations. The complex mode merging scheme, with two distinct
unbroken PT phases encompassing a broken one, appears for a specific proportion
range of the coupling constants. This regime with ‘inverse’ exceptional points is
interesting for the design of novel PT devices.

Typical one-dimensional PT structures exhibit unidirectional invisibility (also
called anisotropic transmission resonances), meaning unity-transmission and zero-
reflection for incidence from one direction. In Chapter 6 we expose the work
published in [40]: an analysis of the scattering properties of a PT -symmetric
structure made of a waveguide and a finite chain of side-coupled resonators. The
side-coupled nature of this structure provides unidirectional invisibility as well,
but with different characteristics than the traditional tight-binding chain. We
explore these properties in detail with numerical and analytical approaches for
various chain lengths and geometries. As an interesting feature, we can achieve a
broadband unidirectional invisibility with only two resonators. Furthermore, we
observe rich dispersions for these anisotropic transmission resonances with four
resonators, which can be carefully tuned.

Finally Chapter 7 mixes topology and PT symmetry features in a 1D pho-
tonic quasi-crystal. Via the scattering characteristics we analyze various properties
of a particular mirrored structure, which supports topological edge modes in its
bandgaps. These interface modes display a non-trivial dependence on the quasi-
periodic geometry, even in a passive system. Subsequently, the tailored addition
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of gain and loss generates curious PT -like features. The quasi-crystal high density
of modes leads to complicated mode-merging behaviours between edge and band
modes, such as the symmetry recovery phenomenon. Furthermore, unidirectional
invisibility is also present, but it displays richer patterns in comparison to previ-
ously studied periodic structures. Additionally, we examine lasing effects in detail,
with numerics and a simple Fabry-Perot model. The large variety of mode-merging
behaviours opens the way to laser resonance engineering.

1.3 Publications

1.3.1 Publications in international journals

Here follow the contributions published in international journals during the PhD
work:

• N. Rivolta and B. Maes, Angle-specific transparent conducting electrodes
with metallic gratings, Journal of Applied Physics, vol. 116, p. 053101, 2014

• N. Rivolta and B. Maes, Diffractive switching by interference in a tailored
PT-symmetric grating, Journal of Optical Society of America B, vol. 32,
pp. 1330-1337, 2015

• N. Rivolta and B. Maes, Symmetry recovery for coupled photonic modes
with transversal PT symmetry, Optics Letters, vol. 40, pp. 3922-3925, 2015

• N. Rivolta and B. Maes, Side-coupled resonators with parity-time sym-
metry for broadband unidirectional invisibility, Physical Review A, vol. 94,
p. 053854, 2016

• N. Rivolta, H. Benisty and B. Maes, Topological edge modes with PT sym-
metry in a quasi-periodic structure, Physical Review A, vol. 96, p. 023864,
2017

1.3.2 Contributions in international conferences

A list of our conference talks / proceedings contributions:

• N. Rivolta and B. Maes, Angle-specific transparent electrodes, Nanolight
2014, Benasque, Spain, 2014

• N. Rivolta and B. Maes, Shaping sub-wavelength plasmonic funnels, Annual
symposium of the IEEE Photonics Society Benelux Chapter, Eindhoven,
Netherlands, 2013

• N. Rivolta and B. Maes, Switching of free space diffraction with a tailored
PT symmetric grating, Annual symposium of the IEEE Photonics Society
Benelux Chapter, Twente, Netherlands, 2014
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• N. Rivolta and B. Maes, Diffraction properties of a tailored parity-time (PT)
symmetric grating, OWTNM XXIII (Optical Wave and waveguide Theory
and Numerical Modelling), London, United Kingdom, 2015

• N. Rivolta and B. Maes, Switching of free space diffraction with a tailored
PT symmetric grating, International School of Atomic and Molecular spec-
troscopy (nano-optics : principles enabling basic research and applications),
Erice, Italy, 2015

• N. Rivolta and B. Maes, Side-coupled resonators with parity-time symmetry
for broadband unidirectional invisibility, Meta’16 - 7th International Confer-
ence on Metamaterials, Photonic Crystals and Plasmonics, Malaga, Spain,
2016

• N. Rivolta and B. Maes, Side-coupled resonators with parity-time symme-
try for broadband unidirectional invisibility, Annual symposium of the IEEE
Photonics Society Benelux Chapter, Ghent, Belgium, 2016

• N. Rivolta, H. Benisty and B. Maes, PT symmetry in a quasi-periodic struc-
ture with topological edge modes, 11th International Congress on Engineered
Material Platforms for Novel Wave Phenomena - Metamaterials’2017, Mar-
seille, France, 2017

1.3.3 Award

• Best oral presentation, N. Rivolta, Diffraction properties of a tailored parity-
time (PT) symmetric grating, OWTNM XXIII (Optical Wave and waveguide
Theory and Numerical Modelling), London, United Kingdom, 2015
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2
PT symmetry

In this chapter we introduce the concept of PT symmetry. Sec. 2.1 exposes the
theoretical origins of this concept in quantum mechanics and one of its major
properties: the existence of an unbroken and a broken PT -symmetric phase. Af-
terwards, an introduction of this new paradigm in optics is provided in Sec. 2.2,
which is followed by several interesting effects for photonic applications.

2.1 PT symmetry in quantum mechanics

The theory of quantum mechanics is nearly a century old. Well established by
experiments and predictions, it has now been accepted as a reliable part of modern
science. The foundations of this theory rely on several fundamental axioms [41].
Many of these axioms follow from physical requirements of a quantum system:
the energy spectrum must be real, the time evolution must be unitary, etc... One
axiom stands beside the others due to its mathematical requirement. It specifies
that the Hamiltonian H, the operator expressing the dynamics of the quantum
system, must be Hermitian:

H = H† (2.1)

where † stands for the Dirac Hermitian conjugate. This conjugation is the com-
bination of matrix transposition and complex conjugation, and it is difficult to
find a physical meaning into these mathematical operations. However, Hermicity
is very convenient because it ensures that the eigenvalues of H are real and that
the time-evolution operator is unitary.

Hermitian Hamiltonians are the consequence of a paradigm in which all the
processes are reversible in time, and time is considered as just another dimension
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[42]. At the beginning of the last century, this view was almost unanimously
accepted. But the idea of irreversible processes already emerged in the 19th century
with the introduction of the second law of thermodynamics, the law of increase
of entropy. Time-oriented processes and their descriptions opened the way to
non-Hermitian quantum mechanics.

Non-Hermitian Hamiltonians were traditionally used to describe dissipative or
irreversible processes, such as transport in fluids [43,44] or radioactive decay. The
probability to find the particle decreases in time, and the Hamiltonian does not
respect unitarity. Therefore, these Hamiltonians are only approximations, as the
particle does not really vanish but transforms into another particle. Thus, these
Hamiltonians cannot be regarded as fundamental.

In 1998, Bender and Boettcher [3] made a breakthrough in quantum mechanics,
affirming that non-Hermitian but parity-time (PT ) symmetric Hamiltonians en-
sure a real energy spectrum and unitarity. Thus non-Hermitian Hamiltonians can
properly describe quantum systems. The sufficient but not necessary mathematical
condition of Hermiticity is here replaced by a weaker, physically transparent con-
dition: space-time reflection, or PT symmetry. A weaker condition induces that
the range of acceptable Hamiltonians or systems is opened wider, and one could
access unknown phenomenona. However, the eigenstates of such an Hamiltonian
are not always orthogonal, and constructing a self-consistent quantum mechani-
cal theory based on such Hamiltonians requires redefining the scalar product and
norm. This construction is outside the scope of this work but can be found with
the full treatment of non-Hermitian Hamiltonians in [45].

In this section we briefly remind the role of the Hamiltonian in quantum me-
chanics (Sec. 2.1.1), we present the parity and time operators (Sec. 2.1.2), and we
study when the eigenvalues of a PT Hamiltonian are real or not (Sec. 2.1.3).

2.1.1 Hamiltonian and quantum theory

The Hamiltonian operator defines a quantum system physically in three important
ways.

Firstly, the Hamiltonian defines the energy levels E of the eigenstates ψ of
the system. These energy levels are given by the time-independent Schrödinger
eigenvalue problem:

Hψ = Eψ (2.2)

Usually this equation takes the form of a differential equation that must be solved
with boundary conditions for ψ. A quantum system is physically acceptable if the
energy values of its Hamiltonian are real and bounded below.

Secondly, the Hamiltonian defines the evolution in time of the states and op-
erators of a quantum theory. The time dependence of a state ψ(t) is given by the
time-dependent Schrödinger equation:

i~
∂

∂t
ψ(t) = Hψ(t) (2.3)

If H is time-independent, the solution of this differential equation is:

ψ(t) = e−i~Htψ(0) (2.4)
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with the time evolution operator e−i~Ht. If we inject (2.2) in (2.3), the modulus
of ψ is conserved in time for any real E. In conventional quantum mechanics, the
time evolution is unitary because H is Hermitian. As a result, the norm of the state
ψ(t) remains constant in time. As the norm squared of a state is equivalent to the
probability to observe this state, it is logical that the norm must remain constant
as that probability cannot grow or decay in time. PT symmetric Hamiltonians
are not necessary Hermitian, but the norm/probability of the states are still time
independent, if its eigenvalues are real.

Finally, the Hamiltonian gives a general scope of the symmetries of the system.
As an example, if H commutes with a linear operator, then the eigenstates of H
are also eigenstates of this operator [46]. If this linear operator defines a symmetry,
its eigenstates possess this symmetry and thus also the eigenstates of H. Though
a general state of H is a linear combination of the eigenstates of H and thus not
necessarily possesses their symmetries.

2.1.2 P and T operators

The space-reflection operator or parity operator is denoted P . In the quantum-
mechanical point of view, it changes the sign of the coordinate operator x̂ and the
momentum operator p̂:

Px̂P = −x̂
P p̂P = −p̂ (2.5)

A system is called P invariant if its Hamiltonian is not affected by P i.e. it
commutes with P . We note that P leaves invariant the fundamental commutation
relation of quantum mechanics:

x̂p̂− p̂x̂ = i~1 = P(x̂p̂− p̂x̂) (2.6)

with 1 the identity operator. This property defines P as a linear (or unitary)
operator. The linearity of an operator ensures that the eigenstates of an Hamil-
tonian, which is invariant under this operator, present the symmetry specified by
this operator [46].

The time reversal operator T changes the sign of p̂, but does not affect x̂:

T x̂T = x̂
T p̂T = −p̂ (2.7)

Opposite to P , T does not leave the commutation relation invariant, except if T
is chosen to be antilinear (or antinuitary) i.e.:

T iT = −i (2.8)

In mathematics, an antilinear or antiunitary operator U is a bijective mapping of
a complex Hilbert space such that 〈Ux, Uy〉 = 〈x∗, y∗〉 for all x, y in the Hilbert
space and where ∗ stands for the complex conjugation and 〈., .〉 stands for the
scalar product.
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P and T are reflection operators, so a double application of one of them must
be equivalent to unity:

P2 = T 2 = 1 (2.9)

Finally P and T commute with one another:

PT − T P = 0 (2.10)

A system is PT invariant if its Hamiltonian H commutes with the operator
(PT ):

H = HPT = (PT )H(PT ) (2.11)

where we use the commutation relation of P and T and with HPT the space-time
reflected Hamiltonian.

2.1.3 Broken and unbroken PT symmetry

A PT symmetric Hamiltonians H commutes with PT . But as PT is not linear,
the eigenstates of H are not necessarily eigenstates of PT .

What happens if we impose ψ to be an eigenstate for both PT and H? With
λ the eigenvalue, the eigenvalue condition for PT can be expressed as:

PT ψ = λψ (2.12)

If we multiply by PT on the left and with (PT )2 = 1 (see (2.9)), we obtain:

ψ = (PT )λ(PT )2ψ (2.13)

As T is antilinear (2.8), we have (PT )λ(PT ) = λ∗ and we can write:

ψ = λ∗λψ = |λ|2ψ (2.14)

So |λ|2 = 1 and λ can be expressed as a phase:

λ = eiα (2.15)

Now if we multiply the eigenvalue equation (2.2) by PT on the left and again use
(PT )2 = 1, we have:

(PT )Hψ = (PT )E(PT )2ψ (2.16)

With (2.12) and the fact that H commutes with PT , we deduce:

Hλψ = (PT )E(PT )λψ (2.17)

Then we use again the fact that T is antilinear:

Eλψ = E∗λψ (2.18)

Since λ 6= 0 we can conclude that E = E∗ and thus E is real.
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This conclusion is very powerful. If every eigenstate of H is also an eigenstate
of PT , then their eigenvalues are real and we say that the PT symmetry of H is
unbroken. Conversely, if some eigenstates of H are not eigenstates of PT , then
their eigenvalues are not necessarily real and we say that the PT symmetry of H
is broken.

By tuning some parameters of H, we can go from one phase to the other. This
phase transition between unbroken and broken phases is the origin of high hopes for
discoveries in many fields. Obviously, if a system undergoes a phase transition from
real eigenvalues to complex ones, the behaviour of the system changes drastically.

Most of the time in this work we will use a perturbative approach. We start
from a Hermitian Hamiltonian that describes a well known system, and then we
add a PT symmetric but non-Hermitian component tuned by a single parameter.
The phase transition will generally occur when we increase this single parameter.

2.2 PT symmetry in optics

In this section we make the link between PT symmetry in quantum mechanics
and in optics (Sec. 2.2.1). We apply this concept to a simple optical structure
(Sec. 2.2.2), before exposing several interesting effects brought by PT symmetry
(Sec. 2.2.3). The full understanding of this section relies on a basic knowledges of
optics. The reader can find an introduction to these concepts in Chap. 3.

2.2.1 Link to optics

The Hamiltonian H of a particle with a mass m within a position dependent
potential V (r̂) is given by:

H =
p̂2

2m
+ V (r̂) (2.19)

For H to be Hermitian it has to be invariant under complex conjugation. p̂2 is
intrinsically invariant, but the potential has to satisfy V (r̂) = V ∗(r̂). This implies
that V (r̂) can only be real for this Hamiltonian H to be Hermitian.

For PT symmetry instead of Hermiticity, similarly, the impulsion part is in-
trinsically invariant through the PT operation. But the potential has to satisfy
the condition:

V (r̂) = V ∗(−r̂) (2.20)

The real part of the potential must be symmetric with respect to the symmetry
defined by P . The complex part of the potential can be different from zero, but
must be antisymmetric with respect to P .

In order to inject this potential into the time independent Schrödinger equa-
tion, we interpret the p̂ and r̂ operators into the position representation. In this
representation, the position vector r is r̂ψ = rψ. With the commutation relation
between r̂ and p̂ one deduces that the impulsion operator is p̂ = −i~∇. So if we
inject the Hamiltonian H in the time independent Schrödinger equation in the



2.2 PT symmetry in optics 12

position representation, one finds:

∆ψ − 2m(V (r)− E)

~2
ψ = 0 (2.21)

The latter equation is similar to the stationary Helmholtz equation (see Chap.
3.1.2):

∆E(r) +
(ω
c

)2

ε(r)E(r) = 0 (2.22)

with E(r) the electric field in this case. The similarity between the two equations
has conducted optics to become the testbed of PT symmetry.

What we have deduced for the potential V (r) is still valid for the optical po-
tential i.e. the permittivity ε(r). It must satisfy the same conditions (2.20):

<(ε(r)) = <(ε(−r))
=(ε(r)) = −=(ε(−r))

(2.23)

The real part of the refractive index defines the geometry or the guidance prop-
erties. This part must be symmetric so the structures we study must possess a
symmetry defined by P . The imaginary part of the refractive index represents
the gain or loss in the structure. As it must be antisymmetric, one part of the
structure will experience gain and the other loss.

We stress that the symmetry is defined by P . This symmetry is not necessarily
point inversion, but it can also be reflection with respect to a mirror plane. Finally,
these conditions can also be described with the refractive index instead of the
permittivity as ε(r) = n2(r).

2.2.2 Exemple of PT -symmetric optical structure

To introduce the PT concepts in optics, we study a simple well-known optical
structure, where we add PT symmetry. The directional coupler is a perfect struc-
ture to experiment with PT symmetry. It consists of two single-mode waveguides
that couple with one another. To make it PT symmetrical, we must satisfy the
condition (2.23) for the real part of the refractive index <(n(x, y, z)) = nr(x, y, z),
which implies that the two guides must be identical (nr(x, y, z) = nr(−x, y, z)), if
we take a mirror symmetry plane yz situated between the waveguides as sketched
in Fig. 2.1. For the condition (2.23) concerning the imaginary part =(n(x, y, z)) =
ni(x, y, z), one of the waveguides must experience gain when the other experiences
the exact same amount of loss (ni(x, y, z) = −ni(−x, y, z)). Note that the passive
system (ni(x, y, z) = 0) is Hermitian and PT symmetrical, but when ni(x, y, z) 6= 0
it only remains PT symmetrical.

The specific nature of the waveguides does not matter. We note for the unper-
turbed propagation constant of the single mode β = nek0 (so without coupling and
without gain/loss), with ne the effective index, k0 = 2π/λ0, and λ0 the vacuum
wavelength. The injection of gain (positive imaginary part of the refractive index,
see Chap. 3) or loss (negative imaginary part of the refractive index) inside the
waveguides leads to a modal effective gain/loss parameter γ, and this leads to an
imaginary part of the effective index ne ± γi. γ is the gain/loss factor and tunes
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Figure 2.1: Schema of the directional coupler. Waveguides are infinite in z-
direction.

the PT symmetrical part of our system. The coupling constant between the two
waveguides κ depends on the distance d between the two waveguides, and can be
obtained by overlap integrals of the field profiles of the unperturbed modes [47].

Such a symmetric and reciprocal system can be described by:

i

k0

d

dz

(
c1

c2

)
=

(
ne − iγ κ
κ ne + iγ

)(
c1

c2

)
(2.24)

with ci the amplitude of the unperturbed mode in the ith waveguide. The coupling
constant is determined via the lossless case. The coupling between the unperturbed
modes of each waveguide mixes them and gives rise to two supermodes distributed
across the whole structure. The matrix eigenvalues of (2.24) lead to the effective
indices ncoupled of these two supermodes, with the analytical form:

ncoupled,1/2 = ne ±
√
κ2 − γ2 (2.25)

First, in the passive case when γ = 0, the effective indices of the two supermodes
are real and on either side of ne, their spacing is tuned by the coupling κ. The
closer the waveguides get, the higher the coupling constant κ is, the more the
supermodes deviate from the unperturbed modes.

Then, when the modal gain/loss factor γ increases from zero, this deviation
tends to decrease. The effective indices of the two supermodes get closer, but are
still purely real, we are in the unbroken PT symmetry phase. The boundary of
this zone is γ = κ. This point is the exceptional point (or square root bifurcation)
where the two eigenvalues are real and equal/degenerate. Then when γ > κ, we
enter in the broken PT symmetric phase, where the eigenvalues become complex
conjugates. The complex nature of the effective indices of the two supermodes
indicates that one mode is amplified, while the other is absorbed during their
propagation along z.

To illustrate, we calculate a real structure via numerical simulation (Camfr).
We use two slab waveguides with a width w of 600 nm, a spacing d of 100 nm (see
Fig. 2.1) and an excitation of λ0 = 1µm. The cladding refractive index n0 is equal
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to 1 and the real part of the refractive index inside the waveguides is nr = 2. The
imaginary part of the refractive index inside the waveguides is ni = ±γguide with
the gain/loss factor γguide, leading to the modal gain/loss factor γ.

The numerical values of the effective indices of the two supermodes (Fig. 2.2)
confirm the theoretical predictions. We begin at γguide = 0 with two different
real values of the effective indices. Then when γguide increases, they remain real
and approach each other until γguide ≈ 0.016. At this exceptional point the effec-
tive indices are equal and degenerate. Beyond this point, they become complex
conjugates in the broken zone.

γguide
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Figure 2.2: Evolution of the real (a) and imaginary (b) part of the effective indices
of the two supermodes ncoupled as a function of the gain/loss factor γguide. We
observe the exceptional point around ncoupled ≈ 0.016 where one transits from the
unbroken to the broken zone.

It is very enlightening to examine the field profiles of the two supermodes (Fig.
2.3). In the passive case (Fig. 2.3(a)), the profiles are symmetric or antisymmetric
compared to the symmetry plane. These profiles are orthogonal to each other.
When γguide 6= 0, but still in the unbroken zone, these profiles are slightly dis-
torted (Fig. 2.3(b)) and they keep their orthogonality and symmetry. These two
supermodes are equally present in the gain and in the lossy waveguide, leading to
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Figure 2.3: Field profiles of the two supermodes (orange and blue) in the passive
case with γguide = 0 (a), in the PT symmetric phase with γguide = 0.15 (b) and just
at the beginning of the broken zone with γguide = 0.17 (c). The initially symmetric
or anti-symmetric profiles lose their symmetry and become mirror images from one
another.

a cancellation of the amplification with the absorption. This explains why they
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keep real effective indices even in the presence of gain or loss. Then, just after
the exceptionnal point around γguide ≈ 0.016, the profiles change completely (Fig.
2.3(c)). They are centered in one of the waveguides with only a small part in
the other waveguide. The mode centered in the gain waveguide experiences gain,
while the other is centered in the lossy waveguide and experiences loss. However,
these profiles are symmetric with respect to one another, and so they are equally
distributed concerning the real part of the refractive index. This explains why the
effective indices of the associated supermodes have the same real part. Therefore
the previous explains why the effective indices are complex conjugates. All these
conclusions can be retrieved via the eigenvectors of the matrix (2.24), as they
represent the distribution of the two supermodes over the waveguides.
PT symmetry allows for a modulation of the propagation constants that can

be useful to transform our coupled waveguides in a simple switching structure. If
we excite only the unperturbed mode of the upper waveguide (a combination of the
two supermodes), this excitation will slowly flow to the other waveguide during its
propagation along z. One defines the coupling length, the distance to have a total
power exchange between the two waveguides, as Lc = π

k0<(ncoupled,1−ncoupled,2)
. If our

structure length is two times Lc, the output is the initial waveguide input (Fig.
2.4(a)). The coupling length is inversely proportional to the difference between the
two propagation constants. Therefore, by increasing the gain/loss factor γ, this
difference decreases and so the coupling length increases. So we can double this
coupling length via the gain/loss factor and we can switch the output waveguide of
our signal (see Fig. 2.4(b)). Note that we do not even have to reach the exceptional
point and the broken PT symmetry zone for this switching application.

Figure 2.4: Design of a switching structure where the power stays in the original
waveguide in the passive case (a) and switches to the other waveguide as the
coupling length Lc is doubled due to the right choice of gain/factor.
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Figure 2.5: Transmission as function of the amount of loss present in one arm
of a directional coupler (figure from [7]). The transmission decreases as the loss
increases until the exceptional point.

2.2.3 State of the art

We shortly present in this subsection some counter intuitive or interesting effects
brought by PT symmetry in photonics, without being exhaustive. For a more
extensive review , we refer the reader to [48].

Loss induced transmission

A perfect gain and loss balance is difficult to reach. However, one of the advantages
of PT symmetry is that some effects remain valid for the passive case with only
loss. For example, we examine the transmission of a directional coupler with only
loss in one of the waveguides (Fig. 2.5). As we can expect, at the beginning the
transmission decreases as the loss increases. Surprisingly, at some point (around
Loss equal to 6 cm−1) the transmission reverses the trend and starts to increase
as the loss still increases.

This unexpected behaviour can be understood via the analysis of the eigen-
modes of the structure (Fig. 2.6). As we are not in a perfect PT -symmetric case,
our modes do not encounter a true exceptional point. Instead they encounter a
‘pseudo’ exceptional point, before which all supermodes of the structures are al-
most equally present in the two waveguides, leading to an absorption of power
during the propagation. In contrast, beyond this ‘pseudo’ exceptional point, one
of the supermodes is almost only present in the non-lossy waveguide. This less
damped supermode leads to an increase of the transmission, while the other (sit-
uated in the lossy waveguide) is absorbed.

Single-mode lasing

Microring resonators are an important class of integrated structures that can be
used to create laser resonances. Such structures support whispering gallery modes
(WGMs) [49] with high quality factors and small footprint making them good can-
didates for on-chip integrated photonic components. However, a major drawback
of this arrangement is that they support many modes closely spaced in frequency
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Figure 2.6: Evolution of the real (a) and imaginary (b) part of the effective in-
dices of the two supermodes ncoupled as a function of the loss present in only one
waveguide γguide. We observe a ‘pseudo’ exceptional point around ncoupled ≈ 0.035
whereafter the real parts of the eigenmodes become close, but not equal, and the
imaginary parts split.

with different azimuthal order. All the competing modes in the gain bandwidth
can create laser resonances. This inherently multi-modal operation is detrimental
to the spatial and temporal stability of the emitted radiation. Thus, mode selec-
tion strategies are implemented to achieve the desired single-mode operation. It
turns out that PT symmetry can be useful for this selection due to mode con-
trol. We present here two different PT -techniques, which depend on the gain/loss
pattern, to achieve single-mode operation.

A first possibility is to add an alternation of gain and loss in the longitudinal
direction of the microring structure [20]. The absence of modulation of the real
part of the refractive index in the longitudinal direction induces a continuous
rotational symmetry in the passive case. This symmetry implies that, for each
azimuthal order, there are two modes that are degenerate in frequency. Adding
gain and loss with a certain azimuthal order will break this degeneracy (in the
complex plane) of the two modes with the same order. One is more present in the
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Figure 2.7: Electric field intensity of two WGMs with the same azimuthal order
than the gain/loss pattern (A,B) or a different one (C,D) (figure from [20]).

gain parts (see Fig. 2.7(a)): it will give rise to laser resonance, but its frequency
does not change. The other (previously degenerate) mode is more present in the
lossy parts (see Fig. 2.7(b)): it will be absorbed, at the same frequency. All the
other modes with different azimuthal orders are equally present in the gain and
loss regions, and are thus neither amplified nor absorbed (see Fig. 2.7(c,d)). This
choice of gain/loss pattern makes the two chosen modes enter the broken PT zone
as soon as gain and loss is added. All the other modes need more gain and loss to
be broken. So the azimuthal order of the gain/loss pattern defines the mode that
creates a laser resonance. This is seen in Fig. 2.8 where one compares the laser
output of a microring with uniform gain (Fig. 2.8(a)), to one with gain and loss
as described (Fig. 2.8(b)). The first one exhibits multi-mode operation as several
modes are present in the gain bandwidth, the second one exhibits single-mode
operation as only one lasing mode is in the broken PT zone.

A second possibility is to couple two similar microrings, one with uniform
gain and the other with uniform loss. In the passive case, the coupling of the two
microrings breaks the degeneracy between their respective modes as in the coupled
wavguides, this can be seen in the lasing spectrum of a pair of identical microrings
with uniform gain (Fig. 2.9(c,d)). The exceptional points of these pairs depends
only on the coupling constant and the gain and loss intensity. If we reach the
exceptional point (broken PT zone) of only one pair of modes, again one mode
will lase and the other will be absorbed. But the other pairs that are not in the
broken PT zone feel a balance between gain and loss and do not amplify nor are
damped. Only one mode is involved in the lasing phenomenon (Fig. 2.9(e,f)) and
single-mode operation is achieved in comparison to a single microring with uniform
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Figure 2.8: Lasing spectrum of a microring with uniform gain (A) or with gain
loss pattern with an azimuthal order equal to 53 or 55 (B) (figure from [20]).

gain (Fig. 2.9(a,b)).

Robust light propagation

Disorder and defects induce back-reflections in photonic structures and hinder
the possible applications. Topology has attracted attention in order to solve this
problem: topologically protected edge modes can have the property to propagate
in one direction only, and thus to allow for robust defect-immune transport. These
modes typically require the breaking of time-reversal symmetry, e.g. with magnetic
materials or with temporal modulation.

Non-Hermitian photonics, and the idea to use loss as an asset, also appeared in
the context of robust transport. Non-Hermitian structures can have the property
to amplify the forward propagating mode and to absorb the backward mode. A
representative solution is a chain of rings coupled through auxiliary rings with gain
and loss (see Fig. 2.10). The forward and backward modes are counter-clockwise
in the main rings and clockwise in the auxiliary rings. The forward mode (left to
right in Fig. 2.10) propagates only in the upper half of the auxiliary rings, which is
the gain region. Inversely, the backward mode propagates only in the lower half of
these auxiliary rings, which is the lossy region. This kind of structure demonstrates
robust light transport in the presence of defects [51].
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Figure 2.9: Lasing spectrum (left column) and intensity pattern (right column) of
a single microring with uniform gain (a,b), of two coupled microrings with uniform
gain (c,d) and PT -symmetric coupled microrings (e,f) (figure from [50]).

Figure 2.10: Example of photonic structure consisting of coupled rings with am-
plified forward mode and absorbed backward mode (figure from [51]).
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3
Optical concepts

In this chapter we provide an overview of the main concepts utilized throughout
this thesis. Sec. 3.1 prepares the field with Maxwell’s equations leading to the
Helmholtz equation and related concepts such as the Poynting vector, boundary
conditions, and Fresnel coefficients. Afterwards, analytical models and simulation
techniques adapted to various structures are presented in Sec. 3.2.

3.1 Photonics

The purpose of photonics is to transmit information with electromagnetic waves.
It considers each step of this process from the emission of the information to its
reception via multiple propagation channels and modulation.

The classical interaction of light with materials is defined by the Maxwell equa-
tions (Sec. 3.1.1). Sec. 3.1.2 introduces the Helmholtz equation and defines the
Poynting vector and then we describe the Fresnel coefficients in Sec. 3.1.3.

3.1.1 Maxwell equations

Electromagnetic waves interact with the electrons and nuclei of materials. For our
purposes, a quantum description of these interactions is not necessary. We focus
on the Maxwell equations that describe the classical interplay between light and
materials at a macroscopic level. If we consider a field with a harmonic variation
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ejωt, the equations can be written as [52]:

∇ ·D = ρ (3.1)

∇ ·B = 0 (3.2)

∇× E = −jωB (3.3)

∇×H = J + jωD (3.4)

This set of equations connects the four macroscopic fields D (the dielectric dis-
placement), E (the electric field), H (the magnetic field), and B (the magnetic
induction) with the current densities J and the free charge ρ. In this work we
will use the concept of modes. These are solutions of the Maxwell equations that
propagate, even without internal sources of light, so we can set ρ = 0 and J = 0.

Since we do not take into account the nonlinear optical response of the material,
we can define the constitutive equations that describe the response of the material
to the electromagnetic fields by:

D = ε0εE (3.5)

B = µ0µH (3.6)

with ε0 and µ0 the electric permittivity and magnetic permeability of vacuum,
respectively. They are connected to the speed of light c through the relation
c = 1√

ε0µ0
. The dielectric permittivity ε describes the electric field response in a

bulk material. In a similar way, the permeability µ describes its magnetic field
response. We focus here on the non-magnetic isotropic case, so ε and µ(= 1)
are scalars and not tensors. As described in Chap. 2, PT symmetrical structures
experience gain and loss. As we will see, this induces that ε is complex at some
point.

3.1.2 Helmholtz equation

Without external stimulation (J and ρ = 0) and by using the constitutive equations
and the curl equations, we can find the wave equation:

∇×∇× E = µ0ω
2D (3.7)

leading to

∇ (∇ · E)−∇2E = εε0µ0ω
2E = k2

0εE (3.8)

where we used ω/c = k0. In structures where ε is piecewise constant, we can reduce
Eq. 3.1 to ∇ · E = 0, and the previous wave equation turns into the Helmholtz
equation, which is also correct for the H field with these approximations:

∇2E + k2
0εE = 0 (3.9)

∇2H + k2
0εH = 0 (3.10)

The electric (magnetic) field profile solution depends on the boundary conditions
at the interfaces (see Sec. 3.1.3).
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In homogeneous media (ε constant), the solutions (or modes) are plane waves:

E = E0e
−jk·r (3.11)

with the condition E0 · k = 0 (from ∇ ·E = 0) indicating that the field is perpen-
dicular to the propagation direction. k is called the wavevector and indicates the
direction of propagation. Its amplitude is defined by:

k =
ω

c

√
εeff =

ω

c
neff (3.12)

where neff is the effective refractive index, generally called the dispersion relation.
The effective index is the link between ω and k. In homogeneous media the effec-
tive refractive index is equal to the refractive index of the material neff = n =

√
ε

and the dispersion relation is a straight line. We can already conclude that a ho-
mogeneous media with a complex refractive index will have a complex wavevector.
The sign of the complex component (via Eq. 3.11) leads to a damped (negative
imaginary component) or amplified (negative imaginary component) plane wave.

Note that all along this work, material dispersion will be neglected, meaning
that we simply fix the material index in the frequency region of interest. In the
frequency domain this does not constitute a restriction.

Like every wave, an electromagnetic wave transports energy. The resulting
energy flow of a electromagnetic wave is represented by the Poynting vector. As
we use harmonic fields, the time average of the Poynting vector is given by [53]:

〈S〉 =
1

2
<{E×H∗} (3.13)

with ∗ denoting the complex conjugation and < the real part. It can be shown
that the energy flow of a plane wave is given by:

|〈S〉| = <{n}
2µ0c

E0
2 (3.14)

3.1.3 Fresnel coefficients

We briefly define the Fresnel coefficients for an incident plane wave (Eq. 3.11).
They result from the boundary conditions of the electric and magnetic fields at a
straight interface of two media labelled 1 and 2.

n̂ · {D1 −D2} = 0 n̂ · {B1 −B2} = 0 (3.15)

n̂× {E1 − E2} = 0 n̂× {H1 −H2} = 0 (3.16)

where n̂ is a unit vector normal to the interface. Note that those boundary condi-
tions are valid without current and charge (J = 0 and ρ = 0).

Consider a plane wave propagating in medium 1 and impinging the interface
with medium 2. Using the superposition principle the transmitted electric field in
medium 2 (ET ) should match with the superposition of the incident (EI) and the
reflected (ER) electric fields in medium 1. At normal incidence the transmission t
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and reflection r coefficients are identical for both polarizations (TE and TM) [54]
and are:

r ≡ ER
EI

=
n1 − n2

n1 + n2

, t ≡ ET
EI

=
2n1

n1 + n2

(3.17)

with n1 (n2) the complex refractive index of medium 1 (2).
The reflectance is defined as the reflected energy |〈SR〉| with respect to the

incident energy |〈SI〉|:

|〈SR〉|
|〈SI〉|

=

∣∣∣∣EREI
∣∣∣∣2 = |r|2= R (3.18)

where we used Eq. 3.14 to find the reflection coefficient in Eq. 3.17. Similarly, the
transmittance is defined as the transmitted energy |〈ST 〉| divided by the incident
energy:

|〈ST 〉|
|〈SI〉|

=
<{n2}
< {n1}

∣∣∣∣ETEI
∣∣∣∣2 =

<{n2}
< {n1}

|t|2= T (3.19)

The transmittance is therefore normalized by the permittivity of the two media.
These two Eqs. 3.18 and 3.19 will be useful to describe the reflectance and trans-
mittance throughout this work.

3.2 Semi-analytical and numerical models

In this section we further introduce the methods to describe the cavity resonances
and the coupling with these resonances. Sec. 3.2.1 discusses Fabry-Pérot reso-
nances and Sec. 3.2.2 presents coupled mode theory. Furthermore, we expose
our simulation techniques for propagating waves with the eigenmode expansion
method (Sec. 3.2.3) implemented in CAMFR, and the scattering and transfer ma-
trix methods (Sec. 3.2.4). We conclude with a brief introduction to 1D periodic
structures in Sec. 3.2.5.

3.2.1 Fabry-Pérot cavity

For many of the PT structures studied in this book (Chap. 4 and 7), the reso-
nance interpretation is fairly straightforward via a Fabry-Pérot model (FP). The
conventional FP structure is defined by a cavity enclosed by two partially reflective
mirrors [55]. For a single frequency excitation, resonances arise inside the cavity
and they induce local maxima in the transmittance spectra. These resonances
results from constructive interference and were discovered by Charles Fabry and
Alfred Pérot in 1897: they concluded that the interference induced contrast in the
transmittance of a thin film could be used for interferometry [54].

This kind of resonance is produced via constructive interference of the wave
after a round-trip inside the cavity. With β the wave vector of the light in the
cavity medium, and l the length of the cavity, then the phase condition for a
constructive interference is:

e−jβle−jϕr,Le−jβle−jϕr,R = e−j2mπ (3.20)
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Or equivalently

2βl + ϕr,L + ϕr,R = 2mπ (3.21)

where m is an integer defining the order of the resonance, and ϕr,L and ϕr,R
the phases induced by the reflection (the phase of the left and right reflection
coefficients rL and rR) at the partially reflective mirrors. As β = ωn/c with n the
refractive index in the cavity, the frequency separation ∆ω of the peaks is given
by

|∆ω| = cπ

2nl
(3.22)

To excite a resonance, we could expect to need the exact resonance frequency
ω0. In fact there is a narrow band of frequencies around which the resonance can
be excited. This widening of the acceptable exciting frequency range is due to the
dissipation of energy in the cavity walls and in the dielectric of the cavity [53]. A
measure of the sharpness of the resonance or the energy dissipation is the Q factor
of the cavity [55]:

Q =
ω0

ωFWHM

=
ω0τ

2
(3.23)

with ωFWHM the full width at half maximum of the transmission resonance peak
and τ the resonance lifetime.

3.2.2 Coupled mode theory

In this section we introduce Coupled Mode Theory (CMT), which will be useful for
the description of the interaction between sharp resonant structures and waveguide
modes in Chap. 6. CMT is strictly valid when the width of the resonance is
far smaller than the resonance frequency [56]. In that case waveguide dispersion
can safely be ignored [33]. Therefore, it is well-suited for various problems, and
amongst them for the description of plasmonic [57] and photonic Fano resonances
[58], or for aperture antennas [59].

This theory is established on the coupling of modes in a time-dependent for-
malism of optical resonators [55]. We assume a system (see Fig. 3.1) where a single
mode optical resonator couples with m ports, which are single-mode waveguides
in this work. Multiple resonators or resonator modes can also be modeled, by
incorporating their interaction, or by simply connecting them with waveguides, as
in Chap. 6. The equations of CMT are [56]:

da

dt
=

(
jω0 −

1

τ

)
a+ (〈κ|∗) |s+〉 (3.24)

|s−〉 = C|s+〉+ a|d〉 (3.25)

where a is the complex amplitude of the mode in the cavity with ω0 its center
resonance frequency and τ the lifetime of the resonance. |s+〉 and |s−〉 correspond
to the input and output waves in the ports, respectively. The various couplings
are expressed by 〈κ| for the resonator input and by |d〉 for the resonator output.



3.2 Semi-analytical and numerical models 28

Figure 3.1: Schematic of an optical resonator system coupled with multiple ports.
The arrows indicate the incoming and outgoing waves.

In addition, the incoming and outgoing waves in the ports can also couple through
a direct pathway without intervention of the resonance, accounted for with a scat-
tering matrix C.

Here we use the Dirac’s bracket notation: the ket |v〉 can be represented by
the column vector:

|v〉 =

v1
...
vn

 (3.26)

and the bra 〈v| by a row vector:

〈v| =
[
v∗1 · · · v∗n

]
(3.27)

with ∗ indicating complex conjugate.
With the lifetime of the resonance τ , the total decay rate is expressed as τ−1.

For our structure in Chap. 6 two factors are involved in this decay, the coupling
τ−1
c and the absorption/amplification τ−1

a . The presence of loss in the cavity
induces absorption, but inversely the presence of gain induces amplification with a
negative decay rate. Another decay channel is here neglected, the radiation. The
total decay rate is then given by:

τ−1 = τ−1
c + τ−1

a (3.28)

Note that the amplitude a is normalized such that |a|2 corresponds to the
energy in the resonator. Since |si+|2 (|si−|2) corresponds to the input (output)
power propagating in port i, the conservation energy in the passive case (τ−1

a = 0)
means

da

dt
= 〈s+|s+〉 − 〈s−|s−〉 (3.29)

We assume that τ and κ are independent of the frequency, this can be valid
only if the dispersion of the waveguide mode around the cavity resonance is weak.
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It means that the width of the resonance is smaller than the resonance frequency.
With quantities oscillating with ejωt, we can rewrite Eq. 3.24:

a =
(〈κ|∗) |s+〉

j (ω − ω0) + 1/τ
(3.30)

This equation highlights the single pole character of the resonator. In a similar
way as for a Fabry-Pérot resonance, we can define a quality factor Q that links
the narrowness of the transmission peak and the resonance lifetime (Eq. 3.23).

The parameters 〈d| and 〈κ| can be determined using time reversal transforma-
tion and energy conservation as described in [55] and one can find

〈κ| = 〈d| (3.31)

〈d|d〉 = 2/τc (3.32)

C|d〉∗ = −|d〉 (3.33)

Eq. 3.31 shows a symmetry between input and output coupling. Eq. 3.32 shows
that the output coupling is related to the decay rate of the resonance in the passive
case. The energy escaping the cavity goes to the waveguides. The last equation
shows that the coupling constants are linked to the direct scattering matrix C.

Using Eqs. 3.31 and 3.33 in Eqs. 3.24 and 3.25, the global process can be written
with a scatter matrix S:

|s−〉 = S|s+〉 =

[
C +

(〈κ|∗)|d〉
j(ω − ω0) + 1/τ

]
|s+〉 (3.34)

In the special case of only one input waveguide, Eq. 3.34 can be rewritten

|s−〉 = S|s+〉 = C

[
1 +

−2/τc
j(ω − ω0) + 1/τ

]
|s+〉 (3.35)

using Eq. 3.32. For passive and reciprocal structures the scattering matrices will
be unitary and symmetric, respectively. The coupled mode theory will be useful
to describe the interaction of a chain of resonators and a waveguide, as we will see
in Chap. 6.

3.2.3 Eigenmode expansion method

In this section we provide an overview of the linear mode expansion framework
used in Chap. 4 with the numerical simulation program CAMFR [39].

The basis of mode expansion is the consideration of a structure that is invariant
along a certain direction z. In this case ε and µ are independent of z. In theory, the
structure may be infinite in the perpendicular direction(s). In practice, however,
a boundary surface will always be introduced. In a general invariant structure the
sourceless Maxwell equations have solutions of the form [32]:

E(r) = E(rt)e
−jβz (3.36)

H(r) = H(rt)e
−jβz (3.37)

with rt the tangential component of r, and β the mode propagation constant.
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By inserting Eq. 3.36 in the Helmholtz equation 3.9, which is valid for (transver-
sally) piecewise constant geometries, we obtain an eigenvalue problem:

(∇2
t + k2

0ε)E = β2E (3.38)

hence the term eigenmode expansion. ∇2
t is the transverse Laplacian operator.

The expression for the H-field is analogous.
If β has a real component the mode is propagative. If β has an imaginary part

the mode amplitude is exponentially decaying or increasing. In the PT framework,
propagative modes lay in the PT -symmetric phase while decaying or increasing
modes are present in the broken PT -symmetric phase after an exceptional point.
The modes with real β can persist in the absence of any sources, while maintaining
their general shape. In the passive case, we can also have decaying (evanescent)
modes which are excited at discontinuities between several structures, and are
negligible a few (effective) wavelengths away from the interface.

Using adequate boundary conditions we obtain a set of eigenmodes. The for-
ward propagating field in the structure, in response to an arbitrary excitation, can
be written as a superposition of these modes [60]

E(r) =
∑
i

AiEi(rt)e
−jβiz (3.39)

H(r) =
∑
i

AiHi(rt)e
−jβiz (3.40)

with Ai complex mode amplitudes. In this way, with the knowledge of the modal
field profiles and propagation constants, the field throughout the invariant struc-
ture is reduced to a vector of mode amplitudes:

(E(r),H(r))↔ A = [Ai] (3.41)

The number of modes is infinite. However, for calculations the series has to be
truncated to a finite number N . The results are still relevant, because the method
converges as N increases. Indeed, the contributions of strongly evanescent modes
become negligible.

From the Lorentz reciprocity theorem one can show that the modes are orthog-
onal. Furthermore, we can always normalize the profiles, and in our formalism the
important orthonormality relation is expressed as:∫

t

(Ei ×Hj) . uzdl = δij (3.42)

with uz the unit vector along z, δij the Kronecker delta and integration along
the transverse direction. Note that this orthonormality is only valid in the PT
symmetric phase. Orthonormality in the broken PT symmetric phase needs to be
redefined [46], but this new formalism is out of the scope of this book.

If an interface between two structures occurs, an incident mode can scatter.
On the reflection side there are fields propagating in both directions. These bidi-
rectional situations are also modeled by mode expansion, if we include backward
propagating modes in equations 3.39 and 3.40. By splitting Maxwells equations in
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transverse and longitudinal components, it is possible to show that a mode with
components:

(Ei,t,Ei,z,Hi,t,Hi,z, βi) (3.43)

has a corresponding counterpropagating mode with:

(Ei,t,−Ei,z,−Hi,t,Hi,z,−βi) (3.44)

3.2.4 Scattering matrix and Transfer matrix formalism

Propagation through a 1D optical structure can be described by a scattering matrix
S. This matrix connects the incoming and outgoing amplitudes of a wave as
follows: (

bL
fR

)
=

(
rL t
t rR

)(
fL
bR

)
= S

(
fL
bR

)
(3.45)

with fL/R or bL/R the amplitude of the forward or backward propagating mode at
the left/right of the structure (see Fig. 3.2 for convention). For a plane wave, rL
and rR are the left and right reflection coefficient respectively and t is the trans-
mission coefficient. For more complex modes, these coefficients are determined via
the mode-matching technique. This technique imposes continuity of the tangen-
tial total field. The coefficients depend on overlap integrals of the modes at the
interface.

Figure 3.2: Description of a finite 1D structure with the incoming and outgoing
waves.

As all the systems we study are reciprocal, transmissions from the left and
the right are equal, which implies that S is symmetric. In the passive case, S is
unitary (T symmetric) as a consequence of the conservation of the probability or
in our case the intensity of the amplitude. This leads to the equations:

|rL|2 + |t|2 = 1 (3.46)

|rR|2 + |t|2 = 1 (3.47)

tr∗l + rRt
∗ = 0 (3.48)

The two first equations induce that the left and right reflectances are equal RL =
RR = R with RL/R = |rL/R|2. This leads to the familiar conservation relation for
the passive case:

R + T = 1 (3.49)
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When we add gain and loss in a PT symmetric fashion, S-matrix respects PT
symmetry. It means that there is a broken and an unbroken PT phase. In the
unbroken phase each S-matrix eigenstate is mapped back to itself under the PT
operation, whereas in the broken phase they are mapped to each other. At the
boundary, called the exceptional points, the two eigenstates merge. To identify
these phases one can examine the eigenvalues of S [61], which have unity module
only in the unbroken phase. Alternatively, one can use the quantity (RL+RR)/2−
T , which is below (above) unity in the unbroken (broken) phase, respectively.
When this quantity is equal to one, it describes the boundary between the two
phases. The potential lasing states of a 1D PT structure only appear in these
broken phases [62].

The objective is to model structures consisting of several layers and interfaces.
Therefore we have to combine their S matrices to obtain the total S matrix of the
whole structure. This so-called S-scheme is numerically the most stable.

Another scheme, that is popular in single-mode methods, is the transfer matrix
scheme. The transfer matrix formalism gives computational advantages [63] in
comparison with the S-scheme but it is counterbalanced by a lesser stability for
non-linear simulations for example [64]. As we use a linear single-mode structure in
Chap. 6, we will use the transfer matrix formalism. It examines the propagation of
an incoming wave along a given fixed direction. Instead of connecting the outgoing
and the incoming amplitudes, the transfer matrix M connects the amplitudes on
the right side to the left one:(

bR
fR

)
=

(
1/t −rL/t
rR/t 1/t∗

)(
bL
fL

)
= M

(
bL
fL

)
(3.50)

Note that det(M) = 1 if the external refractive indices are equal, even in the
presence of gain and loss [65].

Each layer of the structure is represented by a transfer matrix. Then the whole
transfer matrix is obtained via the multiplication of each layer’s transfer matrix.
The transfer matrix can be viewed as a mapping transforming the wave after it
passes through each scatterer or layer. For an N layer structure, the total transfer
matrix is described as:(

bR
fR

)
= M

(
bL
fL

)
= M1M2 · · ·MN−1MN

(
bL
fL

)
(3.51)

When we add gain and loss in a PT symmetric fashion, the conservation rela-
tion 3.49 is replaced by another one. As det(M) = 1 is still valid, we can deduce:

rLrR = t2
(

1− 1

T

)
(3.52)

which leads to the generalized conservation relation:√
RLRR = |T − 1| (3.53)

This equation is very useful to understand the different behaviours of all single
mode 1D structures with PT symmetry. Eq. 3.53 can be reduced to T+

√
RLRR =

1 if T < 1. This relation reminds us of the conservation relation 3.49 where the
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reflectance R of the passive case is replaced by a geometric mean of the left and
right reflectances of the PT symmetric case. So in general RL 6= RR, which implies
that the scattering from one side loses power while the scattering from the other
side gains power. Naturally, unintended equality of RL and RR can occur by
varying some parameter (e.g. wavelength) in a complex PT structure.

When T > 1, the conservation relation becomes T −
√
RLRR = 1. In that

case, the scattering from both sides gains power. Unintended degeneracy of the
reflectances (RL = RR) is also possible leading to a pseudo conservation equation
T −R = 1.

Finally when T = 1 we find
√
RLRR = 0, which signifies that at least one

of the reflectances is equal to zero (or both, if degenerate). Such a scattering
process can be called an anisotropic transmission resonance (ATR) [61]. In the
non-degenerate case, we have a power conserving scattering process from one side,
while from the other side the scattering process gains power. ATRs arise from
transmission resonance (T = 1) of passive cases when PT symmetry (gain/loss)
is added, this will be shown in Chap. 6 and 7.

3.2.5 Periodic structure

If we specify a structure to be periodic along the z direction as in Fig. 3.3, this
means for the permittivity:

ε(z) = ε(z + a) (3.54)

with a the period. Using this symmetry only, it is possible to show that the modes
have the following structure [66]:

E(z) = uk(z)e−jkz(ω)z (3.55)

with uk(z) having the same lattice periodicity:

uk(z) = uk(z + a) (3.56)

These modes are called Bloch modes and kz is the Bloch propagation constant.
This is the main result of the Floquet-Bloch theory.

As we have seen, the dispersion k(ω) of plane waves in homogeneous media is a
straight line. This is no longer the case for periodic structures as we can see in Fig.
3.4. This dispersion relation is obtained for the structure of Fig. 3.3 with n1 = 1.0
and n2 = 2.0 and with the same widths d1 = d2 = 0.5a. One of the main results
is the presence of gaps called bandgaps. At frequencies inside these gaps, no kz
is available and so there is no propagating mode in the z direction. Conversely,
outside these gaps, there is an infinity of propagating modes forming bands. The
usual graphs of ω as a function of kz are called band diagrams or band structures.

Bandgaps always occur in a 1D structure with normal incidence and n1 6= n2.
The size of these bandgaps increases with the contrast between the two refractive
indices. No propagating modes lay inside these bandgaps but there are evanescent
modes with complex kz. As these evanescent modes do not respect the translational
symmetry of the system, they can not be excited in perfect infinite structure. They
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Figure 3.3: Infinite periodic structure along z composed of a succession of two
layers of different materials.

can only appear around defects or at the boundaries of the crystal where they can
localize and form a resonance.

As we can see in Fig. 3.4, the bands display a periodic behaviour. With the
equivalence of the solutions, we can restrict our studies to the interval kz =
[−π/a, π/a] to obtain all the necessary information. This interval is called the
first Brillouin zone in the reciprocal or k-space. Moreover, the symmetry between
forward and backward modes allows us to only consider kz = [0, π/a], the reduced
Brillouin zone.

kz(2π/a)
-0.5 0 0.5 1 1.5

ω
(2
π
c/
a
)

0

0.5

1

Figure 3.4: Band structure of a periodic structure. We observe bandgaps or regions
of ω where no mode or kz is available. The dashed line shows the dispersion of a
homogeneous medium with an averaged refractive index (d1n1 + d2n2)/a = 1.5

Physically, the bandgaps can be understood as a consequence of multiple re-
flections and interferences on each interface of the structure. Another physical
interpretation is found via the field profiles of the modes just above or below a
bandgap. These two modes have the same periodicity but one is more localized in
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high index regions, and inversely for the other mode. Being localised in high index
regions tends to decrease the frequency of the mode. This establishes a difference
of frequencies between the two modes and opens a bandgap.

Adding balanced gain and loss in a periodic structure is not straightforward. A
first idea could be to add gain in one of the material (=(n1) = +γ) and loss in the
other (=(n2) = −γ), with γ the gain/loss factor. But in this case, the mode just
below/above the first bandgap and more situated in the high/low refractive index
n2/n1 does not feel a balance between gain and loss. The modes will experience
amplification or absorption as soon as γ 6= 0, and they will not split from an
exceptional point, rendering this configuration non PT -symmetric. If we want a

Figure 3.5: Infinite periodic structure along z composed of a real (n1,n2) and
imaginary (gain and loss) periodic modulation of the refractive index. These two
modulations have the same period but the imaginary one is translated from a
quarter period compared to the real one.

real balanced mapping of gain and loss, they must be equally present in each layer.
This can be done by using a complex modulation of the refractive index with the
same period as the real modulation, but translated by a quarter period (see Fig.
3.5). The band structure in Fig. 3.6 is obtained with this mapping and γ = 0.5. As
presented in the previous chapter, the modes merge by pairs at exceptional points
to become complex conjugates. We note that these exceptional points depend on
kz. For the two lowest bands, the exceptional point occurs at smaller γ at the
edge of the Brillouin zone. We can observe that PT symmetry tends to merge
the modes just below and above the first bandgap and thus tends to close the first
bandgap (around ω = 0.3 2πc/a) encircled by these two bands. With γ = 0.5,
there are propagating modes for all frequencies below 0.55 2πc/a. We can also
observe that in the passive regime, the two modes of the two highest bands at the
edge of the Brillouin zone are already degenerated (Fig. 3.4). PT symmetry will
leave this degeneracy by giving a complex component to these two modes. For
them, the exceptional point is situated at γ = 0 and they enter the PT broken
phase as soon as γ 6= 0.
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Figure 3.6: Real part (a) and imaginary part (b) of the band structure of a PT
symmetric periodic structure with gain and loss.



4
Diffractive PT -symmetric grating

4.1 Introduction

PT symmetry is widely investigated because of the novel light control abilities (see
Chap. 2). In particular, it induces the modes of a structure to merge at exceptional
points. In this chapter, we use this merging phenomenon to transform a specific
high-contrast dual-mode diffraction grating [67] into a powerful switching device,
by an intricate tuning of the guided modes propagating in the grating section.

In Sec. 4.2 we present the grating structure in its passive form, and discuss the
transmission and reflection diffraction orders. The excitation and interplay of the
two Bloch modes present in this grating allow us to compare it to a directional
coupler. Next we describe the gain/loss pattern we use for this periodic structure,
the motivation for this choice is found in Sec. 3.2.5. We perform the calculation
and interpretation of its transmittance properties for different incidence conditions
in Sec. 4.2.1 and 4.2.2. The longitudinal feedback of the finite-depth grating and
the gain/loss properties of the modes lead to a rich interference structure. The
grating now exhibits an exceptional point, leading to strong transmission contrasts
between the available diffraction channels. Larger gain/loss beyond the exceptional
point leads to laser-like resonance modes.

In addition, in Sec. 4.3 we adjust the periodicity of the real and imaginary parts
of the refractive index, while preserving the PT -symmetric character. With the
correct excitation conditions, this leads to a mixing of previously uncoupled modes
and a qualitative change of mode-merging at the critical points. Specifically, this
configuration leads to two different exceptional points, instead of one, allowing for
more variation in the diffraction properties.

This chapter is based on the work presented in [14].
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4.2 Single period

We build upon a grating structure that was extensively discussed in [67] leading
to strong diffraction contrasts. Here we examine this device when gain and loss
are involved, for specific excitation conditions.

The model structure (Fig. 4.1(a)) is a silica grating in air, on top of a silica
substrate, with a period p of 800 nm, grating depth d and a fill factor ff of 0.4 (the
silica teeth width divided by the period). The refractive index of silica is fixed to
nsilica = 1.45, and air has index 1. The structure is invariant along z (perpendicular
to the plane of Fig. 4.1(a)), so essentially we examine a one-dimensional grating
in a two-dimensional space.

x (µm)

0 0.2 0.4 0.6 0.8

n

-0.5

0

0.5

1

1.5

nr(x)
γ ni(x)

(b)

γ

Figure 4.1: (a) The grating schematic. Light is incident with an angle αin, there
are two reflection orders and two transmission orders indicated. (b) Real (blue
line) and imaginary part (dashed red line) of the index of refraction n(x) along
one period of the grating. The imaginary part is scaled by the (positive) factor γ.

When incident light reaches the top of the grating light is reflected via vari-
ous reflection orders, with the number of orders depending on the period p, the
wavelength of the incident light λ and the angle of incidence αin. Additionally the
light excites the propagating Bloch modes in the grating, which eventually reach
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the second interface where they partially reflect and partially excite various avail-
able transmission orders (their availability also depends on nsilica). This process is
described in detail in [67].

Now we apply gain/loss to the grating (Fig. 4.1(b)), so along the groove depth
d in the grating zone, but not in the substrate below, via the refractive index
n(x) = nr(x)+ γ ni(x)i. We need to respect the usual condition for PT symmetry
which is n(−x) = n∗(x). The real part nr(x) is symmetric (and equal to 1.45 or 1)
and ni(x) is antisymmetric (and equal to ±1) with respect to the origin (here at
the center of a silica section) thus γ ni(x) = ±γ. This choice of gain/loss pattern
is discussed in Sec. 3.2.5. The amount of gain/loss injected is defined by γ, which
is real and positive.

We choose this setup, with gain/loss partly in air, to introduce fewer parameters
in the description. In practice one will need various dielectric media and indices,
however the behaviour will remain the same.

To describe the grating we use rigorous two-dimensional numerical simulations
(eigenmode expansion (see Sec. 3.2.3) with CAMFR [39] and finite element method
with COMSOL [68]). We only examine TE polarization (one electric field compo-
nent out-of-plane, along the z-direction).

In the following two sections we examine the grating with gain/loss for two
specific incidence angles: the so-called Littrow mounting and perpendicular inci-
dence. We choose these angles because they allow for a high-contrast interference
behaviour, which is controllable via gain/loss in an interesting way. In addition,
these two incidence conditions will meet and interact when we tailor the period in
Sec. 4.3.

4.2.1 Littrow mounting

We use the parameters λ = 1060 nm and αin = 41.5◦ to achieve a Littrow mount-
ing. This kind of mounting ensures that the reflection order -1 propagates in the
exact opposite direction of the incident light. Then there are two reflection orders
(0 and -1) and two transmission orders (0 and -1). The two transmission (reflec-
tion) orders are also symmetrical compared to the y-axis. This structure achieves
high transmission efficiencies in the study without gain/loss, almost all the power
finishes in the two transmission orders [67].

Practically, the Littrow-mounting requires that the lateral (x) component of
the propagation constant of the incident wave kx0 is equal to π/p. In this setup,
we can see in the band structures (Fig. 4.2(a)) that the grating experiences only
two guided modes with different longitudinal components (ky) of the propagation
constants in the grating zone. Each of these modes is excited at the top by almost
half of the input power. This condition also ensures that the two modes are
at the limit of the Brillouin zone of the grating. Furthermore, by adjusting the
groove depth d, the interference between the two guided grating modes allows us
to transmit almost all the power to the substrate, either to transmission order 0
or to order -1, similar to a two-mode interferometer [67].

We calculate the transmittance properties for each transmission order of this
grating, with variations of the groove depth d and the gain/loss γ (Fig. 4.3). We
clearly see two very different regimes on either side of γ = 0.23, which is the PT
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Figure 4.2: Band structures of the grating showing the longitudinal component (ky)
of the propagation constants of the propagating Bloch modes as a function of the
frequency ω0 for (a) the Littrow mounting (kx = π/p) and (b) the perpendicular
incidence (kx = 0). The red line represents the light line and the blue line shows
the frequency used in this chapter. In the Littrow mounting, propagating modes
can exist below the light line because we only plot ky and not the full propagation
constant of the modes (with kx taken into account).

symmetry breaking point (see Chap. 2).
Below this point (γ < 0.23) we have the usual two-mode coupling behaviour:

in function of the groove depth the two guided modes interfere and allow light
transmission in a specific proportion to the two different transmission orders. For
example for a groove depth of 6.1 µm and γ = 0, all the light is transmitted to
the order 0 (T0 ≈ 1), and none to order -1 (T−1 ≈ 0).

When γ is increased, the distance needed to perform this exchange of power
increases asymptotically. Near the breaking point the structure acts like a very
efficient switching device. Indeed, with a fixed groove depth d (and therefore fixed
geometry), we can choose in which channel we want the light to be transmitted
with a very small gain/loss variation. This behaviour was pointed out in other
geometries, e.g. in [16].

Beyond the breaking point (γ > 0.23) the behaviour is very different. We
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Figure 4.3: (a) Transmitted light to transmission order 0 (T0) and (b) to diffraction
order -1 (T−1) for the Littrow-mounting case, in function of groove depth d and
gain/loss factor γ. The graphs are in logarithmic scale with respect to the incoming
power (0 indicates T0/−1 = 1). In (b) the three black lines below the critical point
are the theoretical coupling lengths, and the black dashed line beyond the critical
point indicates the theoretical phase resonance for lasing.

observe a laser-like resonance on the dark islands, indicating a very large trans-
mission. For even higher γ we note that the light can no longer be coupled to
the two different transmission orders and thus all the power finishes in the two
reflection orders. So in the context of switching applications, beyond the breaking
point all the light can be reflected.

We now explain all the previous phenomena in detail by analysing the two
guided modes that propagate in the grating region for this Littrow-mounting case,
via their effective refractive indices (Fig. 4.4(a)) and their field profiles (Fig. 4.4(b)
and (c)). These effective refractive indices are defined from the longitudinal com-
ponent (ky) of the propagation constants of the propagating Bloch modes in the
grating zone (so as if the grating teeth were infinitely long along y).
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Figure 4.4: (a) Real (solid line) and imaginary (dashed-dotted line) part of the
effective refractive indices of the two modes in function of γ (the amount of
gain/loss). (b) and (c) The field profiles of the two modes at γ = 0 and γ = 0.3
respectively.
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We observe the PT symmetry breaking point around γ = 0.23 (Fig. 4.4(a)).
The real parts of neff for mode 1 and mode 2 merge, while one mode (mode 1)
experiences gain (positive imaginary part) and the other (mode 2) experiences loss
beyond the critical point. This is a well known phenomenon presented in Sec. 2.2.2
and also described for an infinite grating [26,28].

The field profiles reflect this observation: for γ = 0 mode 1 (2) has its maximum
(minimum) in silica and its minimum (maximum) in air (Fig. 4.4(b)), leading to the
two different values of the real part of neff . For γ > 0 but still below the breaking
point, these fields remain symmetric compared to the origin and are present with
the same proportion in the gain and loss part, leading to a zero imaginary part of
neff despite the presence of gain and loss. When γ is increased until the breaking
point, mode 1 keeps this general shape but is flattened: The norm of the electric
field increases at x = 0.4 µm and decreases at x = 0 and 0.8 µm. For mode 2,
inversely, the electric field decreases at x = 0.4 µm and increases at x = 0 and
0.8 µm. This change continues until mode 2 almost matches the shape of mode 1
near the breaking point. Beyond this point, the two modes mirror each other (Fig.
4.4(c)) and are equally present in the air and silica part, leading to the same real
parts of neff . However, one mode is more present in the gain part and the other
in the loss part, leading to a non-zero imaginary part of neff , all consistent with
Fig. 4.4(a).

Below the breaking point the effective indices (i.e. the propagation constants)
come close to each other. This means that the coupling length (i.e. the groove
depth period) needed for the two-mode interference increases. Indeed the distance
needed to switch the outgoing power from one transmission order to the other
is given by λ/2(neff1,r − neff2,r) (similar to the coupling length in Sec. 2.2.2).
When the effective indices come closer and merge with each other, this distance
increases asymptotically. This explains in Fig. 4.3 (and theoretically shown in
(b)) the behaviour of the minimum transmission lines (yellow lines) below the
breaking point, these lines appear when all the light is transmitted through the
other transmission order.

Beyond the breaking point, the laser-like resonances (the points with very large
transmission, the dark spots in Fig. 4.3) are explained by the round-trip Fabry-
Perot effect of the particular mode that experiences gain (here mode 1). This is
modeled via exp(−ineffk02d)r1r2 = 1 (similar to model of Sec. 3.2.1) with r1 and
r2 the mode reflection amplitudes at the two interfaces, and k0 = 2π/λ the incident
wave number. The phase equality of this equation gives us the localization of these
large transmission points (dashed black line in Fig. 4.3(b)), while the amplitude
equality gives us the periodicity of these large transmission points along the groove
depth. The laser effect emits light towards the two transmission and the two
reflection orders without interference of the other guided mode, since only the
mode with gain is amplified and the other with loss is absorbed. This is clearly
an effect stemming from the longitudinal discontinuity and finite length of the
grating, which is not present in many of the ‘standard’ PT geometries such as the
directional coupler [9–11] or in gratings [24–28]. Other PT structures have shown
lasing properties e.g. with whispering-gallery modes [20–23].

The grating in the Littrow mounting case is interesting due to the high poten-
tial for switching applications. Moreover the understanding of its transmittance
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properties is critical to understand the phenomena when we tailor the period in
Sec. 4.3.

4.2.2 Perpendicular incidence

Now we study the transmittance properties of the grating with the same geometry,
except that the light is perpendicularly incident, i.e. kx0 = 0. In this configuration
the grating has only one propagating Bloch mode in the center of the Brillouin
zone (see Fig. 4.2(b)). The grating possesses also one reflection order (0) and three
transmission orders (+1, 0 and -1). We only show the power transmitted to the
0th transmission order (Fig. 4.5), because the +1 and -1 orders are not excited
(except near the breaking point, discussed below).

Figure 4.5: Transmitted light to diffraction order 0 for perpendicular incidence.
(a) is in log scale and (b) is a zoom in linear scale but saturated at 5 for visibility.

There are three very different regimes delimited by γ = 0.42 and 0.46. In the
first regime (γ < 0.42), almost all the light is transmitted to the zeroth transmis-
sion order. In the second regime (0.42 < γ < 0.46), there is a complex pattern in
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Figure 4.6: Real (solid line) and imaginary (dashed-dotted line) part of the effective
refractive indices of the two modes in function of γ.

the transmittance. Finally, in the third regime (γ > 0.46), the light is reflected to
the zeroth reflection order.

Again, the previous behaviours can be explained by analyzing the index of the
modes that propagate in the grating for this incidence configuration (Fig. 4.6).
We observe that there is only one propagating mode (mode 3) for the grating for
γ < 0.42. This explains why all the light is transmitted to the zeroth diffraction
order: the incoming perpendicular light (efficiently) couples with the only available
guided mode, which at the exit interface (efficiently) couples with the forward
diffraction mode (order 0). We do not have the two-mode interference as for the
Littrow mounting case of the previous section. The lines we see in Fig. 4.5(b)
is due to a Fabry-Perot effect of this single-mode. Note that on these lines the
output power can exceed unity, even if the mode experiences no gain, because in
PT -symmetric structures the total power is not locally preserved [10,11,27]. Even
for the unbroken PT phase, the modes are not power orthogonal and thus the
power can oscillate [11].

However from γ = 0.42 a new propagating mode appears (mode 4). The mode
numbers here (3 and 4) are used for later reference. When a PT structure supports
an even number of modes (at γ = 0), each mode forms a pair with another. But
when the structure supports an odd number of modes, a new mode emerges when
γ is increased to form a pair with the last one. This was pointed out recently
for a single multi-mode waveguide [13], and applies also in our Bloch mode case.
Mode 4 is the new emerging mode due to the odd number of pre-existing modes
(only mode 3). Modes 3 and 4 interfere to shape the interesting, complex pattern
for a relatively narrow range of γ (for 0.42 < γ < 0.46, Fig. 4.5(b)). Further on,
this new mode quickly merges with mode 3 at the PT symmetry breaking point
around γ = 0.46. Beyond this point we observe a behaviour similar to the previous
Littrow mounting case, where all the light is reflected.

In this case when we apply the formula for the laser-like resonance (see Sec.
4.2.1), we find very small d values. For such small d, the grating is too thin (in
comparison with the wavelength) and the evanescent modes do not vanish. Thus,
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the modes can interfere with these evanescent modes and disturb the appearance
of laser or Fabry-Perot modes. Nevertheless, the resonance seems to be vaguely
present in Fig. 4.5(b) (a light blue line for small d and large γ).

The characteristics of the perpendicular case are very different from the Littrow
case, since there is only one propagating mode (when γ = 0). With the studies of
both cases, we have all the information to understand the more complex, period-
doubled system.

4.3 Double period

Now we study the same diffraction grating, but with a double period (1.6 µm)
for the imaginary part (of the refractive index in the grating zone), while the real
part keeps the original period (0.8 µm) (Fig. 4.7). We examine this case because
it remains PT -symmetric, but the modal properties change qualitatively, as we
will see.

From the geometry, it follows that an entire real period experiences gain, while
the next one experiences loss and so on. By changing the total period with the
same incidence as in the single-period Littrow mounting case (αin = 41.5◦), we
allow new orders to appear. There are three reflection orders (0, -1 and -2) and
five transmission orders (+1, 0, -1, -2 and -3). The reflection (and transmission)
orders 0 and -1 of the single-period case (Sec. 4.2) correspond to the newly labeled
0 and -2 orders (compare Fig. 4.1(a) with Fig. 4.7(a)). In addition, ‘truly new’
orders appear due to the halving of kG, the reciprocal vector of the grating, by
doubling the period (i.e. kG = 2π/pd where pd is the doubled period), these new
orders are indicated with dashed arrows in Fig. 4.7(a).

We compute the transmittance properties of this new grating (orders 0, -1 and -
2, Fig. 4.8) with the incidence of the single-period Littrow mounting configuration.
The orders that are not shown do not provide more information. We observe
three distinct regimes in function of γ. Below γ = 0.24 we recover a similar
behaviour as for the single-period Littrow case (Sec. 4.2.1). Between γ = 0.24 and
γ = 0.43 we retrieve laser-like resonances (Sec. 4.2.1), but also the transmittance
without the two-mode interference (and with single-mode Fabry-Perot resonances)
of the single-period perpendicular-incidence case (Sec. 4.2.2). Beyond γ = 0.43 we
recover the usual behaviour of the two previous single-period cases beyond their
critical points, all the light is reflected. In addition, transmission order -1 is not
excited at γ = 0 (very thin blue line in Fig. 4.8(b)), because we retrieve the
previous single-period Littrow configuration with only two diffraction orders, as
the period is again the original value (for γ = 0), and order -1 does not exist.

The linear-scale transmission spectrum for a constant grating depth (d = 0.6
µm, Fig. 4.9) illustrates the three regimes in another way, with both dual-mode
interference peaks, and a single-mode laser-like resonance.

Interestingly, this transmittance behaviour contains a mixture of the single-
period Littrow-mounting and the perpendicular incidence case. For a closer anal-
ysis we calculate the modal effective refractive indices (Fig. 4.10(a) and (b)) and
the field profiles (Fig. 4.11(a) and (b)). We use the same mode numbers as they
were introduced in the single-period sections. The numbers are identified at γ = 0
because the single and double-period structures are the same in that case.
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Figure 4.7: (a) All the orders allowed by the double period structure. The full
arrows represent orders already present in the single period case, the dashed arrows
represent orders that appear after period doubling. (b) Real and imaginary part
of the index of refraction along one doubled period of the grating.

With the double period we have reduced the Brillouin zone (and thus the recip-
rocal lattice vector kG), effectively coupling the angled orders (Littrow mounting)
with the straight orders (perpendicular incidence). As a consequence mode 3 is
now excitable from the angled incidence via diffraction with kG. However, the
mode is not yet excited when γ = 0, because then the reduction of the Brillouin
zone is only virtual. Thus, at γ = 0 only modes 1 and 2 (the same as in the
single-period Littrow case) are excited by the incident light with half the total
power each, and this explains why transmission order 0 and -2 transmit almost
all the power. When γ increases the mode profiles change (as we have seen in the
single-period Littrow case) and the other transmission orders start to be excited,
but their contribution remains limited (except near the first critical point and the
laser-like resonances).

When γ increases, just as in Fig. 4.4(a), neff of mode 1 and 2 approach each
other, and their interference (and coupling length) explains the exchange of output
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Figure 4.8: Transmitted power to transmission order (a) 0, (b) -1, and (c) -2 in
the double period case. The three graphs are in log scale.
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Figure 4.9: Transmitted power to transmission order 0 in the double period case
with d = 6 µm.

power between the two diffraction orders in function of d. However, unlike previ-
ously, they do not merge together, mode 2 instead coalesces at γ = 0.24 with mode
3 (Fig. 4.10(a) and (b)), which is qualitatively different. This merging can also be
seen in Fig. 4.11(a) and (b), the profile of mode 1 is quite stable between γ = 0
and 0.25. On the other hand, the profiles of mode 2 and 3 become mirror images
of each other as they approach the PT symmetry breaking point. Previously, for
the single-period case, this was instead for modes 1 and 2 (Fig. 4.4(c)).

Between γ = 0.24 and γ = 0.43 only mode 1 remains which is not coalesced
and excitable. There is no two-mode interference anymore. The output power is
quite stable, except for laser-like resonances (mostly just above γ = 0.24), and
(weaker) Fabry-Perot resonances near γ = 0.4 (upwards slanting dark-red lines in
Fig. 4.8(a) and (c). Further on at γ = 0.43 this mode merges with mode 4 that
appears around γ = 0.4. This appearance is again connected to the odd number
of initial modes, as in the perpendicular single-period case, although previously it
was mode 3 and 4 merging instead of mode 1 and 4 here. Beyond the final merging
point no excitable mode is left, so we retrieve the final regime when γ is too large
and all the light is reflected.

For the same doubled grating, but under perpendicular incidence, we do not
observe the same three regimes. The mode picture is the same as Fig. 4.8 but in
that case only mode 3 is excited by the incident light and carries power. When
it merges with mode 2 at γ = 0.24 and beyond, no light is transmitted anymore
through the grating. We observe a transmittance pattern like Fig. 4.5(a) for the
transmission order 0, but with the critical point at γ = 0.24 instead of γ = 0.42
as for the single-period perpendicular case. The merging between mode 1 and 4
at γ = 0.43 does not affect the transmittance properties because none of them is
excited by the incident light.

Thus, separately tailoring the real and imaginary index periodicity leads to
more complicated and interesting characteristics because of the appearance and
interaction of new orders and modes. It allows for a change of the mode merging
process through PT symmetry breaking.
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Figure 4.10: (a) Real and (b) imaginary parts of the effective refractive indices of
the modes as a function of γ.

4.4 Summary

In this chapter we have analyzed, with rigorous simulations, the characteristics of
a specific, finite PT -symmetric diffraction grating. This structure experiences one
or several symmetry breaking points when the gain/loss factor is increased. These
points mark clear boundaries between very different regimes.

In the single-period Littrow case the structure experiences only one critical
point. Beneath this point the interference between the two propagating modes
allows us to transmit all the light to the desired diffraction order. Beyond this
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Figure 4.11: (a) and (b) show the field profiles of the three modes at γ = 0 and
γ = 0.25, respectively.

point the light is no longer coupled to the modes and is reflected. In between,
a laser-like resonance can be achieved with a suitable set of groove depth and
gain/loss. These properties render this structure and configuration very useful for
switching applications.

The single-period perpendicular incidence case also experiences only one critical
point. As there is only one propagating mode the dual-mode interference scenario is
not possible, and single-mode Fabry-Perot resonances appear. The odd number of
modes leads to the appearance of a new Bloch mode, which merges when gain/loss
is further increased.

Subsequently, we vary the imaginary and real parts of the index separately,
taking care to conserve the PT symmetry. By period-doubling the imaginary
part we observe an interesting mixing phenomenon between previously uncoupled
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modes in the grating. This leads to a qualitatively different symmetry breaking
picture, which shows elements of both the perpendicular and Littrow situations
of the single-period configuration. This type of period adjustment can thus lead
to tailored diffraction characteristics, by exploiting the limited number of guided
modes in the grating.

For experimental implementation we believe that an integrated grating [69]
with in-plane propagation would be the most feasible method. The two different
thicknesses of the guiding layer can create the needed (effective) index contrast.
The parameters (period, angle of incidence, thickness) are then adjusted to retrieve
the desired grating properties, e.g. around the usual wavelength of 1.5 µm. The
loss can be implemented as a judiciously deposited metal layer (e.g. chromium)
with a controlled thickness on top of the grating [7, 20]. The gain is clearly the
most complicated feature to achieve, and is typically done via dye molecules [70],
quantum wells/dots [20] or rare earth elements [71]. For example InGaAsP multi-
ple quantum wells on an InP substrate have reported gain coefficients of over 1000
cm−1 around 1.5 µm [72].

We note that one can decrease the needed gain for PT effects (such as the
critical points) by decreasing the difference of refractive indices in the grating
(i.e. the difference of layer thicknesses for an in-plane grating). However, this will
increase the needed propagating length necessary to observe e.g. transmission order
switching (as these lengths are proportional to the inverse of the effective index
contrast). Thus one can decrease the necessary gain to reach an experimentally
feasible value at the cost of device size and on condition that the platform provides
for sufficient propagation lengths.

Interesting subjects for future study would be the effect of potential instabilities
beyond the lasing points [73] which is approached in Chap. 6 or the influence of
more sophisticated gain models, such as gain with saturation or with the charge
carrier dynamics taken into account.
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5
Symmetry recovery

5.1 Introduction

In the previous chapter, we transformed a simple grating into a powerful switching
structure thanks to PT symmetry and the exceptional points. In this chapter we
focus on these exceptional points and the different existing PT phases (unbroken
and broken). The usual PT structures always switch from the unbroken to the
broken phase via these exceptional points when the gain/loss factor increases.
However, we present a simple structure that initially switches from unbroken to
broken (as usual), but then reverts back to the unbroken phase via an ‘inverse’
exceptional point. Similar behaviour was reported for a complicated multimode
model [74]. We show this phenomenon in the simplest possible four-mode linear
model.

We first investigate and explain this phenomenon via a theoretical analysis in
Sec. 5.2. The relative coupling between pairs of modes turns out to be crucial: the
recovery of symmetry is only possible for particular coupling ratios. Furthermore,
we numerically present the behaviour in two possible (dielectric and plasmonic)
implementations in Sec. 5.3.

This chapter is based on the work published in [8].

5.2 Theoretical model

Our proposed structure contains four coupled modes, e.g. via dielectric waveguides
(Fig. 5.1(a)) or plasmonic surfaces (Fig. 5.1(b)), which are in a particular PT
configuration, and will be coupled in a judicious way. We remark that the specific
nature of the waveguides does not matter. In a similar way as in Sec. 2.2.2, we
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note for the unperturbed propagation constant β = nek0 (so without coupling and
without gain/loss), with ne the effective index, k0 = 2π/λ0, and λ0 the vacuum
wavelength. The coupling constants κij depend on the distance dij between the
waveguides i and j. Gain is injected in the two upper modes, and the same amount
of loss is considered for the two lower ones, via the same factor γcore/cav, which
ensures PT symmetry. This leads to a modal effective gain/loss parameter γ.

Figure 5.1: Two possible implementations: (a) Four dielectric slab waveguides, (b)
four surface plasmon polariton modes at dielectric/metal interfaces.

Such a system can be described by the following matrix [47]:

i

k0

d

dz


c1

c2

c3

c4

 =


ne + iγ κ12 κ13 κ14

κ21 ne + iγ κ23 κ24

κ31 κ32 ne − iγ κ34

κ41 κ42 κ43 ne − iγ



c1

c2

c3

c4

 (5.1)

with ci the amplitude of the unperturbed mode of waveguide i. As the waveguides
are symmetric and reciprocal, we have κij = κji, and the coupling constants are
determined via the lossless case. We assume nearest-neighbour coupling only. The
odd/even properties of the refractive index along the x axis lead to the same
distances between waveguide 1 and 2 and between 3 and 4, so κ12 = κ34. The
system becomes:

i

k0

d

dz


c1

c2

c3

c4

 =


ne + iγ κ12 0 0
κ12 ne + iγ κ23 0
0 κ23 ne − iγ κ12

0 0 κ12 ne − iγ



c1

c2

c3

c4

 (5.2)

The matrix eigenvalues lead to the propagation constants of the four supermodes
βcoupled, that mix the four unperturbed modes, with the analytical form:

βcoupled = β ±
√
A±
√
B (5.3)

With:

A =
κ2

23

2
+ κ2

12 − γ2 B =
κ4

23

4
+ κ2

12κ
2
23 − 4κ2

12γ
2 (5.4)
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When γ increases A and B become negative at particular points, leading inexorably
to a broken phase with complex conjugate eigenvalues. However, depending on the
ratio α = κ23/κ12, the structure shows a richer behaviour than just a single switch
from the unbroken to a broken phase, as we now discuss. For the remainder of
this theoretical analysis we normalize κ12 = 1, but γ and βcoupled−β can be scaled
for other values of κ12.

The root of A happens when γ = γA = [(2κ2
12 + κ2

23)/2]1/2, for B it is γ =
γB = κ23(4κ2

12 + κ2
23)1/2/(4κ12), and for A−

√
B one finds γ = γ± = [(κ2

23− 2κ2
12±

κ23

√
κ2

23 − 4κ2
12)/2]1/2. These four values are presented as a function of α in Fig.

5.2(f).
If α < 2, A−

√
B does not have real roots. βcoupled becomes complex via

√
B,

so when γ > γB (= 0.56 in Fig. 5.2(a)). γB is the single exceptional point of the
structure, and marks the switch between unbroken and broken PT phase (real
versus imaginary βcoupled). In this case the two modes with largest βcoupled merge,
just like the third and fourth mode, which is the standard PT merging picture
seen previously. However, for larger coupling the second and third mode tend to
approach each other (around γ = 1 in Fig. 5.2(b)).

If α = 2, A−
√
B has a single degenerate real root (γ+ = γ−) but is still positive.

At this special point (γ = 1, Fig. 5.2(c)) the structure has two degenerate modes
(βcoupled = β), where the second and third mode touch. However, the exceptional
point remains at a larger γB (= 1.42 in Fig. 5.2(c)).

If α > 2 and α < (
√

5 − 1)(
√

5 + 2)1/2 ≈ 2.54, A −
√
B has two different real

roots (γ±) and is negative for γ included between these two (0.73 < γ < 1.37 in
Fig. 5.2(d)). So in this region there are two complex conjugate eigenvalues, and
an extra broken phase appears. However, this new broken phase is finite, for γ
between γ+ and γB, all the eigenvalues are real again, the symmetry is recovered
(1.37 < γ < 1.52 in Fig. 5.2(d), symmetry recovery (SR) zone in Fig. 5.2(f)).
Therefore, we switch from unbroken to broken at γ−, from broken to unbroken at
γ+ (symmetry recovery), and to the final broken phase at γB (Fig. 5.2(d)).

For α > (
√

5 − 1)(
√

5 + 2)1/2, γA is smaller than γB and γ+ (Fig. 5.2(f)) and
symmetry recovery is no longer possible. In this case we obtain a broken phase
for γ > γ− (= 0.38 in Fig. 5.2(e)) (first exceptional point, for second and third
mode), which is never unbroken, although there is a second exceptional point γA
(for first and fourth mode, γA = 2.62 in Fig. 5.2(e)). The second and third modes
that merge initially (as in the previous case), do not become real again.

In a compact way, we find symmetry recovery for 2 < α < 2.54 when γ is
included between γ+ and γB, see symmetry recovery (SR) zone in Fig. 5.2(f).

Thus, this simple PT structure can have a sequence of transitions between
unbroken and broken phases, for a particular range of the mode coupling constants.
Upon increasing the gain/loss, previously merged modes ‘unmerge’ again, and
ultimately couple with another mode.

5.3 Dielectric and plasmonic implementations

The nature of the waveguides for this behaviour does not matter, so we can im-
plement the system with both dielectric and plasmonic waveguides (Fig. 5.1), as
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Figure 5.2: (a,b,c,d,e) Real (solid, blue) and imaginary (dotted, red) part of the
supermode constants βcoupled − β as a function of gain/loss γ, for specific values
of α. (f) Evolution of γA (red), γB (blue), γ+ (green line for real part and green
dashed line for imaginary part) and γ− (black line for real part and black dashed
line for imaginary part) as a function of α. These values define the boundaries
between the different PT phases: (U) unbroken, (B) broken and (SR) symmetry
recovery. The dotted black lines (α = 2 and α ≈ 2.54) delineate the three different
regimes.

we demonstrate in the following part. This behaviour will become more physical
when we examine the mode profiles for the plasmonic implementation.

The dielectric case (Fig. 5.1(a)) has four slab waveguides with ncore = 3.5
embedded in a medium with ncladd = 1.5, the thickness of the slabs is 0.2µm and
we use λ0 = 1.5µm. We must have d12 = d34 to ensure PT symmetry and we chose
them equal to 0.3µm. We determine the four effective indices ne as a function of
γcore for particular values of the distance d23 (and thus of the coupling constant
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κ23), see Fig. 5.3 for both the analytical (dotted line) and numerical dispersion
(solid line).
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Figure 5.3: (a,c) Real and (b,d) imaginary parts of ne as a function of γcore for
the dielectric structure at two values of d23, with numerical (blue solid lines) and
theoretical (red dotted lines) calculations.

For the theoretical calculation of ne we calculate β and the mode profile of a
single slab mode, the coupling constants are obtained with overlap equations [47].
Then we inject these parameters in Eq. 5.1 to obtain the eigenvalues of the system,
without any fitting. On the other hand, the numerical calculations are performed
with COMSOL [68] for the multiple waveguide system.

We obtain a good agreement between theory and numerics (Fig. 5.3). We have
a typical case in Fig. 5.3(a,b) with α = 1, and symmetry recovery in Fig. 5.3(c,d)
with α = 2.024. The behaviour is exactly the same as for the theoretical analysis
of Sec. 5.2, except that the two final critical points are not at the same value
of γcore (e.g. around γcore = 0.012 in Fig. 5.3(b)). This is due to the coupling
constant between two non-neighbouring waveguides, which we did not include in
the theoretical analysis of Sec. 5.2 for simplicity, but are taken into account in the
theoretical and numerical calculations of Fig. 5.3.

For the plasmonic case (Fig. 5.1(b)) we have two dielectric layers separating
three metal sections, so that four surfaces (with surface plasmon polariton modes)
are available. We use a lossless metal with n = −1.24i (corresponding to a Drude
model with λ0 = 1µm and plasma frequency ωp = 3× 1015 rad/s). The dielectric
layers with gain/loss have a thickness d12 = d34 = 0.4µm and ncav = 1.

We calculate numerically ne when we change γcav for two values of d23 (Fig.
5.4). Again we obtain symmetry recovery (case where 2 < α < 2.54) in Fig.
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Figure 5.4: (a,c) Real and (b,d) imaginary parts of ne for the plasmonic structure
as a function of γcav for d23 = 0.195µm (a,b) and 0.185µm (c,d).

5.4(a,b), but now via four coupled plasmonic modes. We observe the overcoupled
case in Fig. 5.4(c,d) as in Fig. 5.2(e) with α > 2.54. There is no symmetry recovery
and mode 2 and 3 merge and stay linked even for large γcav. This is difficult to
observe in Fig. 5.2(e) due to overlapping curves, but is clear in Fig. 5.4(d) due to
the non-neighbour interactions. Note that modes 2 and 3 still ‘feel’ the merging
of the other two modes (just before γcav = 0.06 in Fig. 5.4(c,d)).

The mode profiles of the four plasmonic supermodes describe the origins of
this phenomenon. For α < 2 (i.e. relatively large d23, Fig. 5.5 (a,b,c,d)), the
two modes with larger (lower) ne and symmetric (antisymmetric) profiles in the
dielectric cavities merge together, as in the typical PT case (Fig. 5.2(a,b)) (so the
first and second mode pair up, just like the third and fourth mode). For α > 2 (i.e.
relatively small d23, Fig. 5.5(e,f,g,h)), we force coupling between the two central
unperturbed modes (so between the second and third mode). This leads to two
modes with large fields at the inner (outer) surfaces in Fig. 5.5(e,h) (Fig. 5.5(f,g)).
The two modes with large fields on the outer surfaces can ‘easily’ modify their
profile to merge together, and this leads to the first broken phase. For bigger
γcav, they split (Fig. 5.5(i,j,k,l)) again (symmetry recovery), and then later (for
even larger γcav) merge with their original pairing partner. For really small d23

the coupling (between the second and third mode) is too strong, so that the first
merging is sustained and never splits again (as in Fig. 5.4(c,d)).

This behaviour thus does not depend on the nature of the four coupled modes.
It directly stems from the increased coupling between two modes, which were
originally not destined to merge, but go through an initial fusion, and eventually
return to the typical partner.
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Figure 5.5: The four supermode magnetic field (Hy) profiles for the plasmonic case
with (a,b,c,d) d23 = 0.3µm and γcav = 0, (e,f,g,h) d23 = 0.195µm and γcav = 0,
and (i,j,k,l) d23 = 0.195µm and γcav = 0.046 (symmetry recovery phase in Fig.
5.4(a,b)).

5.4 Summary

In this chapter, we study theoretically and numerically the mode merging prop-
erties in a particular PT -symmetric system of four coupled waveguides. We ob-
tain the analytical condition for which this structure achieves an unusual merging
scheme with two distinct unbroken PT phases. This effect originates from the
initial coupling of two modes, which normally remain distinct, but ultimately split
again and merge with another, traditional partner mode.

This particular behaviour can appear in systems with multiple modes, as we
will also see in Chap. 7, but here we introduce it for the simplest possible structure,
and propose dielectric and plasmonic implementations. This recovery of symmetry
will be useful in designing novel PT devices.



5.4 Summary 61



6
Broadband unidirectional invisibility

6.1 Introduction

In this chapter, we particularly focus on an important behaviour for one-dimensional
PT structures, the anisotropic transmission resonances (ATRs) [61] or unidirec-
tional invisibility [75, 76]. This means that one obtains unity transmission and
zero reflection for incidence from one side of the structure, and a different reflec-
tion from the other side (see Sec. 3.2.4). Initially this phenomenon was introduced
in tight-binding or Bragg cavity structures [17, 19, 24, 27]. We study this effect
next to various other PT effects in a finite chain of resonators next to a waveg-
uide. Because our geometry is side coupled, the behaviour is very different for the
ATRs. Side-coupled structures have already attracted attention in the PT context
for sensor applications [77] (e.g. nanoparticule detection). Our system can also be
integrated on-chip, with independent control of the coupling loss (as it is an open
system) and the material gain/loss.

We describe the two resonator structure in Sec. 6.2 and its scattering properties
in Sec. 6.2.1. We use numerical and analytical calculations with coupled-mode-
theory in a transfer and scattering matrix approach to analyze in detail various
geometries with multiple cavities. An important parameter for these coherently
interacting cavities is the length of the intermediate waveguide, which can be
tuned to change the phase and interference properties. The spectrum of two side-
coupled resonators (without gain or loss) can exhibit a very narrow transmission
peak [78, 79]. We will exploit this peak with PT symmetry to demonstrate both
very narrow and broadband ATRs.

The study of the scattering matrix provides us detailed info on exceptional
points and on lasing states in Sec. 6.2.2. Moreover, we address the stability of
these systems in Sec. 6.2.3, as the presence of gain can readily make them unstable.
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Figure 6.1: Geometry of the two resonator structure. a1 and a2 are the mode
amplitudes of each resonator. fi (bi) denotes the forward (backward) waveguide
mode amplitude. The dashed lines separate the two unit cells of the system.

We show the versatility of these systems with a four resonator structure in Sec.
6.3. With four resonators the possible configurations are more numerous, as we can
choose between a gain-gain-loss-loss or gain-loss-gain-loss profile, and we can even
symmetrically modify the resonance frequencies and the amount of gain/loss, all
the while remaining PT -symmetric. We show that these configurations give rise
to a unidirectional invisibility scheme with complex behaviour as a function of the
frequencies: a rich, tunable dispersion with multiple, crossing ATRs is obtained,
offering possibilities for ‘ATR engineering’.

This chapter is based on [40].

6.2 Two cavities

The first studied structure is constituted of two resonators coupled next to a
waveguide (see Fig. 6.1). We assume that the resonators and waveguide are single
mode in the studied frequency region. Furthermore, the resonators are placed
sufficiently far from each other so interaction occurs only through the waveguide.
Then, the fields in a single unit cell can be described by coupled-mode-theory
presented in Sec. 3.2.2:

dan
dt

=
(
jω0 − 1

τc
± γ
)
an + dfn + dbn+1 (6.1)

fn+1 = ejφfn + dan (6.2)

bn = ejφbn+1 + dan (6.3)

with an the complex mode amplitude of the cavity, whereas fn and fn+1 (bn and
bn+1) denote the forward (backward) waveguide mode amplitudes, and n = 1, 2.
The coupling time to the waveguide is τc, and the resonance frequency of the cavi-
ties is ω0. Here d = jejφ/2/

√
τc, where φ depends on the length of the intermediate

waveguide and plays a major role in the phase and interference characteristics.
Finally, when γ > 0 it defines the amount of gain (+γ) or loss (−γ) present in the
nth resonator, and vice versa when γ < 0. We mean here inherent gain or loss of
the resonator via e.g. external pumping of a gain medium, or material absorption.
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For a two resonator structure PT symmetry requires that one cavity supports
gain and the other loss (see Sec. 2.2.1). The amplitudes are normalized so that
|an|2 is equal to the total power in the resonator n, and |fn|2 (|bn|2) is the power in
the forward (backward) mode of the waveguide at position n. As we mainly work
in the continuous wave regime, the temporal dependence of the solution is ejωt

and we can replace the time derivative d/dt by jω with ω the excitation frequency
and j the imaginary unit. In this side-coupling scheme, without gain or loss, there
is a strong reflection on resonance. Note that these equations are equivalent to a
model of a ring resonator next to two waveguides [80].

6.2.1 Reflection and transmission

We first examine the asymmetric reflection properties. A direct transfer-matrix
approach is employed (see Sec. 3.2.4), which is much more resource efficient than
a time-domain one, but is insensitive to the stability (stability is studied in Sec.
6.2.3). The transfer-matrix for one cavity can be written as:(

bn
fn

)
=

(
ejφ − d2

j(ω0−ω)±γ
−d2e−jφ
j(ω0−ω)±γ

d2e−jφ

j(ω0−ω)±γ e−jφ + d2e2jφ

j(ω0−ω)±γ

)(
bn+1

fn+1

)
(6.4)

= M±

(
bn+1

fn+1

)
The transfer-matrix for the entire system Mtot is obtained by multiplication. As
our scattering system is PT -symmetric, we can use the formalism of [61] and define
the total transfer-matrix as a function of three real parameters (B and the phase
and amplitude of A) via:

Mtot = M−M+ =

(
A∗ jB
−jC A

)
(6.5)

with C given by C = (|A|2 − 1)/B and M− (M+) denotes the transfer-matrix for
the cavity with loss (gain). Finally, we can obtain the scattering-matrix from the
total transfer-matrix:

S =
1

A

(
jB 1
1 jC

)
=

(
rL tc
tc rR

)
(6.6)

with rL and rR the left and right reflection coefficient and tc the transmission
coefficient. This matrix is PT -symmetric for our particular system (Eq. (6.4) and
on), meaning that S satisfies the symmetry relation (PT )S(ω∗)(PT ) = S−1(ω)
with P = ( 0 1

1 0 ) and T the complex conjugation operator. From S we can extract
all the information, such as the reflection with input from the left side RL = |rL|2,
the reflection from the right side RR = |rR|2 and the transmission T = |tc|2. The
transmission is the same regardless of the input side because of reciprocity.

We calculate the transmission for a loss-gain structure as a function of the
normalized frequency detuning (ω − ω0)τc (see Fig. 6.2). We observe the typi-
cal spectrum of two side-coupled resonators for three different phases φ with the
normalized gain/loss factor γτc = 0 (without gain or loss, Fig. 6.2(a)). The trans-
mission reaches zero (and reflection reaches unity) at the resonance frequency ω0.



6.2 Two cavities 65

(ω − ω0)τc

-2 -1 0 1 2

T

0

0.2

0.4

0.6

0.8

1
φ = 0.1π
0.2π
π/2

(a)

(ω − ω0)τc

-2 -1 0 1 2

T

0

2

4

6
φ = 0.1π
0.2π
π/2

(b)

Figure 6.2: Transmission of the two resonator structure as a function of the de-
tuning (ω − ω0)τc with three different values of φ, (a) for γτc = 0 and (b) for
γτc = 1.

In addition, due to the cavity interaction, there is a narrow transmission peak
(reaching T = 1) for small values of φ in the high reflection band. This peak
becomes narrower and closer to ω = ω0 as φ tends to 0. As we will see, the ATRs
of these structures will directly originate from the extension of this particular peak
for γτc 6= 0. We note in passing that these line shapes are reminiscent of Fano res-
onances, which show up as interferences between a broadband and a narrowband
feature [81].

When γτc is equal to 1 (Fig. 6.2(b)), the zero transmission zone around ω0 tends
to disappear. However, information about the ATRs requires the examination of
the left and right side reflection, as they are no longer the same for γτc 6= 0.
Therefore we analyze the left and right reflection R together with the transmission
T as a function of the detuning and γτc for a loss-gain structure (Fig. 6.3). In
these figures, left and right incidence corresponds to γτc > 0 and < 0, respectively
(the right and left halves of the graphs).
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Figure 6.3: Reflection (left column) and transmission (right column) for the two
resonator structure (loss-gain) as a function of γτc and detuning (ω − ω0)τc, and
saturated to two for clarity. (a,b) For φ = 0.1π, (c,d) 0.2π and (e,f) π/2. γτc > 0
(< 0) is for left (right) incidence. The green dashed lines represent the ATRs.
The vertical black dotted lines represent the stability limit (see Sec. 6.2.3). The
red stars indicate the lasing states and the magenta elliptical curves represent the
exceptional points.
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The range 0 < φ ≤ π/2 already presents all behaviours. The vertical black
dotted lines indicate the maximum γτc for stability, which is discussed in Sec.
6.2.3. Note that the transmission remains symmetric, the graphs for γτc > 0 and
< 0 are the same. However, the asymmetry between the left and right reflection
is present for every value of φ. The ATRs arise when the reflection from a specific
side reaches zero (dark blue zones in Fig. 6.3(a,c,e), indicated with green dashed
lines).

Interestingly, for fixed γτc, the sharpness of the zero reflection minimum is
narrower as φ decreases. Thus, the frequency range of the ATRs is wider when φ
increases, and becomes very broadband for φ = π/2 (see Fig. 6.3(e)), which will
be limited in practice by effects such as waveguide and material dispersion. This
behaviour is in line with the transmission resonances observed for γτc = 0 (Fig.
6.2(a)). Note also that R and T are symmetric around ω = ω0 for the special case
of φ = π/2.

ATRs arise when T = 1 (see Sec. 3.2.4), so with |tc|2 = |1/A|2 = 1, we find an
analytical condition for ATRs in this system:

(ω − ω0)τc = (1− τcγ) tanφ (6.7)

which is the equation of a straight line (green dashed lines in Fig. 6.3). This line is
anchored at the point ω = ω0 and γτc = 1 and has a slope of −τc tanφ. Therefore
with φ = π/2 the slope indeed becomes infinite and we observe the broadband
ATR of Fig. 6.3(e).

As T is symmetric around γτc = 0, one finds another line where T = 1,
symmetric to the previously indicated ATR lines (dashed green lines). This line
indicates the ATRs if we had chosen a gain-loss structure, instead of loss-gain, so
this is not a ‘different’ ATR. In that case, R should be mirrored in Fig. 6.3.

Finally, we also observe that there tends to be more reflection when incidence
is from the gain side than from the loss side, as indeed the yellow zones are larger
on the left of Fig. 6.3(a,c,e).

We conclude that the two resonator system already presents a fairly complex
behaviour of asymmetric scattering properties, deriving from the passive transmis-
sion resonances. The geometry can achieve both very narrow or broadband ATRs
just by varying the length of the intermediate waveguide.

We remark that the model neglects some effects that can influence the results
for specific applications and intensities. First, dispersion will ultimately limit the
broadband ATRs to a finite range of frequencies. For waveguide dispersion the
geometry and materials could offer degrees of freedom to optimize the available
range, for example with photonic crystal waveguide engineering. Material dis-
persion will also impact the ATR range, certainly via the finite window of active
materials. We also note that the complex permittivity of the materials will follow
the Kramers-Kronig relations, which can distort the characteristics. Second, gain
saturation and charge carrier dynamics in the gain material will limit the maxi-
mal γτc that can be reached in practice. Third, the large intensities around the
lasing states will break the linear approximation, and may lead to new carrier and
nonlinear effects, temporal instabilities [82], switching behaviour and so on. The
latter phenomena are expected mainly around the stability threshold, so below the
gain values for the discussed ATRs.
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6.2.2 Lasing states and exceptional points

Another interesting feature of active structures is the lasing states that can arise
from the presence of gain. These states can be derived from the scattering matrix
(Eq. (6.6)), as T , RL and RR become infinite when A = 0, leading to:

(ω − ω0)τc = −j
(

1 + e−jφ
√
e2jφτ 2

c γ
2 + 1

)
(6.8)

Lasing states require a purely real frequency. Therefore the left side of this equation
has to be purely real, so the lasing states exist only when the imaginary part of
the right side is equal to zero, which we indicate with red stars in Fig. 6.3. Within
the numerical accuracy these points are at the stability limit (vertical black dotted
lines in Fig. 6.3, discussed in detail in Sec. 6.2.3). The two cavity structure has two
lasing states, but they are exactly at the same detuning and gain/loss, which is
understandable as T is reciprocal, so there is left-right symmetry in Fig. 6.3(b,d,f).

Furthermore, as the S-matrix respects PT symmetry, there is a broken and an
unbroken PT phase. As we have discussed in Sec. 3.2.4, in the unbroken phase each
S-matrix eigenstate is mapped back to itself under the PT operation, whereas in
the broken phase they are mapped to each other. The two eigenstates merge at the
boundary of these phases which are called the exceptional points. To identify these
phases one can examine the eigenvalues of S [61], which have unity module only
in the unbroken phase. Alternatively, one can use the quantity (RL +RR)/2− T ,
which is below (above) unity in the unbroken (broken) phase, respectively. When
this quantity is equal to one, it describes the boundary between the two phases,
shown as the magenta elliptical lines in Fig. 6.3. We observe that the lasing states
only appear in the broken phase (inside the magenta lines) in accordance with [62].

Thus, as in other PT devices, the two side-coupled resonator structure presents
lasing states and a broken PT phase. In our model the particular states are fairly
straightforward to determine analytically.

6.2.3 Stability

The main advantage of this structure concerns the versatility of the scattering
properties. However, a stationary transfer-matrix formalism fails to take into
account a possible instability of the system, which is common in the presence
of gain [73]. Therefore, we analyse the stability range, via the matrix H that
describes the system without external excitation:

d

dt

(
a1

a2

)
= H

(
a1

a2

)
(6.9)

with:

H =

(
jω0 − 1/τc − γ d2

d2 jω0 − 1/τc + γ

)
(6.10)

where the first resonator supports loss and the second supports gain (γ > 0 here).
Unlike the S-matrix, H is neither Hermitian nor PT -symmetric due to the coupling
with the waveguide. The energy contained in the resonators and the intermediate
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Figure 6.4: Real (left column) and imaginary (right column) part of the eigenvalues
λ1,2 as a function of γτc for (a,b) φ = 0.2π, (c,d) 0.4π and (e,f) π/2. The black
horizontal line in the left column marks Re(λ) = 0, the instability threshold.

waveguide flows out of the system. The eigenvalues λ of H describe the evolution
of the collective eigenstates:

λ1,2 =

(
jω0 −

1

τc

)
±

√
γ2 +

e2jφ

τ 2
c

(6.11)

The imaginary part of these eigenvalues represents the eigenfrequency of the
modes. The real part represents the time evolution of the total power inside
the two cavity system.
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We plot λ as a function of γτc (Fig. 6.4) for three values of φ. Without gain or
loss (γτc = 0), the two eigenvalues have a negative real part (see Fig. 6.4(a,c,e)),
which means that the total power present in the cavities is flowing out of the
system through the waveguide.

Remark that even though we are not describing a pure PT -symmetric structure
here, we observe similar curve shapes, especially for φ = π/2 (Fig. 6.4(e,f)). The
imaginary parts of the eigenvalues merge together, whereas the two real parts
split beyond a particular point, which thus looks like an exceptional point (at
γτc = 1). As φ decreases, this behaviour looks less and less like ‘perfect’ PT ,
which is comparable to a directional PT coupler with unequal waveguides (Fig.
6.4(a,b) and Fig. 6.4(c,d)).

For stability, we focus on the real part of the eigenvalues. When one is positive,
it shows us that the power inside the cavities grows exponentially with time. When
γτc increases, one of the modes always reaches a point where its real part becomes
positive (e.g. at γτc ≈ 0.7 in Fig. 6.4(a)), leading to unstable behaviour that
ultimately will become nonlinear and requires other modeling approaches.

We check the previous with time domain simulations of R and T as a function
of the detuning (ω − ω0)τc and γτc (see Fig. 6.5). The boundary between the
stable and the unstable regime is well described by the zero of the real part of the
eigenvalue (vertical black lines in Fig. 6.5), and corresponds with an exponential
growth in the time domain results. Thus, for each configuration we can define a
maximum limit for γτc beyond which the system is unstable, defining a valid range
of gain/loss.

6.3 Four cavities

We further show the versatility of these systems with a four cascaded resonator
geometry (see Fig. 6.6). We skip the three cascaded resonator system as it offers
less degrees of freedom and behaviours. We use the same formalism as in the
previous section. In principle most results can be analytically derived, but the
equations become unwieldy, so calculations are more convenient.

The transmission T of a four resonator structure without loss/gain for four
values of φ is shown in Fig. 6.7. Typically there are three peaks with T = 1 (and
R = 0) for four resonators. For φ = 0.1π the three peaks are relatively close to
each other around ω0 = ω. When φ increases the three peaks move to the right,
and the rightmost peak (number 3) tends to infinite detuning when φ reaches
π/4. Beyond this value of φ peak 3 appears from minus infinity and continues
moving to the right. Finally, when φ reaches π/2, peak 2 also moves to infinite
detuning. This pattern continues as φ increases. As previously the ATRs of the
PT -symmetric system will originate from the behaviours of these three peaks.

We calculate the reflection and transmission with a loss-gain-loss-gain profile
for three phases (Fig. 6.8). We observe two kinds of ATRs. There is a straight
line ATR where the reflection is zero (slanted green line in Fig. 6.8(a,c,e)), but for
only one incidence direction. This line originates from the second peak with T = 1
in Fig. 6.7 and can be compared to the ATR line of the two resonator structure
(green dashed line in Fig. 6.3(a,c,e)). This ATR becomes very broadband (Fig.
6.8(e)) when peak 2 goes to infinite detuning.
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Figure 6.5: (a) Left reflection and (b) transmission as a function of the detuning
and γτc for a loss-gain structure. The parameters are the same as in Fig. 6.2.
These values are calculated with time domain simulations and are saturated to
two for clarity. The black lines mark when one of the eigenvalues begins to have a
positive real part (around γτc ≈ 0.7 in Fig. 6.4(a)).

Additionally, there is an ATR where RR = RL = 0 and T = 1, which orig-
inates from peaks 1 and 3 (nearly horizontal green line in Fig. 6.8(a) and green
ellipse in Fig. 6.8(c,e)). This indicates a ‘doubly accidental’ degeneracy [61] where
both reflections are equal to zero, so the structure is transparent from both di-
rections. This can appear due to extra tuning parameters, but seems inherent
in our geometry. The latter type of ATR would actually better be described as
an ‘isotropic’ transmission resonance. We can observe that the ellipse becomes
infinitely large (Fig. 6.8(a)) as peak 3 goes to infinity (for φ = π/4), so we only
observe a horizontal line close to (ω − ω0)τc = 0.5.

The structure also exhibits two lasing states at the limit of the stable range.
There are two additional lasing states but they lie deeper into the unstable part.
The exceptional point boundaries are also more complicated, with four zones in-
stead of two for the two resonator structure (magenta curves in Fig. 6.8). As in
Fig. 6.3, we observe that the reflection tends to be stronger when the incidence is
from the gain side (larger yellow areas on the left side of R).
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Figure 6.6: Geometry of the four resonator structure.
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Figure 6.7: Transmission of the four resonator structure as a function of the de-
tuning (ω − ω0)τc for γτc = 0 with four different values of φ. The three numbers
indicate the three peaks with T = 1 for φ = 0.1π.

The degrees of liberty for this structure are numerous as we are only limited by
the PT symmetry relation n(x) = n∗(−x). For example, if we change the elements
symmetrically, we can vary the gain/loss profile (such as loss-loss-gain-gain instead
of loss-gain-loss-gain), the resonance frequencies of the cavities (ω1 has to equal
ω4, and ω2 has to equal ω3, but the couples can differ), the amount of gain/loss
in the cavities, and the phase φ. We describe succinctly a few examples (Fig. 6.9)
where we observe rich possibilities for the ATRs, the exceptional points and the
lasing states.

As a first example, we examine a loss-loss-gain-gain profile, in contrast with
the previous loss-gain-loss-gain design. The reflection graph with ATRs and ex-
ceptional points is qualitatively different (Fig. 6.9(a)), with for example two pairs
of lasing states, in contrast with the single pair in Fig. 6.8 (and in particular with
Fig. 6.8(e) for the same phase).

In the other examples we return to a loss-gain-loss-gain profile, but we change
the gain/loss values. In Fig. 6.9(b) with a gain/loss sequence (−0.3γ, γ,−γ, 0.3γ),
we observe an interaction between the line and ellipse of ATRs of Fig. 6.8(c),
which looks similar to ‘anti-crossing’ behaviour. In Fig. 6.9(c) the structure has
a gain/loss sequence (−0.01γ, γ, −γ, 0.01γ) leading to another qualitative change
of the ATRs, specifically the elliptical ATR of Fig. 6.8(d) becomes a parabola
in Fig. 6.9(c). Furthermore, the change of the exceptional points is even more
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Figure 6.8: Reflection (left column) and transmission (right column) for four res-
onators (loss-gain-loss-gain) as a function of γτc and the detuning (ω− ω0)τc, and
saturated to two for clarity. For (a,b) φ = π/4, (c,d) 0.4π and (e,f) π/2. γτc > 0
(< 0) is the reflection and transmission for left (right) incidence. The black dotted
lines represent the stability limit. The green lines show the ATRs, the red stars
indicate the laser states and the magenta curves represent the limits of the broken
symmetry phase.
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Figure 6.9: Reflection for various four resonator structures as a function of
γτc and the detuning (ω − ω0)τc, and saturated to two for clarity. (a) Loss-
loss-gain-gain structure with resonance frequency sequence (ω0, ω0, ω0, ω0) and
gain/loss sequence (−γ,−γ, γ, γ). The other structures are loss-gain-loss-gain
with sequences (b) (ω0, ω0, ω0, ω0) and (−0.3γ, γ,−γ, 0.3γ), (c) (ω0, ω0, ω0, ω0) and
(−0.01γ, γ,−γ, 0.01γ), (d) (ω0, ω0 − 1/τc, ω0 − 1/τc, ω0) and (−γ, γ,−γ, γ), (e)
(ω0, ω0 − 1/τc, ω0 − 1/τc, ω0) and (−0.1γ, γ,−γ, 0.1γ) and (f) (ω0, ω0 + 2/τc, ω0 +
2/τc, ω0) and (−γ, 0.5γ,−0.5γ, γ). Vertical black dotted lines are stability limits,
green lines are ATRs, red stars are lasing states, magenta lines indicate exceptional
points.
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complicated.
As another example we change the resonance frequencies, while keeping PT

symmetry. For Fig. 6.9(d) we use the frequencies (ω0, ω0 − 1/τc, ω0 − 1/τc, ω0),
but with the standard gain/loss (−γ, γ,−γ, γ). We observe a very flat and narrow
ATR, similar to the nearly horizontal ATR of Fig. 6.8(a). But here the reflection
is zero for only one incidence direction (the green curve is very slightly slanted
in Fig. 6.9(d)), and we are not in the ‘doubly accidental’ degeneracy case of Fig.
6.8(a).

For the final examples we change both resonance frequency and gain/loss se-
quences. For Fig. 6.9(e) we use the frequencies (ω0, ω0−1/τc, ω0−1/τc, ω0) and the
gain/loss sequence (−0.1γ, γ,−γ, 0.1γ). We observe a similar interaction between
the ATR line and ellipse as in Fig. 6.9(b), but mirrored as a function of detun-
ing. In comparison, there are also two more broken symmetry zones. Finally, Fig.
6.9(f) with (ω0, ω0 + 2/τc, ω0 + 2/τc, ω0) and (−γ, 0.5γ,−0.5γ, γ) shows another
behaviour, and can barely be compared to previous cases.

One observes that the number of possible configurations and behaviours quickly
grows with the number of cavities. Thus a particular desired behaviour can be
targeted via the analytical model for a relatively small number of cavities.

6.4 Summary

In this chapter we introduce a new PT geometry consisting of side-coupled cavities
with interesting unidirectional characteristics. In these systems we show that
the bandwidth can be uniquely tuned to be particularly broad or narrow, via a
simple structural parameter (the length of waveguide between the cavities). The
unidirectional effect is one of the most salient features in the PT field; it is strongly
researched nowadays for potential applications and will also be approached in
Chap. 7. The proposed design can be implemented on-chip in various ways, for
example using photonic crystal cavities or ring resonators.

With a compact, physical model we have analyzed in detail the scattering char-
acteristics of the one-dimensional structures with side-coupled resonators. Because
of side-coupling the behaviour is very different from typical tight-binding or Bragg
defect structures. It is also an analytically tractable open system with flexible
control of cavity-waveguide coupling and the intrinsic gain and loss.

The spectrum of two resonators (without gain or loss) exhibits a very narrow
transmission (R = 0) peak. With added gain and loss the ATRs originate precisely
from this peak, which can be tuned by the length of the intermediate waveguide,
in order to demonstrate very narrow or broadband ATRs. Moreover, the study
of the scattering matrix provides us detailed info on related important properties,
such as the lasing states, the exceptional points, and the stability of the system.

Furthermore, the versatility of these systems is exhibited with a chain of four
resonators. The possible degrees of freedom are numerous, as we can choose be-
tween a gain-gain-loss-loss or gain-loss-gain-loss profile, and we can even sym-
metrically modify the frequencies of the resonators and the amount of gain and
loss. Each of these configurations gives rise to a unidirectional (or bidirectional)
invisibility scheme with complex behaviour as a function of the frequencies: a
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rich, tunable dispersion with multiple, crossing or anti-crossing ATRs is obtained,
offering possibilities for ‘ATR engineering’.

In future work one could also explore structures without perfect PT geometry,
with e.g. gain/loss profiles that are not left-right symmetric. These would often
lead to imperfect ATRs, however, with reflections that are not perfectly zero. We
do not explore these cases here, but they would significantly expand the avail-
able parameter space. Furthermore, Bragg gratings with non-linearity have also
demonstrated robust ATRs with non-reciprocal transmission [75], we can expect to
find the same effect in our system if we add non-linearity, for example via material
non-linearities in the resonators [64,82].



7
Topological edge modes with PT
symmetry

7.1 Introduction

Topology examines the conservation of mathematical or physical properties under
continuous deformations. It expanded towards the development and comprehen-
sion of topological insulators [83], and it opens opportunities in many fields and
in particular in photonics [84]. One of the intriguing promises is a unidirectional
waveguide that allows light to travel through an imperfect structure without suf-
fering from back-reflection. Topological effects are available in many photonic
systems, for example in photonic crystals, coupled resonators, metamaterials and
quasi-crystals [85]. In particular, 1D quasi-periodic structures [86–88] with or
without a defect [89] have a proven interest as a topological playground [90].
PT symmetry has been employed to obtain topological states [91–93], or to

tailor such states [94, 95] within a 1D structure. We have seen, in Sec. 2.2.3,
that PT symmetry or non-Hermitian photonics can create states with similar
properties as topology. In this chapter, we associate PT symmetry and topology
in a 1D quasi-crystal device to observe their intriguing combined characteristics.

We consider as a model system a quasi-crystal consisting of two abutted Fi-
bonacci sequences presenting topological edge modes, recently introduced for the
passive regime [96, 97]. We portray this passive structure in Sec. 7.2, with a
calculation of its transmittance and an interpretation of its intrinsic topological
properties.

Subsequently we add gain and loss in Sec. 7.3, in order to investigate the
global (Sec. 7.3.1) or local (Sec. 7.3.2) interplay between PT - and topology-related
characteristics. With the capabilities of PT symmetry to act on bandgaps, we
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examine how gain and loss affect edge modes that are lying inside the gaps. We
present the curious mode-merging behaviours displayed by the different types of
modes in this quasi-crystal when PT symmetry is added. Among other typical
PT -phenomena, for example, the symmetry recovery effect presented in Chap.
5 appears. In addition, as in other 1D PT structures, we detect the anisotropic
transmission resonances (ATRs) presented in Chap. 6 but in a much more complex
pattern than previously noticed. Furthermore, due to the presence of gain, we get
a family of lasing resonances, that we are able to describe with a simple Fabry-
Perot model in Sec. 7.3.3. Possibilities are suggested for engineering the lasing
spectrum (gain-frequency relation at threshold).

This chapter is based on the work published in [98].

7.2 Topological Fibonacci sequence

We study the scattering properties of an open 1D photonic quasi-crystal structure
composed of two parts stitched together. In this section, we examine only the
passive properties (no gain or loss). The two parts are Fibonacci sequences, which
are quasi-periodic and composed of an alternation of two letters A,B, representing
two different materials (Fig. 7.1(a)).

Figure 7.1: (a) Geometry of the Fibonacci sequences
←−
XN,φ and

−→
XN,φ with their

implementations into a photonic quasi-crystal. (b) Geometry of the structure PN,φ
with the convention for the right/left transmission and reflection.
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The traditional mechanism to generate a Fibonacci sequence is by using an
inflation/substitution algorithm σ. σ applies onto A,B according to σ(A) = AB
and σ(B) = A, and its application onto more than one letter obeys the relation
σ(Y Z) = σ(Y )σ(Z) (e.g. σ(AB) = σ(A)σ(B) = ABA). Consecutive applications
of σ gives rise to a Fibonacci sequence Sj = σj(B) (with j ∈ N), whose length is
the Fibonacci number Fj>1 = Fj−1 + Fj−2 (with F0 = F1 = 1). When j →∞ the
ratio Fj+1/Fj → τ with τ = (1 +

√
5)/2 the golden ratio [63]. The infinite chain

S∞ ≡ limj→∞ Sj is quasi-periodic and self-similar under the substitution process
[99]. This sequence can be roughly compared to a periodic succession of A’s and
B’s with ‘pseudo-randomly’ added A letters (see S5 in Fig. 7.1(a)).

A convenient way to describe Sj is to use the two-valued function χn,φ, whose
values ±1 are identified to A (+1) and B (−1):

χn,φ = sign [cos(2πn/τ + φ)− cos(π/τ)] (7.1)

with n ∈ N0 and a degree of freedom φ that is 2π periodic. In this chapter we
will use this second construction method to define a more general parametrized
structure. This angular degree of freedom φ is irrelevant for the infinite chain, but

relevant for a finite segment
−→
XN,φ = [χ1,φ χ2,φ ... χN,φ] of

−→
X∞,φ. One can show

that the finite segment Sj = σj(B) is the same as
−→
XN,φ, if φ = π/τ and N = Fj.

However, in general in this chapter φ 6= π/τ , and the two constructions are not

equivalent. The irrationality of τ ensures that
−→
XN,φ is quasi-periodic [100].

Finally, there is also a geometrical construction of
−→
XN,φ possible via the cut-

and-project method. This visualisation principle links to one of the computational
methods for calculating the spectrum and eigenstates of a quasi-crystal, by solving
Maxwell’s equations in higher dimensions (i.e. super-space method) [63].

Our structure PN,φ, which we call a TIFS (Twinned Inverted Fibonacci Se-

quence), is composed of two symmetric abutted segments: the reversed
←−
XN,φ =

[χN,φ χN−1,φ ... χ1,φ] and
−→
XN,φ, see Fig. 7.1(b), with the aim to disrupt the spec-

tral properties of the Fibonacci sequence and thus to induce defect modes. For
photonic implementation, A and B (or ±1) correspond to two different material
layers with the same length L = 1 µm and refractive indices nA = 3 and nB = 2,
respectively. The outside refractive index is n0 = 2.

We investigate the properties of the TIFS structure PN,φ through numeri-
cal simulations (with CAMFR [39]) of the transmission T = |t2L| = |t2R| with
tL/R the left and right transmission amplitudes, and the left and right reflection
RL/R = |r2

L/R|, with rL/R the left/right reflection amplitude (see Fig. 7.1(b) for

conventions). For
←−
XN,φ and

−→
XN,φ we use the same conventions for transmission or

reflection with an extra left/right arrow (e.g. −→r L for the left reflection amplitude

of
−→
XN,φ, see Fig. 7.1(a)). The transmission is the same regardless of the input side

because of reciprocity.
Fig. 7.2 shows the transmission of PN,φ and the related ‘non-mirrored’ segment

−→
X 2N,φ (2N in order to have the same number of layers as PN,φ) as a function of
k0 = 2π/λ0 with λ0 the vacuum wavelength of an incident perpendicular plane
wave. Similar to a periodic crystal, quasi-periodicity opens a series of bandgaps
for both structures in the same ranges of k0. In this chapter we plot the graphs



7.2 Topological Fibonacci sequence 80

as a function of k0 instead of omega0 (so k0 is not the Bloch wavenumber here).
This is for easier correspondence with the first paper in this field.
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Figure 7.2: Transmission of
−→
X 2N,φ (blue) and PN,φ (red) with N = 50 and φ =

3 rad. The black arrows on top denote the positions of the bandgaps given by Eq.
7.2 with the corresponding m values. The four dashed black arrows below indicate
the k0 values of the profiles in Fig. 7.3.

We can locate the theoretical positions of these bandgaps via the gap-labelling
theorem [85,99,101,102]

kgap = [n+ mod(m/τ, 1)] [2π/(D nav)] (7.2)

with m ∈ Z, n ∈ N, D = 2L the basic pair thickness of our system and nav the
average refractive index. We mark the bandgaps using this equation with black
arrows and the corresponding m number on top in Fig. 7.2.

If we compare these quasi-periodic spectra to the band diagram of a periodic
succession of A and B (not shown), the gap around k0 ≈ 1.2 rad/µm (m =
0) appears in both periodic and quasi-periodic structures: It corresponds to the
‘natural’ first bandgap (with n = 1) of the periodic structure and to the smallest
physical distance for a constructive round-trip. All the other gaps of the quasi-
periodic structure thus open in a pass-band of the periodic structure (e.g. the first
pass band n = 0 of the periodic structure is for k0 < 1.2 rad/µm).

It is interesting to note that an infinite quasi-periodic sequence opens an infinite
number of bandgaps, and the transmission spectrum becomes fractal [99,102]. Here
for a finite sequence, we observe only the larger bandgaps with smaller |m|.

Each transmission peak inside and outside the bandgaps indicates a mode
of the structure. Turning to the TIFS PN,φ (red curve in Fig. 7.2) we observe
some additional peaks of transmission inside the bandgaps in comparison to the

transmission of
−→
X 2N,φ (blue curve). As PN,φ is not an exact Fibonacci sequence but

is the result of stitching two sequences, this configuration creates an interface in



7.2 Topological Fibonacci sequence 81

the structure at the mirror plane. This interface allows for one or more additional
modes to appear in the bandgaps.

We show in Fig. 7.3 the profiles of four band modes of PN,φ around the bandgap
with m = −1. They display different shapes but are all symmetric with respect
to the central mirror plane of PN,φ (at z = 50µm). The two modes with k0 ≈ 0.58
and 0.42 rad/µm possess less ‘modulations nodes’ than the others and thus can
be considered as more fundamental (more details in Sec. 7.3.1). All these profiles
are also spatially extended over the whole structure.
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Figure 7.3: Field profiles of the band modes of the TIFS structure PN,φ as a
function of the position z with N = 50 and φ = 5 rad. The modes at k0 ≈ 0.52
and 0.36 rad/µm are located in the middle of a band. The modes at k0 ≈ 0.58 and
0.42 rad/µm are located at the edge of a band. These k0 are indicated by dashed
black arrows in Fig. 7.2.

The latter is in contrast with the field profiles of the TIFS interface modes; we
show these modes for the gap with m = −1 in Fig. 7.4 for different values of φ.
An interface mode is confined to the central mirror plane for every value of φ, and
this property is general for all bandgap modes. The interface mode profiles also
present a symmetry (e.g. for φ = 0.5 and 6 rad in Fig. 7.4) or an antisymmetry
(φ = 1.5 and 3 rad), more details will be provided below. Finally, larger bandgaps
lead to more confined interface modes (not shown) with narrower bandwidths.

We focus on the transmission around two of the lower frequency bandgaps
(k0 ≈ 0.45 rad/µm, m = −1, Fig. 7.5(a) and k0 ≈ 1.2 rad/µm, m = 0, Fig.
7.5(b)), varying φ and k0. We do not examine the larger bandgap with m = 1, as
it encounters the same topological properties as for m = −1. Moreover, in a larger
bandgap the interface mode is narrower, so a finer grid of k0 (higher computational
cost) is needed. The interface mode in the bandgaps describes one (Fig. 7.5(b))
or two (Fig. 7.5(a)) cycles as a function of φ, respectively. Along these cycles the
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Figure 7.4: Electrical (E) field profiles of the interface mode as a function of the
position z (see Fig. 7.1(b)) for varying φ. The structure is between z = 0 µm and
z = 100 µm, the symmetry plane is indicated by the black line. The interface
mode is located in the bandgap around k0 ≈ 0.45 rad/µm and m = −1 in Fig. 7.2.

interface mode performs some spectral jumps for definite values of φ. These jumps

are the consequence of a letter switch in the sequence
−→
XN,φ (and symmetrically in

←−
XN,φ), when φ varies (see Fig. 7.6).

More in detail, each letter of
−→
XN,φ flips from B to A (red crosses in Fig. 7.6)

at a different value of φ (see Eq. 7.1). In addition, at this value of φ, the next
letter in the sequence (except for the first one) also does a reverse flip from A to B

(blue circles in Fig. 7.6). As
←−
XN,φ mirrors

−→
XN,φ, these conclusions are also valid

for the inverse sequence. As the interface mode is confined to the center of the

TIFS structure PN,φ, the flipping of the first letters of
−→
XN,φ (or the last ones of

←−
XN,φ) induce a larger jump than those at the extremities of the chain PN,φ (with
negligible field amplitude). We indicate with red triangles in Fig. 7.5 the φ values

where one of the five first (last) letters of
−→
XN,φ (

←−
XN,φ) flips, indeed leading to a

significant spectral jump of the interface mode.
Furthermore, we indicate that the red crosses and blue circles are situated

along lines (black dashed lines in Fig. 7.6). In addition, the φ separation (vertical
distance in Fig. 7.6) between the same kind of flip (A to B or B to A) of two
successive letters is always equal to 2.4 rad (so the vertical distance between two red
crosses or between two blue circles in Fig. 7.6). The incommensurability between
this ‘flip’ period and the φ period induces that these flips never occur two times
at the exact same value of φ.

The number of cycles of the interface mode eigenvalues for a 2π path of φ is
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Figure 7.5: Transmission (log scale) of the TIFS structure PN,φ as a function of k0

and φ around the bandgap with m = −1 (a) and the bandgap with m = 0 (b) and
with N = 50. The red triangles on the left axis indicate the values of φ where at

least one of the first (last) letters of
−→
XN,φ (

←−
XN,φ) flips (see Fig. 7.6), leading to a

spectral (horizontal) jump of the interface mode. The ‘AS’ and ‘S’ zones stand for
the φ regions where the interface mode profiles are antisymmetric or symmetric,
respectively.
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Figure 7.6: The φ values where a letter flips as a function of the letter position n

in the sequence
−→
XN,φ (or symmetrically at the position N − n+ 1 in

←−
XN,φ). The

red crosses show the flips from B to A, and vice versa for the blue circles. The
red triangles on the left axis indicate the values of φ where at least one of the first

(last) letters of
−→
XN,φ (

←−
XN,φ) flips.

determined by the winding number w(k0) of the bandgap:

w(k0) =
1

2π

∫ 2π

0

∂θcav(k0, φ)

∂φ
dφ (7.3)

with θcav =
−→
θ L +

←−
θ R the sum of the phases of the reflection coefficients at the

inner boundaries of
−→
XN,φ and

←−
XN,φ (see Fig. 7.1(b)). The winding number has

to be evaluated at a particular k0, but one obtains the same value for any k0 in

the bandgap. Note that without gain and loss
−→
θ L =

←−
θ R. The winding number

represents the number of times a closed curve (defined by θcav(k0, φ) here) travels
around a point. This number is also connected with the gap Chern number [103],
the characteristic number that links band structure and topology [104].

If we check the interface mode field profile (Fig. 7.4), we observe that it keeps an
antisymmetric pattern along a cycle in the bandgap (‘AS’ region between φ ≈ 1.4
and 4.3 rad in Fig. 7.5(a)). For the second cycle (‘S’ region between φ ≈ 4.3
and 1.4 + 2π rad in Fig. 7.5(a)) the pattern is symmetric. The profile symmetry
of the edge mode flips from symmetric to antisymmetric (or vice versa) when
the mode begins another cycle/spectral crossing through the bandgap. If the
number of cycles is odd but at least three, the profile symmetry still flips between
consecutive cycles. However, the single cycle mode that crosses φ ≈ 4.3 (as in Fig.
7.5(b)) flips the symmetry ‘in the middle’. For example in Fig. 7.5(b), the edge
mode is antisymmetric in the ‘AS’ region below φ ≈ 4.3 rad and symmetric in the
‘S’ region beyond this φ value while it is still in the same cycle. This value of φ

corresponds to a change of the very first letter of
−→
XN,φ from A to B (Fig. 7.6),

i.e. a strong change at the core of the resonant interface ‘cavity’ leading to the
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Figure 7.7: Sketch of the TIFS structure PN,φ with the gain and loss factor γ. All
A’s on left have gain (−γ), all B’s on the left have loss (+γ), and vice versa for
the right side.

possibility of a symmetry switch.

7.3 TIFS with PT symmetry

Now we introduce gain and loss in a balanced fashion on both sides of the mirror

plane. Therefore, in
←−
XN,φ all letters A experience gain (nA = 3 − jγ) and all

letters B experience loss (nB = 2 + jγ), with γ the gain/loss factor. For
−→
XN,φ we

introduce the complex conjugates (nA = 3 + jγ, nB = 2− jγ, see Fig. 7.7). In this
way the whole TIFS structure PN,φ is PT -symmetric, but each part individually is

not. As there are more A’s than B’s,
←−
XN,φ presents more gain than loss (depending

on the sign of γ), and vice versa for
−→
XN,φ.

Note that the relatively large γ values (|γ| ∈ [0, 0.5]) that we explore are
connected to the large index contrast nB − nA and the limited N = 50 of our
simulations. More realistic |γ| < 0.005 could result from a combination of weaker
index contrast |nB − nA| ∼ 0.1 and larger N > 50.

7.3.1 Global properties

An interesting global transmission pattern arises as the gain/loss value increases.
We show T of PN,φ as a function of k0 and φ for various γ in Fig. 7.8. As we
increase γ from Fig. 7.8(a) to (d), saturated transmission peaks (in yellow) appear.
However, for even larger γ they subsequently tend to disappear. This pattern
indicates the typical merging of two modes at an exceptional point under the action
of PT symmetry (see Chap. 2). Beyond the exceptional points, the transmission
peaks disappear as the modes become complex (leading to dark blue zones).

Furthermore, we observe a characteristic feature of PT symmetry: in general
more fundamental modes merge at smaller γ than higher-order modes, because
they are easier to ‘break’ (see also [74]). Indeed, modes at the band edges (the
more fundamental ones) are the first to merge (higher transmission zones at band
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Figure 7.8: Transmission T (saturated to two for clarity) of PN,φ as a function of
k0 and φ with N = 50 and varying γ.

edges in Fig. 7.8(a,b)). Afterwards, the pass-band centers (the less fundamental
modes) begin to merge at greater γ (Fig. 7.8(c,d)). To illustrate, we show the
fields of two band edge modes (k0 ≈ 0.58 and 0.42 rad/µm in Fig. 7.3) and two
band center modes (k0 ≈ 0.52 and 0.36 rad/µm). The band center modes present
more ‘modulation nodes’ than the edge modes, demonstrating a less fundamental
pattern.

Finally, at ever higher γ the transmission picture will have fewer features and
becomes largely blue: almost all modes are broken, leading to negligible transmis-
sion.

Besides this general pattern, the behaviour of the gap defect modes is more
erratic: some modes merge at small γ, while others remain in the bandgap at high
γ, we discuss these modes in detail in the next section.

7.3.2 Local properties

After this general PT behaviour of the TIFS structure for varying φ, we focus on
a few specific geometries (specific φ) to distinguish more precise features. We show
T , RL and RR as a function of k0 and γ in Fig. 7.9 for specific φ values. In these
figures, left and right incidence corresponds to γ > 0 and < 0, respectively (the
upper and lower halves of the graphs). Two bandgaps are displayed, indicated by
the two horizontal black arrows in Fig. 7.9(a). For certain values of φ, an interface
mode appears in these bandgaps (denoted by the red arrows in Fig. 7.9(a) around
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k0 ≈ 0.425 rad/µm and k0 ≈ 0.56 rad/µm at γ = 0).
Most of the time RL > RR (more yellow in upper half) due to the presence

of more gain on the left side (
←−
XN,φ) than on the right side (a consequence of the

construction). We also note that, as usual in PT symmetry, two modes tend to
merge with one another at so-called exceptional points: their eigenvalues become
complex conjugates and they no longer lead to a transmission peak, and only
provide reflection afterwards. Band modes merge with one another in each φ
configuration (e.g. at the green arrow around k0 ≈ 0.4 rad/µm in Fig. 7.9(f)).
However, bandgap interface modes tend to merge with modes in the closest band
(e.g. at the green arrow around k0 ≈ 0.4 rad/µm in Fig. 7.9(d)). Or they merge
with spectrally distant modes at large values of γ (e.g. the interfaces modes that
begin their trips at the red arrows around k0 ≈ 0.49 rad/µm and k0 ≈ 0.57 rad/µm
at γ = 0 in Fig. 7.9(e)). Note that we can expect that the system becomes unstable
(as in Chap. 6) due to the large gain before the latter two modes merge.

During the merging process, the field profiles of the modes slowly become
similar, see an example of an edge mode and a band mode combination in Fig.
7.10. The band mode (red curve, middle), which is initially distributed along the
structure, becomes more and more confined at the center (blue curve, bottom),
similar to an edge mode profile. The edge mode evolves in the opposite way (red
and blue upper curves). In general, a band and edge mode merge at larger γ than
two band modes, because their profiles are quite different, and one needs more gain
and loss to distort them. Conversely, two merging band modes are in general close
(spectrally and with similar profiles), making them easier to match and merge at
smaller γ.

Similar to other 1D PT structures and the structure of Chap. 6, we can ob-
serve Anisotropic Transmission Resonances (ATRs) [61] or one-sided invisibility,
where T = 1 (red lines in Fig. 7.9(d)), and one of the reflections is equal to zero
(red lines in Fig. 7.9(c)). These ATRs originate from the peaks of T = 1 in the
passive system where RL = RR = 0. Upon introduction of gain/loss, the system
distinguishes the left and right reflections, so only one is equal to zero and we
detect the typical ATRs. In tight binding approaches e.g. with a limited number
of cavities one can obtain analytical expressions for the ATRs as in Chap. 6. Here,
however, the analytics become unwieldy with many interfaces, and we resort to
numerical transfer matrix approaches, leading to fairly complex patterns of ATRs
as a function of φ (Fig. 7.9).

In addition, we observe more exotic merging behaviours of the band modes
(Fig. 7.11(a,b)) or interface modes (Fig. 7.11(c,d)). Some islands of transmission
appear in the bandgap (around γ ≈ 0.32 in Fig. 7.11(e,f)). Furthermore, we
find the ‘symmetry recovery’ phenomenon described in Chap. 5 (denoted by the
green arrow around k0 = 2.77 rad/µm in Fig. 7.11(d)): With tailored coupling
between four modes, one can achieve that two modes merge initially as γ increases.
However, when γ continues to increase, they become real again (inverse exceptional
point, around γ = 0.12), and finally merge with their original ‘PT -partners’ at
greater γ. The fact that this appears is not strange, because there are many modes
with many coupling constants, but still one needs a relatively delicate coupling
balance, so it is uncommon to observe.
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Figure 7.9: Reflection (left column) and transmission (right column) for PN,φ (N =
50) as a function of γ and k0, and saturated to two. (a,b) For φ = 0.6, (c,d) 1.2 and
(e,f) 4.2. γ > 0 (< 0) is for left (right) incidence. The two black double arrows in
(a) indicate the bandgaps. The two red arrows in (a,e) show the interfaces modes
in these bandgaps. The green arrow in (b) shows the merging of a band mode
and an interface mode, in (f) it indicates two band modes merging. The red lines
represent ATRs.
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Figure 7.10: Field profiles of an edge mode (two upper curves) and a band mode
(two lower curves) that merge together. Red curves: without gain and loss (γ = 0,
around k0 ≈ 0.42 and 0.38 rad/µm respectively in Fig. 7.9(a,b)). Blue curves: just
before their merging (γ = 0.25, around k0 ≈ 0.405 and 0.39 rad/µm respectively
in Fig. 7.9(a,b)).

7.3.3 Laser resonances

Focusing on the merging behaviour of an interface mode, we observe oscillations of
the transmission, with peaks of very high intensity indicating lasing effects (yellow
arrows in Fig. 7.12(a,b)). These peaks are elegantly described with a Fabry-Perot
model (based on Sec. 3.2.1) of a cavity centered at the mirror plane. The phase
matching condition of a roundtrip in the cavity (Eq. 7.4) describes the presence
and evolution of the modes. A quality factor of the cavity (Eq. 7.5), as dictated
by its inner reflections, gives us information on the strengths of the resonances (at
γ 6= 0) and so the intensity:

θcav = 2mπ,m ∈ Z (7.4)

Q =
1

1− |←−r R||−→r L|
(7.5)

Eq. 7.4 is indicated by the red dots in Fig. 7.12(c,d). The quality factor Q depends
on the amplitudes of the inner reflection coefficients of each part of PN,φ. We
show log(Q) in Fig. 7.12(c,d). By comparing Fig. 7.12(a,b) and Fig. 7.12(c,d) we
conclude that the modes are well described by this simple model: the alignment of
phase matching (red dots) and high-Q (yellow zones) in (c,d) indeed corresponds
with the lasing resonances in (a,b).

By varying the crystal phase φ or by choosing different bandgaps, we can ob-
serve various merging schemes of the interface mode. In Fig. 7.12(a), the variation
of k0 as a function of γ of the interface mode branch is relatively small, leading
to a succession of laser resonances closely spaced in frequency. In contrast, in Fig.
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Figure 7.11: Reflection (left column) and transmission (right column) for PN,φ
(N = 50) as a function of γ and k0, saturated to two. (a,b) For φ = 3.0, (c,d) 0.6
and (e,f) 6.1 rad. γ > 0 (< 0) is for left (right) incidence. The green arrow (d)
denotes a symmetry recovery phenomenon.
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Figure 7.12: (a,b) Transmission (saturated to two) of PN,φ (N = 50) as a function
of γ and k0 via rigorous transfer matrix calculation. (c,d) Fabry-Perot model with
the logarithm of Q (Eq. 7.5) for the same structures. The red points represent
constructive cavity interference, given by Eq. 7.4.

7.12(b), the variation of k0 as a function of γ along the branch is relatively large,
leading to more spectrally distant resonances. The large number of possible merg-
ing scenarios allows us to spectrally spread or tighten the laser resonances, and
thus opens the way to laser resonance engineering. Furthermore, we can expect to
take advantage of the field profile difference between band and interface modes, in
order to select which resonances will occur at smaller γ. Indeed, if we put gain and
loss only in the layers close to the interface, we will reach the exceptional points
of the interface modes at smaller γ than for the band modes. Thus the interface
mode should lase at smaller γ and will not be perturbed by the band modes.

7.4 Summary

We study a 1D photonic quasi-crystal with topological features in a PT symmetry
context. We use the scattering characteristics to investigate various properties of
this structure, especially the presence of interface modes in the bandgaps. The
structural degree of freedom φ (i.e. the crystal phase control variable) allows these
modes to spectrally cross the bandgap. These cycles are connected with the wind-
ing number of the bandgap and the gap Chern number. Spectral jumps occur along
these cycles for specific values of φ, corresponding to the flipping of a letter in the
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crystal sequence. In addition, the symmetry of the gap modes are determined by
these cycles and spectral jumps.

By adding gain and loss in a PT -symmetric fashion, we observe a set of complex
behaviours that is not in simple correspondence with the passive case. Mostly,
mode pairs merge at exceptional points under the action of PT symmetry. This
merging feature gives rise to high transmission peaks and even laser resonances.
When γ is beyond these exceptional points, the modes become complex and the
transmission fades out. In a general pattern, we observe that the side modes of
a band merge together at lower γ than the less fundamental ones at the band
center. We also observe a symmetry recovery phenomenon, a complex merging
scheme involving four band modes and described extensively in Chap. 5. The
interface modes created in the bandgaps merge with nearby band modes, and
present very high transmission at laser-like resonances. The spectral dispersion of
these laser resonances can be controlled by the various involved parameters. In
addition, we observe anisotropic transmission resonances (presented in Chap. 6)
where the transmission is unity and one of the reflections is equal to zero. The mix
of order and disorder of the present system thus gives a useful basis for exploring
how a variety of PT symmetry related effects are interrelated.

In future work, one can study the stability of this system with time-domain
simulations to figure out what can be feasible in experimental setups. One can also
try to add non-linearity to potentially obtain non-reciprocal transmission for the
ATRs. However, this will be a complex system with many parameters to examine.
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Conclusion and outlook

Throughout this work we studied and exploited the potential of mode control
offered by PT symmetry in various fundamental structures and configurations.
Tunability and a positive role for losses are crucial elements for the design of
more efficient and novel photonic components, strengthening PT symmetry as a
promising paradigm. In the following, we propose a concise summary of this work
and discuss further opportunities.

First, we considered the switching capability of a finite PT -symmetric diffrac-
tion grating under illumination. In the Littrow case, the structure supports two
Bloch modes that interfere at the end of the grating and excite the two transmis-
sion diffraction orders. By adding gain and loss, these two modes merge at an
exceptional point. Before this point, we can control the interferometric operation
with gain and loss to excite the desired transmission diffraction order. Beyond
this point, as the modes become complex, the incident light cannot couple to
them and is entirely reflected. In between, laser-like resonances can be achieved
for the mode that experiences gain. In the perpendicular incidence case, only one
Bloch mode is available and it does not allow for a passive dual-mode interference
scenario. Nevertheless a new mode pops up to merge with the first one when gain
and loss is increased. Interference between the various transmission diffraction
orders is restored until the exceptional point. Subsequently, we vary the period of
the imaginary part independently of the real part. This configuration mixes pre-
viously uncoupled modes and gives a different symmetry breaking picture showing
elements of the two previous cases. It demonstrates that the various possible
patterns of gain and loss gives us a greater control to tailor the modes.

Afterwards, we investigated more in detail the exceptional points and the two
PT phases. In the simplest four-mode linear structure, by analysing the mode
merging properties, we discover the symmetry recovery effect. This phenomenon
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exhibits two distinct unbroken PT phases separated by a broken one that is de-
limited by an exceptional point and an ‘anti’-exceptional point. The fine tuning
of the coupling constants allows for two previously uncoupled modes to merge
(symmetry breaking) before splitting (symmetry recovery) and merge with their
initial partners (final broken phase). This effect also happens in more complicated
structures with multiple modes.

Subsequently we focus on unidirectional invisibility or anisotropic transmission
resonances (ATRs), where transmission is unity and reflection is zero from one side
only. With two cavities coupled to a waveguide, we demonstrate that the ATR
bandwidth can be easily tuned from narrow to broadband by varying the length
between the cavities. Moreover, we address other effects such as lasing states,
exceptional points and stability. This structure offers more degrees of freedom
than previously reported structures with ATRs and is suspected to be more eas-
ily implemented experimentally. Moreover, a four-cavity structure displays ATR
schemes with a new level of complexity with numerous degrees of freedom, which
offers possibilities for ‘ATR engineering’.

Finally we mix PT symmetry and topology in a 1D quasi-periodic structure. In
the passive case, the structure exhibits topological interface modes in the bandgaps.
Topology gives us information about the positions of these bandgaps via the gap
labelling theorem. The behaviours of the interface modes under the variation
of a structural degree of freedom is defined by the winding number, which is also
linked to the gap Chern number of the bandgap. By adding gain and loss in a PT -
symmetric fashion, we introduce a tool to manipulate these interface modes. The
huge number of modes, bandgaps and degrees of freedom makes this structure rich
of opportunities. The ATRs display a more complex pattern than ever. Symmetry
recovery is observed between band modes. The interface modes merge with band
modes and exhibit laser resonances along their merging branches. These branches
can be controlled so the frequency dispersion of the laser resonances becomes
tunable. The mix of order and disorder of the present system thus gives a useful
basis for exploring how a variety of PT symmetry related effects are interrelated.

Further work can examine more realistic gain and loss models. Gain is a compli-
cated feature that can evidence saturation or non-uniformity due to charge carrier
dynamics. Loss is far easier to produce as an inherent component of materials, but
its intensity is usually fixed by the geometry and materials and is hard to tune.
A perfect balance between gain and loss is complex, thus we need to address PT
effects with an imperfect distribution of gain and loss.

In Chap. 6 the ATRs can be broadband, but the effect is stronger close the
cavity frequency. Multi-mode cavities could be investigated to extend the reach of
this effect, leading e.g. into the field of ring resonator cavities.

The stability analysis with time domain simulations performed in Chap. 6
should be done for the topological structure of Chap. 7. The stability limit of
a PT system is often defined by the exceptional points. By playing with the
gain/loss pattern we can choose the modes that are the most likely to merge first.
In this way we can tailor the effects to observe in the stable region.

Bragg gratings with non-linearity have demonstrated robust ATRs with non-
reciprocal transmission. We can also consider non-linearity in our 1D structures to
potentially obtain real non-reciprocal transmission for the ATRs. However, with
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the increasing number of degrees of freedom, these systems become challenging to
investigate.

To conclude, PT symmetry may not be the complete solution to design cheap,
fast and compact photonic devices, because of the complexity to obtain perfect
gain and loss. However it can change our mindset about inherent loss, which
can be a useful property and not an unwanted feature. Throughout this thesis,
we demonstrate the surprising tuning opportunities of PT symmetry in multi-
modal designs. This mode control by the previously neglected complex part of the
refractive index is fundamentally exciting for the development of future photonic
devices.
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[11] J. Čtyroký, V. Kuzmiak, and S. Eyderman, “Waveguide structures with
antisymmetric gain/loss profile,” Opt. Express, vol. 18, no. 21, pp. 21585–
21593, 2010.

[12] S. V. Suchkov, S. V. Dmitriev, B. A. Malomed, and Y. S. Kivshar, “Wave
scattering on a domain wall in a chain of PT-symmetric couplers,” Phys.
Rev. A, vol. 85, p. 033825, 2012.

[13] C. Huang, F. Ye, and X. Chen, “Mode pairs in PT-symmetric multimode
waveguides,” Phys. Rev. A, vol. 90, no. 4, p. 043833, 2014.

[14] N. X. A. Rivolta and B. Maes, “Diffractive switching by interference in a
tailored PT-symmetric grating,” J. Opt. Soc. Am. B, vol. 32, no. 7, pp. 1330–
1337, 2015.

[15] S. Phang, A. Vukovic, H. Susanto, T. M. Benson, and P. Sewell, “Ultrafast
optical switching using parity time symmetric bragg gratings,” J. Opt. Soc.
Am. B, vol. 30, no. 11, pp. 2984–2991, 2013.

[16] H. Benisty, A. Degiron, A. Lupu, A. D. Lustrac, S. Chénais, S. Forget,
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