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Abstract

Locomotion is a natural task that has been assessed for decades and used as a proxy to

highlight impairments of various origins. So far, most studies adopted classical linear analy-

ses of spatio-temporal gait parameters. Here, we use more advanced, yet not less practical,

non-linear techniques to analyse gait time series of healthy subjects. We aimed at finding

more sensitive indexes related to spatio-temporal gait parameters than those previously

used, with the hope to better identify abnormal locomotion. We analysed large-scale stride

interval time series and mean step width in 34 participants while altering walking direction

(forward vs. backward walking) and with or without galvanic vestibular stimulation. The

Hurst exponent α and the Minkowski fractal dimension D were computed and interpreted as

indexes expressing predictability and complexity of stride interval time series, respectively.

These holistic indexes can easily be interpreted in the framework of optimal movement com-

plexity. We show that α and D accurately capture stride interval changes in function of the

experimental condition. Walking forward exhibited maximal complexity (D) and hence,

adaptability. In contrast, walking backward and/or stimulation of the vestibular system

decreased D. Furthermore, walking backward increased predictability (α) through a more

stereotyped pattern of the stride interval and galvanic vestibular stimulation reduced predict-

ability. The present study demonstrates the complementary power of the Hurst exponent

and the fractal dimension to improve walking classification. Our developments may have

immediate applications in rehabilitation, diagnosis, and classification procedures.

Introduction

The stride interval of normal human walking is the time period between consecutive heel

strikes of the same foot [1]. For more than two decades, a line of research focused on the

understanding of the nature of the subtle variations observed in stride intervals and the origin

of typical long-range structures in these variations. Today, these investigations are of
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paramount importance since they could provide a better understanding of the physiological

mechanisms involved in normal human walking and in alterations observed in clinical prac-

tice. The nature of these stride interval variations could arise either from noisy neural pro-

cesses that result in errors in the motor output or from alterations in the motor command that

account for balance instabilities [2].

Normal gait is characterized by the presence of autocorrelations in the stride interval when

considering walking on a sufficiently long time scale [1, 3]. The origin of these autocorrelations

may be attributed to neural central pattern generators (CPGs) [1, 3] or a super CPG coupled to

a forced Van der Pol oscillator [4], and/or to the biomechanics of walking [5, 6]. For many

years, gait analysis has been studied with classical methods adopting biomechanical models in

which variability was not of interest. More recent techniques derived from chaos theory are

well adapted to analyse time series that exhibit long-range autocorrelation. Importantly, they

treat variability as a meaningful interpretable signal. Since the pioneering works of Hausdorff

et al. [1, 3], long-range autocorrelations in time series are estimated by the Hurst or fractal

exponent (α). A fractal, introduced in 1975 by the French mathematician Benoı̂t Mandelbrot

(1924–2010) [7], is defined as a geometrical structure that has a regular or an uneven shape

repeated over all scales of measurement. It is characterized by a fractal dimension (D) greater

than the spatial dimension of the structure [8]. A famous example of such object is a snow

flake. Objects that are statistically self-similar—parts of it show the same statistical properties

at many scales—exhibit strong autocorrelation. The Hurst exponent α is a statistical measure

of long-term memory of time series (see e.g. [9] for a review) and is usually associated to frac-

tal-like behaviour. In particular, the peculiar behavior of the stride interval may be referred to

as “fractal behavior” [3].

The theoretical model of optimal movement complexity [10] is based on the complemen-

tary concepts of predictability and complexity. Nature let us find optimal behavior in terms of

skills and variability through evolution. As proposed by Lipsitz and Glodberger in their pio-

neering work, the optimal state of a biological system may be characterized by chaotic tempo-

ral variations in the steady state output that correspond to maximal complexity [11]. Any

deviation from healthy state, like senescence and disease, causes a loss in complexity (see also

[12]). Too few practice results in high disorder (randomness, no predictability) and excessive

practice leads to high order (periodic signal, maximal predictability). Adaptation of a system

to external stimuli is maximal only at an intermediate state of predictability. Furthermore, a

signal from a dynamical system also holds some inherent complexity. A decrease of complexity

of a physiological system results from either a reduction in the number of structural compo-

nents or an alteration in the coupling function between these components. For instance, a

joint can become rigid with senescence, hence decreasing the degree of freedom of the system

and consequently, its complexity. A holistic approach to study these mechanisms requires to

associate specific measurements to these two concepts. The Hurst exponent α captures part of

the story and is well suited to reflect predictability. While the Minkowski fractal dimension D
provides good measurability of the “apparent rugosity” of fractals [13] and reflects complexity.

Note that the quantification of a concept such as complexity may not be linked to a unique

measure; entropy-related measures have also been shown to be relvant in that domain [12].

Here, we use these parameters to complement the usual quantification of autocorrelation α in

unusual and perturbed gait conditions in an attempt to probe adaptability in the framework of

the model of optimal movement complexity [10].

As of today, the vast majority of studies explored autocorrelation in the stride interval dur-

ing natural forward walking. In one notable exception however, Bollens et al. [14] also tested

backward walking in a small sample of young healthy subjects. The authors did not find signif-

icant differences in long-range autocorrelation between both walking directions. However,
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backward walking measures revealed to be more sensitive than forward walking measures to

classify elderly fallers compare to non-fallers [15]. The study of backward walking under the

perspective of fractal analyses is therefore promising to provide more reliable predictive index

of fallers, as previously proposed for forward walking [16]. Backward walking is also frequently

used in sports and in rehabilitation settings, and a better understanding of the variability of

stride interval in this condition is needed since it is believed that backward walking is at least

partly controlled by specialized neural circuits [17].

The vestibular system provides an essential sensory contribution to the maintenance of bal-

ance during human walking [18]. Individuals with vestibular disorders show a decreased walk-

ing stability accompanied by an increased risk to fall [19]. Therefore, perturbing the vestibular

system of healthy subjects with galvanic vestibular stimulation (GVS) is a well targeted mean

to probe gait: it is standardized, well tolerated by subjects, generated by currently affordable

electrostimulators, and easy to implement when a large number of stride intervals are recorded

with an instrumented treadmill. The use of GVS is also an increasingly common clinical inter-

vention on locomotion [20–22].

Previously, autocorrelations in stride interval time series have been identified not only in

healthy young adults [3] but also in children [23] and elderly [24], and even—although signifi-

cantly modified—in several neurodegenerative conditions. In particular, the cases of Hunting-

ton’s disease [24], amyotrophic lateral sclerosis [25], and Parkinson’s disease have been studied

[26, 27], with a hope of connecting the observed modifications of fractal behavior to some rele-

vant evaluation of the risk of falling [16]. Here, we hypothesize that the combined effects of

walking direction and the application of GVS on long-range autocorrelations in the stride

interval could enhance the sensitivity of fractal analysis to identify impaired gait. We measured

α and D during forward and backward walking, with and without the application of binaural

and monaural GVS. We speculate that these two indexes should be able to capture differences

between experimental conditions and therefore provide better indexes to classify patients.

Material and methods

Participants

Thirty-four undergraduate and graduate healthy students (18 males, 16 females) in physiother-

apy took part to this study and were recruited at Haute Ecole Louvain en Hainaut (Charleroi,

Belgium). Mean age was 23 years (standard deviation, SD = 2), height was 173 cm (SD = 9),

mass was 69 kg (SD = 10), body mass index was 23 kg m−2 (SD = 3), and lower limb length (L),

measured in standing position as the distance between the floor and great trochanter, was 88

cm (SD = 5).

Subjects were not medicated and did not exhibit any neuromusculoskeletal, orthopaedic,

respiratory, or cardiovascular disorders that could influence their gait. Exclusion criteria

included vestibular disorders in addition to specific GVS exclusion criteria: presence of a heart

pacemaker, pregnancy, metallic brain implants, epilepsy, and skin damage behind the ears or

forehead. Eligible participants were required to be able to respond to verbal questions, compre-

hend questionnaires, and understand instructions during the procedures of the study. Prior to

participating, subjects read and signed an informed consent form. The study was approved by

the ethics committee of Grand Hôpital de Charleroi and conducted in accordance with the

declaration of Helsinki.

Experimental procedure

Subjects walked on an instrumented treadmill (70 cm wide, 185 cm long) with an integrated

force plate and an overhead safety frame (N-Mill, Motekforce Link, The Netherlands). They
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wore comfortable running shoes, a safety harness, and were asked to keep their eyes fixed

straight ahead. Four walking conditions were studied during two measurement sessions on

two different days: forward walking without GVS (FWS0) and with GVS (FWS+) and backward

walking without GVS (BWS0) and with GVS (BWS+). Session 1 included FWS0 and FWS+ con-

ditions and session 2 included BWS0 and BWS+ conditions. During each condition, subjects

walked on the treadmill for 15 minutes. Before each session, subjects were given five minutes

to familiarize themselves with the treadmill and the conditions.

Subjects walked at their comfortable speed that was determined during the familiarization

procedure by the same experimenter by tuning the speed of the belt while the subject was walk-

ing without GVS. The same speed was then imposed when GVS was applied. Vertical ground

reaction force (Fv) and centre of pressure (CoP) of each foot was recorded at a sampling rate of

500 Hz using the manufacturer’s software (CueFors 2, Motekforce Link, The Netherlands).

Time series stride interval were computed from heel strikes (during forward walking) or toe

strikes (during backward walking) of the right foot identified on Fv-time histories and time

series step width from maximal medio-lateral displacement of CoP of two consecutive steps.

At completion of both sessions, four time series containing the values of the stride intervals in

the different conditions were obtained for each subject. Typical plots are displayed in Fig 1.

Bipolar GVS was applied with a regulated, direct-current device (Compex 3 Professional,

Compex Medical SA, Switzerland) with a maximum output current of 20 mA by steps of 0.125

mA. The carbon electrodes (20 cm2) were covered with a saline-soaked sponge held in place

over the mastoids or forehead with a strap. The 34 subjects were randomly exposed to one of

the three different transcranial stimulation conditions: binaural (n = 12), unilateral left

(n = 11), and unilateral right (n = 11). For the binaural stimulation, electrodes were randomly

placed over the mastoids with a cathode-left anode-right or cathode-right anode-left montage.

For the monoaural stimulations, the cathode was randomly placed over the right mastoid and

the anode on the right part of the forehead (right stimulation) or the cathode was placed over

the left mastoid and the anode on the left part of the forehead (left stimulation). Fig 2 shows a

schematic representation of the location of the electrodes over the head for the 3 stimulation

conditions. The intensity was set at the highest sensory tolerance threshold, that was deter-

mined by increasing the current intensity slowly by 0.125-mA steps. That intensity was main-

tained constant throughout the walking period. Mean current density for subjects was 0.07

mA cm−2 (range: 0.04–0.08 mA cm−2). The intensity and duration of the GVS adhered to the

safety criteria for transcranial direct current stimulation [28]. After FWS+ and BWS+ condi-

tions, each subject completed a home-made French translation of the Motion Sickness Assess-

ment Questionnaire (MSAQ) [29], that consists of 16 questions, allowing to differentiate

motion sickness symptoms along the gastrointestinal, central, peripheral, and sopite-related

dimensions.

Data analysis

The treadmill software directly computed the mean stride interval, T, and the mean step

width, w, for each subject in each condition. The stride amplitude (θ0), i.e. the angle between

the leg and the vertical at heel strike, has then been computed from the relation v T
4
¼ L tany0,

displayed in Fig 3, where v is the walking speed and L is the lower limb length of the subject.

The temporal analysis of our experimental data has to go a step beyond mere descriptive

statistics to study the information contained in stride interval variability. Let T = {Ti: i = 1, . . .,

n} be a time series, where Ti is the stride interval of cycle i and where n is the number of cycles

recorded during 15 minutes. The first indicator of variability is the coefficient of variation

CVT = SD(T)/T. Because CVT provides no information on the dynamics of the stride interval

Fractal analyses reveal independent complexity and predictability of gait
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fluctuations, several indexes characterizing the dynamical structure of the time series have

been computed such as the Hurst exponent, α, the spectral exponent, γ, and the Minkowski

fractal dimension, D.

We assess the presence of long-range autocorrelations with the Hurst exponent α and the

spectral exponent γ. These parameters quantify the “predictability” of the time series. As

pointed out in e.g. [30, 31], using a single parameter may not be generally enough to assess

the presence or not of such autocorrelations. The Hurst exponent, computed by using the

Detrended Fluctuation Analysis (DFA) with a linear detrending [32], provides a diagnostic

on the long-range trend of the time series. DFA consists in several steps. First, one has to

compute the shifted time series Tτ = {Ti+τ: i = 1, . . ., n − τ} and the cumulated time series

Z ¼ fZi ¼
Pi

j¼1
ðTj � TÞ : i ¼ 1; . . . ; ng. One has then to divide the cumulated time series Z

into windows of length l, leading to the samples Z(m)(l), m labelling the window. For each win-

dow, a local least squares linear fit is calculated, leading to the fitted values �Z ðmÞðlÞ. Second, one

Fig 1. Typical stride interval time series in the different experimental conditions. FW or BW stand for forward and backward

walking respectively. The indices S+ or S0 indicate the presence or absence of GVS.

https://doi.org/10.1371/journal.pone.0188711.g001
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computes the fluctuation function FðlÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1
½ZðmÞi ðlÞ � �Z ðmÞi ðlÞ�

2
q

. The Hurst exponent is

then defined as the scaling exponent of F(l), i.e. F(l)/ lα. Stationary times series originating

from long-range (anti)correlated processes correspond to 0.5< α ≲ 1 (0� α< 0.5), respec-

tively. When α = 0.5, the process is random. Values larger than 1 correspond to unbounded,

unstable, processes [9]. A strongly autocorrelated signal can be denoted “predictable”: Its value

at a given step is strongly dependent on the system’s previous state.

The spectral exponent γ can be extracted from the low-frequency behaviour of the power

spectral density P(f) of T, f being the frequency: P(f)/ f − γ. Actually P(f) is the Fourier trans-

form of the autocorrelation function C(τ) = E(TTτ), where E denotes the average value. The

parameter γ is expected to take values between 0 and 1 for long-range autocorrelated processes.

For large enough time series, the asymptotic relation

a ¼
1þ g

2
ð1Þ

relates α and γ [9].

We finally compute the Minkowski fractal dimension D of the time series, defined through

the box-counting method stating that, if N(�) is the number of square boxes of size � needed to

fully cover the time series once plotted, then one has N(�)/ �−D for small �. For time series

such as the ones we deal with, D will typically lie between 1 (differentiable curve) and 2 (surface

with differentiable boundary). Even if T does not define a fractal in a rigorous mathematical

way, D can be thought of as a relevant estimator of the “apparent roughness” of the corre-

sponding curve [33]. The roughness of the stride interval time series—i.e. the variability of

fluctuations from one stride to another—may be associated to the “complexity” of the process

[34].

It is worth mentioning at this stage that D and αmay be seen as independent variables char-

acterizing a time series. The link α = 2 − D is actually valid only for some widely studied

Fig 2. The three types of galvanic stimulations used.

https://doi.org/10.1371/journal.pone.0188711.g002
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random walks, but processes with arbitrary values of α and D can be built and could be more

representative of realistic time series [35].

For completeness we show in Fig 4 typical plots of the necessary steps performed to com-

pute the parameters α, γ and D. All these quantities are the slopes of the different linear regres-

sions performed.

Fig 3. Schematic representation of the body (circle) and the lower limb (solid lines) when the heel

strikes the ground in forward direction (FW) or the toes in backward direction (BW). The red star

encloses the contact point.

https://doi.org/10.1371/journal.pone.0188711.g003
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Statistical analysis

All data were checked for normality (Shapiro-Wilk) and equal variance tests. A two-way

(WD × GVS) repeated measures ANOVA with post hoc Holm-Sidak method for pairwise mul-

tiple comparisons has been performed and used to examine the effects of walking direction

(FW or BW), GVS (S+ or S0), and their interaction on the computed parameters. The signifi-

cance level has been set at p = .05 for all analyses and post hoc statistical power has been calcu-

lated. The correlation between parameters are provided as Spearman’s rank correlation

coefficient ρ, Pearson’s correlation coefficient r, and prinicipal component analysis (PCA).

Finally, the median (Mdn) scores and interquartile ranges (IQR) related to the four symp-

tom dimensions assessed by the MSAQ questionnaire have been computed from the 16 items

scores according to [29].

All statistical procedures were performed with SigmaPlot software version 11.0 (Systat Soft-

ware, San Jose, CA). Indexes have been computed using R free software environment (v. 3.2.2)

[36].

Results

Subjects adopted mean comfortable forward speed of 4.4 km h−1 (SD = 0.4) and backward

speed of 2.2 km h−1 (SD = 0.5). The rather small SDs indicate that our sample was quite homo-

geneous with respect to that parameter. Results of all parameters analysed according to the

Fig 4. Typical logarithmic plots showing the linear regressions performed to find α (upper left panel), γ (upper right panel) and D

(lower left panel) in the four conditions. Raw data are those of Fig 1.

https://doi.org/10.1371/journal.pone.0188711.g004
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four experimental conditions are reported in Table 1. Some parameters particularly relevant

for the Discussion are also shown as box plots in Fig 5. In any of the four experimental condi-

tions, stride interval time series are such that 0< γ< 1 and 0.5< α< 1. These values confirm

that time series characterise long-range autocorrelated processes with memory [30]. Note that

our value of α in the FWS0 condition (95% CI of [0.78–0.90]) are fully compatible with the

interval reported in the meta-analysis [37] in healthy subjects (95% CI of [0.85–0.97]). More-

over, Pearson’s correlation coefficient between α and γ (computed over the complete data set)

is equal to r = 0.287, p< .01. Parameters α and γ can then be seen as linearly correlated as

expected from Eq (1). We decided to keep α since it is the most widely used autocorrelation-

related parameter in the literature [37]. The parameter γ will no longer be considered since it

only confirms the presence of long-range autocorrelations. In contrast, Pearson’s and Spear-

man’s correlation coefficients between α and D are equal to r = − 0.081, p = .350 and ρ =

−0.031, p = .719 respectively. Moreover, a PCA conducted on our full data set, including the

parameters listed in Table 1, shows that nearly 66% of the total variance is carried by the first

two dimensions, the angle between α and D being equal to 131˚ while that between alpha and

γ being equal to 14˚. To sum up, these analyses demonstrate that α and D can be considered as

independent parameters and are therefore both retained in our analysis.

We first report significant differences found in the two-way RM ANOVA related to

WD and GVS factors. WD induces significant differences in all variables (see also Fig 5):

T (F = 216, p< .001, partial effect size Z2
p ¼ :991), CVT (F = 324, p< .001, Z2

p ¼ :999),

w (F = 13.6, p< .001, Z2
p ¼ :851), θ0 (F = 429, p< .001, Z2

p ¼ :997), α (F = 5.594, p = .024,

Z2
p ¼ :222) and D (F = 12.1, p = .001, Z2

p ¼ :276). GVS has a less important influence but has

nevertheless a significant impact on T (F = 5.58, p = .024, Z2
p ¼ :135), CVT (F = 6.24, p = .018,

Z2
p ¼ :872) and w (F = 11.0, p = .002, Z2

p ¼ :190). The two-way RM ANOVA also reported sig-

nificant interaction between WD and GVS for T (F = 1.2, p = .003, Z2
p ¼ :236), w (F = 4.75,

p = .036, Z2
p ¼ :126), θ0 (F = 11.4, p = .002, Z2

p ¼ :257) and D (F = 7.69, p = .009, Z2
p ¼ :189).

Post hoc pairwise multiple comparisons results are listed in Table 2. Only w and D are sig-

nificantly modified when the GVS was active during forward walking. The GVS had a stronger

impact in backward walking, with a significant modification of T, CVT, θ0, α. The factor WD
had a major impact on all variables. All parameters were significantly different when compar-

ing FWS0 and BWS0 and all parameters but α and D were significantly different when compar-

ing FWS+ and BWS+.

Table 3 summarizes MSAQ results according to the four dimensions listed in [29]. The

highest median scores were reached for the items related to the central nervous system dimen-

sion. It is worth noticing that beyond these four scores, the third item of the questionnaire

Table 1. Mean ± standard deviations values for the parameters computed in the four experimental con-

ditions. FW (BW) stands for forward (backward) walking and S0 (S+) for no GVS (GVS on).

FWS0 FWS+ BWS0 BWS+

T (s) 1.12 ± 0.07 1.11 ± 0.17 1.51 ± 0.16 1.55 ± 0.17

CVT 0.020 ± 0.007 0.017 ± 0.006 0.069 ± 0.018 0.063 ± 0.020

w (s) 0.104 ± 0.029 0.098 ± 0.027 0.245 ± 0.065 0.244 ± 0.065

θ0 (˚) 21.3 ± 1.5 21.2 ± 1.4 14.2 ± 1.9 14.5 ± 1.8

α 0.725 ± 0.062 0.726 ± 0.048 0.757 ± 0.060 0.716 ± 0.064

γ 0.507 ± 0.216 0.500 ± 0.167 0.655 ± 0.194 0.617 ± 0.202

D 1.72 ± 0.12 1.66 ± 0.11 1.62 ± 0.10 1.65 ± 0.11

https://doi.org/10.1371/journal.pone.0188711.t001
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[29]—“I felt annoyed/irritated” scored highest in the FWS+ condition (Mdn = 4, IQR = [2 − 6])

and in the BWS+ condition (Mdn = 3, IQR = [1 − 5]).

Finally, one can ask the question as to how basic kinematic parameters relate to high level

indexes such as α and D? Spearman’s coefficient between α and θ0, calculated from each

Fig 5. Box plots of the mean stride time (T, upper left panel), the coefficient of variation (CVT, upper right panel), the stride

amplitude (θ0, middle left panel), the mean step width (w, middle right panel), the Hurst exponent α (lower left panel), and the

Minkowski fractal dimension D (lower right panel).

https://doi.org/10.1371/journal.pone.0188711.g005
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subject’s data, is equal to ρ = −0.207, p = .017. It is therefore relevant to consider that both

parameters are correlated. Fig 6 depicts the evolution of α vs θ0 in the FWS0 and BWS0 condi-

tions and compares it to that of data presented in Ahn and Hogan’s model (full circles). Fig 7

reports the evolution of the fractal dimension versus the Hurst exponent in the four experi-

mental conditions. It shows that changing walking direction with respect to the control condi-

tion FWS0 leads to an increase of α and a decrease of D (independently of GVS). However,

turning on GVS during forward walking only leads to a decrease of D. There is some decou-

pling between α and D.

Discussion

Locomotion has been used as a tool to identify and characterise diverse impairments. Here, we

set out to use techniques beyond classical linear analyses of spatio-temporal gait parameters in

order to define more sensitive indexes. We asked participants to walk under perturbed condi-

tions induced either by reversing the direction of walking or perturbing the vestibular system,

and measured proxies of “complexity” and “predictability” through the Hurst exponent and

the fractal dimension.

Walking direction and galvanic vestibular stimulation

Walking direction has a major impact on our results. Stride interval increased in backward

walking compared to forward walking which is in line with previous work e.g. [38]. This fact is

coherent with the lower walking speed spontaneously adopted by the subjects when walking

backward. The kinematic parameters CVT and w were larger in the backward walking condi-

tions than in forward walking. Fluctuations in the stride interval during backward walking

were indeed larger than in forward walking. The increase of CVT has been reported previously

[14, 15] in young and elderly adults while, to our knowledge, the corresponding increase in the

step width has not been reported.

Table 2. Significance level (p–values) of the post hoc (Holm-Sidak) pairwise multiple comparisons

between the different experimental conditions for the parameters analyzed. Statistically significant dif-

ferences are written in bold font.

FWS0 vs FWS+ BWS0 vs BWS+ FWS0 vs BWS0 FWS+ vs BWS+

T (s) .529 < .001 < .001 < .001

CVT .308 .012 < .001 < .001

w < .001 .644 < .001 .005

θ0 .176 < .001 < .001 < .001

α .857 .420 .024 .157

D .042 .143 < .001 .592

https://doi.org/10.1371/journal.pone.0188711.t002

Table 3. Median scores (in %) and interquartile range (IQR) results of the MSAQ. The first (Q1) and third

quartiles (Q3) are shown between square brackets.

FWS+ BWS+

Central 27 [13 − 51] 22 [11 − 40]

Gastrointestinal 14 [11 − 19] 14 [11 − 17]

Peripheral 11 [10 − 15] 11 [10 − 19]

Sopite-related 19 [14 − 25] 17 [11 − 22]

https://doi.org/10.1371/journal.pone.0188711.t003
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While the existence of autocorrelations in backward and forward walking has been acknowl-

edged in [14], that study did not find a significant difference in the Hurst exponent, presumably

because that experiment included a small sample (12 subjects). The Hurst exponent appeared

to be larger in backward compared to forward walking. While neurological diseases generally

decrease α [37] (more random motion), an increase in α has been reported in children up to

typically 14 years old [23]. Both backward walking in adults and forward walking in children

can be related to learning processes, with stereotyped, more predictable, motion.

In their recent paper, Ahn and Hogan showed that long-range autocorrelations may emerge

from the dynamics of a particular pendular model of walking described in detail in [6, 39]. It

is, to our knowledge, the only model linking kinematic variables and autocorrelations indexes.

Here, we compared experimental data with that model for the first time. One of the key plots

of [6] shows the variation of the Hurst exponent computed on a range of 500 strides for realis-

tic values of the different parameters versus stride amplitude θ0, which is fixed in their model.

A comparison of this plot to our results is shown in Fig 6. Results from the FWS0 condition are

in agreement with the model. The BWS0 condition can be compared too since the dynamical

Fig 6. Evolution of the Hurst exponent (α) versus stride amplitude (θ0) in the FWS0 and BWS0 conditions (empty open

circles). Data from [6] (closed circles) are linked with dotted lines for clarity sake. Error bars represent SD. The notation (NS/*,

NS/*) denotes statistically significant differences (*) or no (NS) in the (α, θ0)–plane.

https://doi.org/10.1371/journal.pone.0188711.g006
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equations presented in [39] are invariant with respect to time reversal. Our results match quite

well with the trend of the model. Moreover, GVS had no significant influence on α. This is in

favour of a mostly mechanical origin of long-range stride interval autocorrelation. Galvanic

vestibular stimulation is a known procedure to electrically stimulate vestibular afferents [40–

42]. Here, we used continuous GVS with an average current of 1.4 mA, which was well toler-

ated by all subjects (low MSAQ median scores).

Previously, vestibular inputs were thought to be primarily required for stabilizing the head

to ensure stable gaze control during gait and for spatial orientation in navigational tasks [40,

43, 44]. More recently, it has also been suggested that vestibular inputs play a role in maintain-

ing dynamic walking stability since they generate phase-dependent influences on lower body

control during walking by fine tuning the timing and magnitude of foot displacement [18, 45,

46]. In agreement with those recent findings, our results show that GVS significantly modifies

T, CVT and w. The magnitude of CVT is regularly associated to the risk of fall [47]. We

Fig 7. Evolution of the fractal dimension (D) versus the Hurst exponent (α) taken as complexity and predictability indices

respectively for the four experimental conditions. Standard deviations have not been plotted for the sake of clarity. To guide the

eyes, arrows indicate the four post-hoc comparisons performed with their significance or not. The notation (NS/*, NS/*) denotes

statistically significant differences (*) or no (NS) in the (α, D)–plane.

https://doi.org/10.1371/journal.pone.0188711.g007
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observed that applying GVS significantly decreased CVT in backward walking; hence training

in BWS+ may be relevant to decrease the risk of fall. Previous research demonstrated that GVS

mostly affects stability in the medio-lateral direction [40–42, 48]. This is in accordance with

our results that showed an increased w during forward walking.

Interestingly, we also found that GVS induced larger D in FWS0 compared to FWS+ condi-

tion. This indicates a less complex stride interval time series in the non-stimulated condition

of forward walking. This result is compatible with [45] showing that planning of the foot place-

ment at heel contact is modulated by vestibular information. Here, we provide another evi-

dence of the influence of GVS on walking variability. It is known that the vestibular system is

essential to the maintenance of balance throughout the stepping cycle, with phase-velocity/

cadence-dependent modulation on the activity of hip, knee and ankle muscles [18]. Vestibu-

lar-muscle coupling is specific for each muscle, probably organised according to each muscle’s

functional role in whole-body stabilization during walking. Our analyses suggest that the less

complex nature of the stride interval time series reflects the disruption of dynamic balance

evoked by GVS. It is worth mentioning that treatments are aleady known to have a positive

impact on gait complexity: The use of a stochastic resonance-based therapy in the elderly

indeed increases complexity in the center of pressure displacement [49].

The optimal complexity model

Extending on the maximal complexity hypothesis of Lipsitz and Goldberger [11], Stergiou and

Decker [10] proposed that time series originating from human motion could be classified by

using two indices. The first catches signal complexity and the other measures its predictability.

In this context, a healthy motion should be chaotic, characterized by a maximal complexity

reflecting the adaptability of the subject to external perturbation, and an intermediate predict-

ability. Pathological motion should be characterized by a lower complexity (fewer adaptability)

and a predictability that could be either lower (random, “drunken-sailor-like”, motion) or

higher (robotic motion) than the healthy motion.

Following on that line, we interpret D as a measure of the complexity of gait time series.

Indeed, a large fractal dimension is associated to an apparently rough time series, with abrupt

relative changes of values stepwise. A complex time series may be the signature of an adaptable

behavior. The more a subject is able to change her/his stride interval from one cycle to another,

the more s/he should be able to modify her/his pattern. Therefore, D could be a good indicator

of complexity during walking. Moreover, we think that the Hurst exponent—that was inde-

pendent of D—could be a relevant predictability index. Indeed, α can discriminate between a

random motion (α = 0.5) and a far more predictable, strongly autocorrelated, time series

(0.5< α≲ 1). So αmay provide an answer to the question as to how much a stride interval

depends on history? This is exactly what predictability stands for. Healthy subjects should be

characterised by a maximal value of D (high complexity, good adaptation skills) and an opti-

mal value of α (good but not too high predictability). Any significant deviations from these val-

ues could indicate pathological motion linked to one or both dimensions (predictability or

complexity).

Our results are displayed in a (α, D)-plane in Fig 7. It clearly appears that the FWS0 condi-

tion—the healthy motion—has the higher complexity and an intermediate predictability in

agreement with [10, 11]. The other conditions, non-standard but not pathological either, have

lower complexities. Walking backward without GVS leads to a larger value of α, that is a more

stereotyped, more predictable walking. GVS slightly decreased α in backward walking. In that

condition, walking gets closer to a random process, presumably because of the perturbation of

the vestibular system. It is worth noticing that at least one of the two parameters (α, D) is
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significantly modified when going from one condition to another. A two-dimensional repre-

sentation is necessary to classify all the experimental conditions we study. Considering only α
may be too restrictive to discriminate pathologies. We suggest that other non-linear indexes

are worth to be added.

Previous studies only computed the Hurst exponent and implicitly considered that the frac-

tal dimension and the exponent were related. Here, we computed D beside α and show for the

first time that these two parameters are actually decoupled in some conditions. As already

pointed out, children walking forward also have a larger α than healthy young adults walking

forward. We used open access dataset [23] to calculate the average D for the 50 children having

participated to the study. We found values equal to 1.45 ± 0.21, a significantly lower value than

in our FWS0 condition (t = −6.77, p< .001), as expected. In Parkinson’s disease, α are smaller

than in young healthy adults. It has been shown that α decreases with disease’s severity [27].

We have computed D = 1.69 ± 0.10 from the data of [27] (20 patients with Parkinson’s disease

walking for 10 min, with α = 0.70 ± 0.09). Although lower than our maximal, FWS0, the differ-

ence between both values is not significant (t = −0.941, p = .351). Similarly, neurodegenerative

pathologies have actually been shown to generally decrease α with respect to its optimal value

[37]. As can be deduced from the above discussion, the parameters D and α are good candi-

dates to disentangle and characterise the main long-term features of walking. The Hurst expo-

nent α is a widely used indicator of long-term autocorrelations, and adding D opens new

classification perspectives. Our findings may have immediate applications in rehabilitation,

diagnosis, and classification procedures.

We also think that this field could benefit in a near future from new techniques such as a

representation of the stride interval time series in terms of complex networks (visibility

graphs) [50, 51]. This technique has already proven its efficiency to distinguish healthy from

epileptic EEG signals [52]. Hence it can reasonably be assumed that visibility graphs could pro-

vide relevant information on the structure of stride interval time series. New classification

schemes resting on machine learning could also shed new light on walking dynamics. Algo-

rithms like random forests could help to find better indices to disentangle the different experi-

mental conditions [53]. There is hope that such new techniques could better classify the stride

interval time series, but with less common indices, either less intuitive or less easily compared

to the literature in walking analysis. Such a research program is beyond the scope of the pres-

ent study and we leave it for future investigations.

Conclusion

Our findings show that stride interval dynamics behave as a chaotic system exhibiting long-

range autocorrelations independently of walking direction. The Hurst exponent is increased

when walking backward, suggesting that the more predictable fluctuations of the stride interval

reflect more stereotyped motion adopted by subjects in this unusual condition. The magnitude

of these fluctuations are however larger in backward walking, due to the weaker stability of the

subjects. The Minkowski fractal dimension complements the characterisation of stride interval

variability by considering complexity, or more intuitively, the adaptive capacities of the sub-

ject. Any nonstandard condition reduced complexity. The present study thus paves the way

toward more accurate classification methods of healthy or pathological walking by considering

complexity and predictability of simple stride interval time series.
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