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Abstract. This paper is concerned with the optimization of the kinematic or dynamic
behaviour of mechanical systems with the help of a multibody systems simulation tool.
The authors first recall the classical form of an optimization problem, whose purpose is
to find the set of design variables which minimizes a given objective function while veri-
fving eventual constraints, and how kinematic or dynamic criteria can be transposed to
this form. After having recalled the principal optimization techniques, the evolutionary
strategies are presented in detail. They are inspired from the natural evolution: the genes
of individuals mutate from generation to generation and the ones who survive are those
that are the best fitted to their environment. The analogy with an optimization problem
is quite straightforward, a set of design variables can be considered as the genes of an
individual and the value of the objective function for this set of design variables represents
the fitness for survival of the corresponding individual. Practically, the mutation is per-
formed by modifying the design variables of ji parents, according to a normal distribution
with zero as average and gives rise to A offsprings whose best u individuals form the new
parent population. The paper gives some indications for the choice of the principal param-
eters or options and explains how to manage the mutation in order to control the speed
of convergence. The performances of the evolutionary strategies are then illustrated by
two examples: the kinematic optimization of a suspension and the dynamic optimization
of the comfort of a railway vehicle. Evolutionary strategies, although slower than hill-
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climbing methods, are an interesting alternative. They indeed have several advantages:
the optimization engine remains completely independent of the simulation one and can
be adapted to any field of engineering, they are very robust and converge to global and
not local optimal solutions.

1 INTRODUCTION

Multibody simulation codes have become an inescapable tool for designing mechanical
systems like, for example, manipulators or vehicles. Such tools allow engineers to virtually
test the influence of several design parameters on the behaviour of the system in order
to reach optimal performances while respecting technical constraints. However, if the
number of design variables is important, it becomes hard to intuitively manage their
evolution and a systematic optimization process is desirable. The aim of this paper is to
present a systematic approach, based on evolutionary strategies, for the optimal kinematic
or dynamic design of multibody systems under time-dependent constraints.

Haug! and his collaborators were certainly pioneers for the application of mathematical
techniques to the optimization of the dynamic behaviour of multibody systems. Their
approach, based on “hill-climbing” methods, especially emphasizes the calculation of the
derivatives of the time-dependent functions defining the objective function or the con-
straints, and presents the major disadvantage that some parts must be added to the
simulation code. The complexity of this task urged engineers to explore other types of
methods like the ones based on stochastic principles, among which genetic algorithms and
evolutionary strategies. These methods, inspired from the biological evolution have been
advantageously applied in the field of structures® " and were then tested for the kinematic
and dynamic optimization of multibody systems®?. This paper will focus only on the
evolutionary strategies.

We will first recall the classical form of an optimization problem intended to find the set
of design variables that minimize a so-called objective function, the design variables being
otherwise subjected to inequality constraints. The principal types of methods likely to
solve this kind of problem are then briefly exposed, with their advantages and drawbacks.
After having presented how dynamic criteria can be transposed to the classical form, the
evolutionary methods, based on successive mutation-selection processes are described in
detail. Some guidelines are given for the choice of the principal options. Two examples,
concerned respectively with the kinematic optimization of a suspension and the dynamic
optimization of a railway vehicle, are presented for the sake of illustration.

2 GENERAL PROBLEM OF OPTIMIZATION

A constrained optimization problem consists in finding that set of n, design variables
b,,: leading to the minimal value of a so-called cost-function or objective-function ¢y (b),
expressed in terms of the design variables, while respecting n. inequality constraints on
the design variables of the form ;(b) < 0.
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The methods able to solve such a problem can be classified in three principal categories:
e enumerative methods which systematically scan the whole range of design variables;

e deterministic or hill-climbing methods which attempt to reach the minimum through
successive variations of the design variables according to the gradient of the objective
function;

e stochatic methods, which try to reach the minimum by varying the design variables
according to probabilistic rules.

The enumerative methods have of course the advantage of being very robust but are
unpracticable for large problems as they would need a prohibitive computation time. De-
terministic methods are computationally the most efficient but don’t necessarily lead to
the global optimum and require derivatives of the cost-function, which can’t be obtained
without adaptation of the software intended to evaluate the cost-function. Stochastic
methods, which can also be interpreted as some kind of “organized enumerative meth-
ods”, constitute a good compromise: they appear to be robust, easy to implement while
requiring a reasonable computational burden.

3 OPTIMIZATION OF MULTIBODY SYSTEMS

When applied to multibody systems, optimization encounters peculiar difficulties as
the objective function is often related to the evolution of a physical value during a given
motion. For example, it is asked to minimize the maximum acceleration of the passengers
during the maneuver of a transport vehicle. The objective function is said to be time-
dependent and can be written in the following form

wﬂ(b) = max fO(b: q, g: ga t) (1)

te[0,7]

with 7 the simulation duration, fo the physical value of interest and q, q and q the
vector of configuration parameters of the multibody system and its first and second time-
derivatives.

The constraints themselves are also the most often time-dependent. They can represent
for example a distance condition between bodies so as to avoid interferences. Such a

constraint can be expressed by

¢(b,q,94,4,t) <0 te€l0,1] (2)

In order to simplify its mathematical treatment and particularly the determination of
derivatives®!!, the constraint is generally transformed into an equivalent time independent
form 1, according to

v= [ <ot) > dt 3)
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where the equivalent operator <> is defined by

om0 020

The design variables can also be subjected to simpler constraints, called boundary
constraints expressing for example that a physical characteristic, like a stiffness or damping
coefficient must remain between lower and upper boundaries b% and bY

bt —b<0 (5)
b-bY <0

Deterministic and stochastic methods have been systematically tested by the first au-
thor® on several representative systems. The use of deterministic methods, like Powell or
Fletcher-Reeves, was based on the work of Haug! and Schittkowski''. They principally
developed a method to compute the derivatives of the objective (1) and constraint (3)
functions with respect to the design variables, through so-called adjoint variables. Al-
though it gives interesting results, it becomes delicate for highly damped systems® and
has the major disadvantage that the simulation software must be deeply reprogrammed
in order to be able to yield all the necessary growths to the optimization procedure. It is
also unpracticable for people disposing only of a commercial software. Moreover, it may
converge to only a local optimum.

That is why the first author turned to stochastic methods, and particularly genetic al-
gorithms and evolutionary strategies, although they intially inspire some septicism to the
rational spirit of an engineer. These methods are indeed simpler as they only require the
evaluation of the objective function and of the constraints which even needn’t to be trans-
formed to the time-independent form. Evolutionary strategies will be the subject of this
paper. Developments about genetic algorithms will be found in other contributions® 1.

4 EVOLUTIONARY ALGORITHMS
4.1 Introduction

The evolutionary strategies are iterative optimization methods which try to find an
optimal solution from stochastic and small variations of the design variables. The book of
Schwefel'? constitutes a basic reference, some more recent developments being described
by Fogel'3. Evolutionary strategies are based on the principles of natural selection: the
individuals of a species mutate from generation to generation by small variation of their
genes, and only the best fitted to their environment will survive and be selected for further
reproduction. Although other phenomenons intervene in the natural selection, mutation
and selection are recognized by Darwin to be most important. The analogy with the
optimization problem is quite straightforward, a set of design variables can be considered
as the genes of an individual and the value of the objective function for this set of design
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variables represents the fitness for survival of the corresponding individual. As we are
concerned with a minimization process of the objective function, the fitness for survival
will be the higher as the objective function is lower. Of course, if the constraints are
violated, the individual is supposed to have very low or no fitness at all for survival and
will rarely or never be selected.

The basic implementation of the evolutionary strategy is composed of the following
steps:

1. An initial population of y parent individuals is selected at random and uniformly in
the feasible range of each design variable. Ideally, each initial parent should verify
the constraints.

2. A population of X\ offsprings is created from mutation of the parents. For each
offspring, a parent is selected randomly, and each of its design variable b; is mutated
by adding a Gaussian random variable with zero mean and preselected standard
deviation o;

b; (offspring) = b;(parent) + N(0,0;) @ =1,m, (6)

As we will develop later, the standard deviation o; may be chosen for the whole
population or may be linked to the parent. By chosing a Gaussian distribution, we
insure that, like in the nature, small changes occur frequently while large ones very
rarely.

3. The new parents are selected as the p individuals with the best fitness, that’s to say
with the lowest cost function. The new parents may be chosen either from the set
of parents and offsprings (plus strategy u+ A) or only from the offsprings (comma
strategy p, A).

4. The process of mutation-selection continues until a sufficient solution is reached.
The convergence criterion will be explained later.

Let us note that the plus strategy with one parent and one offspring (1+1) is referred
to as the two membered evolutionary strategy.

4.2 Size of the population

There is so far no accurate rule to determine the size of the parent population. A good
indication is to have as many or a few times as many members as the number of design
variables.

On the other hand, some theoretical studies have been realized on (1,\) strategies'?
to estimate the optimal ratio A\/u. It has been shown that this optimal ratio depends on
the objective function and increases with its complexity. A ratio A/ equal to 5 can be
considered as a good starting point.
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4.3 Step length control

The standard deviation o; plays an important role as it permits to control the speed of
convergence. As it also corresponds to the mean variation of the corresponding parameter,
it is often called the step length. Like in all optimization procedures, the control of the
step length is the most important part of the algorithm after the recursion formula.

The theoretical study of the two membered evolutionary strategy'? leads to the so-
called success rule of Rechenberg, stated as

After every ny, (number of design variables) iterations, check how many sucesses
have occurred over the preceding 10 ny, mutations. If this number is less than
2 ny, multiply the step lengths by the factor 0.85; divide them by 0.85 if more
than 2 ny, successes occurred.

For the initial value of the step lengths, Schwefel proposes to use the following estima-
tion
o) = 20 7
Vi
where Ab; is the expected distance from the optimum for the corresponding design vari-
able. The accuracy on this initial value is not critical as the success law seems to rapidly
adapt the step length to a suitable value, at least when it is too large.

The success law itself doesn’t allow to change independently the standard deviations
relative to each design variable, and consequently to adapt to the contours of the objective
function. One possibility is to consider the standard deviation of each design variable as
a supplementary gene, also likely to undergo some mutations, for example by multiplying
it during the transition from parent to offspring by a random number of mean 1. We
have preferred here another alternative based on the recombination of the parents after
mutation. Let us note that in this context, each initial parent has its own initial step
lengths, chosen randomly in a given range. The recombination will be explained later.

4.4 Comma or Plus Strategy

An other option of the evolutionary strategies concerns the choice between comma
or plus strategies. The plus strategy has the advantage to assure no worsening of the
objective function. On the other hand, the comma strategy is recognized to have better
adaptation properties with regard to step length.

As the probablility of worsening becomes very low when the ratio A\/u is large, Schwe-
fel'? recommends to use the comma strategy when this ratio is larger than 5.

4.5 Recombinations

The basic evolutionary strategies can be enriched by adding a supplementary step
of recombination between the parents before mutation. Pairs of parents are randomly
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selected and are recombined to yield a new set of u parents for mutation. The classical
options are the following

e arithmetic recombination: the design variables or standard deviations of the new
parent are the mean arithmetic value of the corresponding parameters of the two
selected parents;

e discrete recombination: the design variables or standard deviations of the new parent
are randomly chosen from one or the other selected parent, with equal probablity;

e geometric recombination: the design variables or standard deviations of the new
parent are the geometric mean value of the corresponding parameters of the two
selected parents.

Recombinations introduce the principle of sexual propagation which is expected to be
very favourable for evolution as only few primitive organisms do without it. As mentioned
before, it also offers the possibility to independently vary the step lengths of each design
variable.

4.6 Convergence criteria

In the two membered strategy, the convergence criterion is based on the evolution of
the best value of the objective function along generations. The optimum is assumed to
be reached as far as the best value hasn’t significantly changed in the last generations.

With the multimembered strategy, the criterion still becomes simpler. We can indeed
consider that the optimum has not been reached as far as the best individuals of a gener-
ation differ too much with respect to their objective function values. If we denote ¥ mn
and g me, the minimal and maximal values of the objective functions inside a given
parent generation, the iterative process will be stopped if

|w0,min - wﬂ,maaj| <€ (8)
A relative error criterion can also be used, as
|77[)0,min - wU,max| < GT'LEU (9)

where 1 is the mean value of the objective function in the considered generation.

To avoid endless processes, it is also safe to impose a maximum number of iterations
after which the optimization is automatically stopped, and eventually adapted for further
investigations.

4.7 Constraints

Ideally, the intial parent population should verify the constraints. However, it can
be difficult to find a uniformly distributed initial population which respects all the con-
straints. This condition can then be dropped, the constraints being taken into account
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through a penalty of the objective function as soon as a constraint is violated. In this way,
the selection generally makes the parent population licit in a few generations. Although
simple, this approach wastes computation time in the first generations and introduces the
risk of having a population coming only from a small number of licit initial parents.

That is why the problem of finding an initial licit population is often substituted to
an optimization problem whose cost function 1 corresponds to the sum of the violated
constraints

¥ (b) = i_?le@ - 5(;(b)) (10)

-1 ifz<0
0 otherwise

with §(z) = {

If an illicit starting point arises during the construction of the initial population, the pro-
cess is performed from that point, until all the constraints are satisfied. This initialization
step is easy to implement, as it uses only available tools, and yields a well distributed
population.

5 KINEMATIC OPTIMIZATION - SUSPENSION

The potentialities of the evolutionary strategies will be first illustrated on the example
of the short-long arm front suspension represented in figure 1.

upper arm

steering arm

arm

Figure 1: Short-long arm suspension

It is composed of the lower and upper control arms and the steering arm connected to
the wheel carrier and the body frame. Athough the design of a suspension must take into
account several criteria, we will here only try to minimize the variation of the toe angle
during the vertical motion of the suspension, the steering wheel (node 3) being assumed
to be fixed. There will be 6 design variables, corresponding to coordinates of particular
nodes of the suspension. They are detailed in table 1 with their variation range, the nodes
being shown in figure 1. There are no time-dependent constraints.
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Let us note that this example, related to a kinematic optimization cannot be treated
in the same manner as a dynamic optimization if the method of adjoint is used. It makes
no difference in the case of stochastic methods.

lateral coordinate of node 6 0.1207 < b; < 0.2007 m
vertical coordinate of node 6 0.1830 < by, < 0.3030 m
lateral coordinate of node 5 0.1167 < b3 < 0.1967 m
vertical coordinate of node 5 0.1167 < by < 0.1967 m
lateral coordinate of node 7 0.0900 < bs < 0.2100 m
longitudinal coordinate of node 7 | 0.2965 < bg < 0.4165 m

Table 1: Design variables and their variation range

An evolutionary strategy of type (10,20) with recombination has been used, the max-
imum number of iterations being fixed to 200. The initial step lengths were chosen
randomly between 0 and 1 for all parameters. The recombination was discrete for the
design variables and arithmetic for the step lengths. These parameters are summarized
in table 2.

Number of parents (p) 10 Omin 0
Number of offsprings () 20 Omag 1
Number of iterations 200 Recombination for b | discrete
Type of strategy (i, A) || Recombination for o | arithmetic

Table 2: Parameters of the evolutionary algorithm

The optimum could be considered to be reached at the 200th iteration. The design
variables of the best individual are given in table 3. The optimization process required

4010 evaluations of the objective function and lasted around 3 hours on a Pentium 120
Mhz.

by =0.193m | by = 0.160 m
b, =0.302m | b5 = 0.204 m
bs = 0.182m | bg = 0.405 m

Table 3: Optimal set of design variables

The process has clearly decreased the extrema of the toe angle, whose evolution is
shown in figure 2 before and after optimization. On the other hand, the shape of the
curve remains the same as the chosen design variables don’t really allow to modify it.
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Figure 2: Evolution of the toe-angle

6 DYNAMIC OPTIMIZATION - RAILWAY VEHICLE

The evolutionary strategy has been applied on the example of the railway vehicle
depicted in figure 3, called the cityrunner. This vehicle is characterized by the fact that it
owns more carbodies than bogies, with the goal of having a vehicle able to ride in networks
with very narrow curves, as in old european cities. As the central carbody, also called
bridge car, is not directly related to the rail, its motion and consequently the comfort of
the passengers are driven by the global dynamics of the vehicle, itself dependent upon
global characteristics like mass distribution and suspension parameters. The problem is
to find a design which satisfies or even optimizes comfort and stability of the vehicle.

Al DA D] ]

Figure 3: Railway vehicle cityrunner

The mass distribution being constrained by other considerations, the remaining pa-
rameters are the suspension ones, in particular the yaw and lateral stiffness and damping
coefficients of the bogie-carbody suspensions and the damping coefficients of the articu-
lations between the cars. It is easy to imagine that the influence of these parameters is

10
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Yaw secondary stiffness, front bogie | 5 < b; < 500 KNm/rad
Yaw secondary stiffness, rear bogie 5 < by < 500 KNm/rad
Yaw secondary damper, front bogie 5 < by < 50 KNms/rad
Yaw secondary damper, rear bogie 5 < by < 50 KNms/rad
Yaw damper, front car articulation 5 < bs < 50 KNms/rad
Yaw damper, rear car articulation 5 < bg < 50 KNms/rad
Lateral secondary stiffness, front bogie | 100 < b7 < 1000 KN/m
Lateral secondary stiffness, rear bogie | 100 < bg < 1000 KN/m
Lateral secondary damper, front bogie 5 < by < 30 KNs/m
Lateral secondary damper, rear bogie 5 < by < 30 KNs/m

<
<

Table 4: Design variables and their variation range

Number of parents (p) 10 Omin 0
Number of offsprings () 30 Omaz 1000
Number of iterations 100 Recombination for b | discrete
Type of strategy (i, A) || Recombination for o | arithmetic

Table 5: Design variables and their variation range

highly coupled so that it is very difficult to intuitively manage the process. Different op-
timization procedures have then been applied to this example, among which evolutionary
strategies.

The objective function corresponds to the mean lateral acceleration undergone by the
centers of gravity of the carbodies while crossing a 90 degrees curve of radius 14 m, at
the speed of 4 m/s. The design variables correspond to the suspension parameters. They
are detailed in table 4, as well as their admissible range. The process is subjected to 2
constraints, limiting the relative angle of the cars.

The parameters of the chosen evolutionary strategy are similar to those of the previous
example and are summarized in table 5.

The optimum was reached at the 98th iteration and led to the values given in table 6.

by = 8.648 KNm/rad | bs < 29.661 KNms/rad
by < 5.431 KNm/rad | by < 32.022 KN/m
by < 29.070 KNms/rad bs < 3.364 KN/m
by < 6.350 KNms/rad by < 18.539 KNs/m
by < 7.408 KNms/rad | by < 29.809 KNs/m

Table 6: Optimal solution

11
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The optimization process required 3010 evaluations of the objective function and lasted
around 10 hours on a Pentium 120 Mhz.
Lateral acceleration of the bridge car (m/s2)
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Figure 4: Evolution of the acceleration of the bridge car

The optimum objective function is worth 2.71 m/s?. The evolution of the acceleration
of the center of gravity of the bridge car is presented in figure 4 for the initial and optimal
cases and shows how the optimization process has polished the acceleration peaks at the
beginning and end of the curve.
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Figure 5: Evolution of the objective function of the parent population

12
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Figure 5 shows the evolution of the objective function of the parent population with
respect to the number of generations. At the beginning, the high values are due to the
penalty that has been used to take the constraints into account. After less than 10
generations, all the individuals verify the constraints and the objective function slowly
evolves to the optimum. The population is quite homogeneous as there are few variations
of the objective function inside a given population.
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Figure 6: Evolution of the yaw stiffness of the front bogie
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Figure 7: Evolution of the yaw damping of the rear bogie

13
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Figures 6 and 7 show two typical evolutions of design variables, corresponding respec-
tively to the yaw stiffness of the front bogie and the yaw damping of the rear bogie. In
figure 6, the population starts from values distributed between 5000 and 30000, regularly
decreases until fiftyth generation, and is then stabilized around a value of 10000, cer-
tainly forced by one of the constraints. The variation range also rapidly becomes limited.
In figure 7, another behaviour arises: while oscillating around the value of 15000 until
fortyth generation, the population progressively switches to a mean value between 5000
and 10000. The variation is larger, showing that the design variable has less influence on
the behaviour of the system.

7 CONCLUSION

This paper presented the application of evolutionary strategies to the kinematic and
dynamic optimization of multibody systems. The method has been described and two
examples have shown its capabilities.

The initial scepticism of the authors with regard to these strange stochastic methods
rapidly became a real enthusiasm. Although classical hill-climbing methods are globally
more efficient, evolutionary strategies appear to be much more robust, are much easier
to use and can use the simulation software as is. Consequently, the optimization engine
can also be used for any engineering problem. Genetic algorithms, which are another
kind of stochastic method, were also tested by the autors and lead to comparable results.
Stochastic methods can then be considered as a better alternative for the transfer of
technology.
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