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The aim of the present letter is to report on a relationship between four-dimensional self-

dual gravitational instantons and three-dimensional geometric flows. This is a follow-up

of former scattered observations about Bianchi IX spatially homogeneous vacuum self-dual

solutions of Einstein gravity [1, 2, 3, 4]. Our framework is that of four-dimensional Euclidean

geometryM4 which is topologically R ×M3. The leaves M3 of this foliation are assumed to

be homogeneous spaces of Bianchi type. The slicing is adapted to the splitting of the action

of the SO(4) group in the tangent space into self-dual and anti slef-dual parts in such a way

that the anti-self-dual part acts only on the subspace tangent to the homogeneous slicing

M3.

The developments we will exhibit are two-fold. On the one side we show that real, non-

degenerate, self-dual solutions exist only for unimodular Bianchi groups or the one of type

III1 and are classified in terms of the homomorphisms of g → so(3), where g is the real Lie

algebra of the Bianchi group under consideration and SO(3) the anti-self-dual factor of the

group SO(4) acting on the orthonormal vierbein. On the other side, we observe that the self-

duality requirement leads to first-order equations, which turn out to be geometric-flow equa-

tions for a family of three-dimensional Bianchi manifolds, driven by the three-dimensional

Ricci tensor combined with a flat SO(3) gauge connection in the following manner (tildes re-

fer to the three-dimensional quantities as opposed to their four-dimensional counterparts):

dg̃ij

dt
= −R̃ij −

1

2
tr

(

ÃiÃj

)

. (1)

Our motivations for this analysis can be summarized as follows. On the one hand, grav-

itational instantons are important ingredients of general relativity, both as classical solutions

and potentially as tools to handle quantum transitions. Despite many results and solutions

of Einstein’s equations in the above simplified framework (see e.g. [5, 6, 7, 8, 9, 10] – the list

is not exhaustive), no unified pattern is available that captures all Bianchi classes in a simple

and comprehensive way.

On the other hand geometric flows of three-dimensional homogeneous spaces are in-

teresting in their own right and turned out to play a role in Hamilton’s program for prov-

ing Poincaré’s and Thurston’s [11] conjectures. From a physicist’s perspective, a relevant

question is to ask whether and how this flow behavior of one-parameter families of three-

dimensional spaces is related to the Euclidean-time evolution inside a gravitational instan-

ton, where the homogeneous spaces appear as the leaves of the foliation. This question is

motivated by several facts.

Firstly, Ricci-flow equations are equivalent to renormalization-group equations for two-

dimensional sigma models with t ∝ − log µ [12, 13, 14, 15]. Setting a relation between this

renormalization-group time and the Euclidean time of a gravitational instanton would be

1Bianchi III is an exception that will not be discussed here in detail because it lies outside of the geometric-
flow correspondence.
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Type Group Structure constants

I translations ci
jk = 0

II Heisenberg c1
23 = −c1

32 = +1

VI−1 E(1, 1) c2
13 = −c2

31 = −1, c3
12 = −c3

21 = −1

VII0 E(2) c2
13 = −c2

31 = −1, c1
23 = −c1

32 = +1

VIII SL(2, R) c1
23 = −c1

32 = −1, c2
31 = −c2

13 = +1, c3
12 = −c3

21 = +1

IX SU(2) c1
23 = −c1

32 = +1, c2
31 = −c2

13 = +1, c3
12 = −c3

21 = +1

Table 1: Unimodular Bianchi groups (ci
jk not explicitly given are taken to be zero).

one more indication in favor of the dynamical generation of time in string theory – similar in

spirit to the role of the Liouville field in non-critical string theory. Secondly, we refer to the

recent attempt to modify the ultraviolet behavior of gravity [16, 17] by assuming a foliation

of the four-dimensional spacetime with a privileged time direction, at the level of the action,

which has drastic consequences for the number of propagating degrees of freedom [18].

There, the further detailed balance condition effectively sets a dynamics where time evolu-

tion is a geometric flow on the leaves of the foliation. Last, one should keep in mind that the

appearance of first-order equations in gravitational settings is reminiscent of holographic

situations, and could ultimately be useful in reconstructing the bulk fields by flowing the

boundary data. In the context at hand, this statement could be made more precise following

[19, 20].

In this note we present results without all the proofs in detail. A more elaborate discus-

sion will be delayed to a future communication, where the extension to vacuum solutions

with cosmological constant will also be investigated.

As already stated, we seek for Euclidean four-dimensional spaces of the type M4 =

M3 × R with homogeneous spatial sections M3. The latter are assumed to be of Bianchi

type: a three-dimensional group G acts simply transitively on the leaves, which are there-

fore locally endowed with the structure of a group manifold (hence we exclude H3, H2 × S1

or S2 × S1) with three independent Killing vectors and left-invariant Maurer–Cartan forms

{σi, i = 1, 2, 3} obeying

dσi =
1

2
ci

jkσj ∧ σk. (2)

The structure constants can be put in the form (see e.g. [21])

ck
ij = ǫijℓnℓk + δk

j ai − δk
i aj, (3)

from which we read off their trace: c
j
ij = 2ai. Unimodular groups have zero trace and are

referred to as Bianchi A. Our choice for the structure constants2 of this class is presented in

2This choice is the one of [21], except for Bianchi VI−1. In our conventions, the matrix n is diagonal, which
implies for Bianchi class A algebras that the structure constants have the following property: ci

jk = 0 whenever

i = j or i = k.
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Table 1.

The metric for M4 is in general of the form:

ds2 = N2
dT2 + gijσ

iσj, (4)

where gij(T) are functions to be determined. It is convenient to introduce an orthonormal

frame {θa, a = 0, 1, 2, 3}

ds2 = δabθaθb, (5)

by setting:

θ0 = NdT, θα = Θα
jσ

j with gij = δαβΘα
iΘ

β
j (6)

(α, β, . . . label orthonormal space frames so that {a} = {0, α}, whereas i, j, . . . correspond

to our choice of invariant forms as they follow from Table 1 and Eqs. (2)). We will make

the convenient gauge choice N = Θ =
√

det gij, and often use another “time” defined as

dt = ΘdT.

The metric elements gij(t) or, equivalently, the frame components Θα
j are determined by

imposing Einstein’s equations. The torsion-less connection one-form ωa
b is determined by

the Cartan structure equations. Its Riemann curvature two-form will be denoted Ra
b and

satisfies the usual cyclic identity (Ra
b ∧ θb = 0). In four dimensions we can introduce the

dual curvature form:

R̄a
b =

1

2
ǫa d

bc Rc
d ≡

1

2
R̄a

bcdθc ∧ θd. (7)

in terms of which Einstein’s vacuum equations read:

R̄c
d ∧ θd = 0. (8)

Since we are interested in Euclidean solutions, we can impose (anti-)self-duality: Ra
b =

±R̄a
b. This is a sufficient (but not necessary) condition to obtain vacuum solutions thanks

to the cyclic identity.

For reasons that will become clear in the following we would like to elaborate on the issue

of (anti-)self-duality3. Spin connection and curvature forms belong to the antisymmetric 6

representation of SO(4). In four dimensions, this group of local frame rotations factorizes

as SO(3)sd ⊗ SO(3)asd and the connexion ωab and curvature Rab SO(4)-valued forms can be

reduced with respect to the SO(3)(a)sd as 6 = (3sd, 3asd):

Σα =
1

2

(

ω0α +
1

2
ǫαβγωβγ

)

, Aα =
1

2

(

ω0α −
1

2
ǫαβγωβγ

)

(9)

3More on self-duality can be found in [22] and [23].
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for the connection and

Sα =
1

2

(

R0α +
1

2
ǫαβγR

βγ

)

, Aα =
1

2

(

R0α −
1

2
ǫαβγR

βγ

)

(10)

for the curvature, which now reads:

Sα = dΣα − ǫαβγΣβ ∧ Σγ, Aα = dAα + ǫαβγ Aβ ∧ Aγ. (11)

It is clear from the above that {Sα, Σα} are vectors of SO(3)sd and singlets of SO(3)asd and

vice-versa for {Aα, Aα}.

It is sufficient to impose that Sα or similarly Aα be zero to solve vacuum Eisntein’s equa-

tions. For concreteness we will focus on the self-dual solutions, namely those for which

Aα = 0. (12)

Anti-self-dual solutions are obtained by O(4) parity or time-reversal transformations.

Equations (12) are second-order. First-order equations can be obtained by considering

the spin connection Aα in Eq. (11). The simplest solution to (12) is of course

Aα = 0. (13)

This first integral raises immediately two questions: (i) is Aα = 0 leading to consistent self-

dual vacuum solutions, and (ii) is this unique? Concerning the second question, it is known

that barring global issues, one can always find an SO(3)asd local transformation (see e.g. [7])

such that the anti-dual part Aα of the spin connection is set to zero. Although conceptually

important, this property leaves open a practical question: since for any self-dual curvature,

one can find a frame where the connection is self-dual, one may ask how many different

frames are needed in order to exhaust all possible non-equivalent self-dual connections.

Put differently, for a given frame, how many non-equivalent non-self-dual connections exist

(Aα 6= 0), which can be turned to self-dual ones upon appropriate SO(3)asd transformation?

Both questions can be answered accurately. Firstly, Eq. (13) admits non-degenerate4

solutions for Bianchi A class and Bianchi III only. This can be proven in full generality, but

we shall here present the heuristic argument. We chose for that the metric to be diagonal.

For almost all Bianchi classes this is always consistent and non-restrictive5. This amounts to

taking Θα
j = δα

jγj, which leads to (see Eqs. (5, 6)):

ds2 = dt2 + ∑
i

(

γiσ
i
)2

; (14)

4Non-degenerate means with an everywhere non-vanishing metric determinant. We do not exclude singu-
larities, which do generically appear in gravitational instantons.

5An exception is again Bianchi III, which must be treated separately, without changing the conclusion though.
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γi(t) are now the functions to be determined. Using the Cartan structure equations, we

obtain ω0
1 = − γ̇1

γ1γ2γ3
σ1, whereas ω2

3 = · · · + γ2

2γ3
c2

31σ1 + γ2

2γ1
c2

32σ2 + · · · . The dots stand

for other terms which are irrelevant for our purposes. Following (9), demanding that the

anti-self-dual part of the connection A1 be zero, leads to several equations, among which we

find the condition that γ2c2
32 = 0. If the algebra is non-unimodular, there are unavoidable

coefficients like c2
32, so that the metric components like γ2 are thus required to vanish by

self-duality. Hence, the metric tensor is not invertible.

Secondly, it is easy to show that there are as many non-equivalent connections A with

vanishing anti-self-dual curvature A as homomorphisms of g → so(3). We will refer to

them as branches of solutions. It will turn out that in every case there are two such branches.

Qualitatively, the reason is as follows. In general, vanishing anti-self-dual curvature (Eq.

(12)) requires the connection A be a pure SO(3) gauge. Put differently, A must be of the form

−dΛΛ−1, where Λ stands for an SO(3) gauge transformation. We know that the geometry

of M3 is locally that of the group G so that each point x corresponds to a group element

g(x). If we consider gauge transformations in G to define A, we could in general take g(x)

as such a transformation and A = −dgg−1 would just deliver the left-invariant Maurer–

Cartan forms i.e. Aα = δαi
σi

2 (upon appropriate choice of basis and normalization). But we

have in addition that Λ(x) ∈ SO(3) and as a consequence the resulting pure connection can

only be of the form

Aα = δαi
λi

2
σi, (15)

where λi are each 0 or 1 depending on whether a given generator of g can be mapped to

a generator of so(3). For each homomorphism g → so(3) there is a set of three numbers

{λ1, λ2, λ3}. Each of these choices provides an anti-self-dual connection with vanishing cur-

vature.

The above qualitative reasoning can be made precise. We define general Iαi such that

Aα = 1
2 Iαiσ

i and introduce this ansatz in (12) together with (4) and (6). The equations we

obtain are

Θ̇αi = Θαj

[

(

njℓ − akǫkjℓ
)

gℓi −
1

2
δ

j
i n

kℓgkℓ

]

− ΘIαi, (16)

for the components 0i, plus a constraint on the constants of the motion Iαi

Iαℓc
ℓ

jk + ǫαβγ I
β
j I

γ
k = 0, (17)

for the ij ones, that sets the announced interplay between g and so(3). Indeed, by using ap-

propriate transformations, one can bring the Iαℓ into a diagonal form with entries {λ1, λ2, λ3}

taking the values 0 or 1.

To make contact with the existing literature on the search of gravitational instantons in all

Bianchi classes it should be mentioned that Eqs. (17) lead (in most Bianchi classes) to imag-

inary solutions. These are actually related to homomorphisms of g into real subalgebras of
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su(2, C), which provide more freedom but do not correspond to genuine instantons. We can

summarize as follows the various possibilities, corresponding to the branches of admissible

consistent self-duality equations:

Bianchi class A For these, the rank-zero homomorphism that maps g to the nul generator

of so(3) with λi = 0 is always available and leads, as already mentioned, to consistent

solutions. Besides the latter, there is always another one (unique up to trivial algebra

automorphisms), which is rank-one in types I, II and VII0 where it maps one generator

of G onto one of so(3) with a single non-vanishing λi; and rank-three in type IX where

it is the isomorphism of g ≡ so(3) to itself with all λi = 1. The cases of VI−1 (algebra

iso(1, 1) of E(1, 1)) and VIII (algebra sl(2, R)) are peculiar. Besides the trivial homo-

morphism, they exhibit respectively a rank-one and a rank-three homomorphism6 in

C: λ1 = i, λ2 = λ3 = 0 and λ1 = 1, λ2 = λ3 = −i. Although the latter are not rele-

vant for real self-dual solutions, they turn out to be necessary in setting the advertised

relation with the Ricci flow of three-dimensional Bianchi spaces.

Bianchi class B The rank-zero homomorphism leads in this class to singular metrics. An-

other rank-one homomorphism exists in all cases but requires systematically a complex

mapping (see also [10]), with the exception of Bianchi III. The latter will be studied

elsewhere.

From now on, we will focus on the Bianchi A class, and turn to the interpretation of

the Euclidean time evolution in the above gravitational instantons as a geometric flow of a

family of three-dimensional homogeneous spaces. At the technical level, this interpretation

is motivated by the appearance of first order differential equations with respect to Euclidean

time, namely by Eqs. (16). For concreteness we would like to carry out first a well studied

case, that of Bianchi IX [9]. As in all Bianchi A cases the diagonal metric ansatz is sufficient,

we will for convenience proceed with that choice till the end of the paper, leaving for the

future the general intrinsic analysis. Setting Θαi = γiδαi leads in general to Eq. (14). For

Bianchi IX, we consequently take Iαi = (1 − λ̃)δαi, which allows to capture the two cases as:

λ̃ = 0 (isomorphism) or 1 (trivial homomorphism). These two cases correspond respectively

to the Taub–NUT and the Eguchi–Hanson branches of Bianchi IX. The first-order self-duality

equations (16) read:






































2
γ̇1

γ1
= (γ2 − γ3)

2 − γ2
1 + 2λ̃γ2γ3,

2
γ̇2

γ2
= (γ3 − γ1)

2 − γ2
2 + 2λ̃γ3γ1,

2
γ̇3

γ3
= (γ1 − γ2)

2 − γ2
3 + 2λ̃γ1γ2.

(18)

6Actually, those algebras possess a boost generator and consequently a eigenvalue in the Cartan–Killing
metric of opposite sign.
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For the Taub–NUT branch (λ̃ = 0) the observation (already made in [1, 2, 3, 4]) is that Eqs.

(18) reproduce the Ricci-flow evolution of a family of three-dimensional Bianchi IX geome-

tries

ds̃2 = g̃ijσ
iσj = δαβθ̃αθ̃β, (19)

which are also of the diagonal type:

g̃ij(t) = δijγi(t). (20)

This observation is remarkable and raises many questions that we will try to sort later in

the discussion. For the moment we would like to extend this correspondence to all branches

and all Bianchi A classes since those are the ones that systematically deliver a consistent

spectrum of self-dual gravitational instantons appearing in two separate branches.

For the Eguchi–Hanson branch (λ̃ = 1 in (18)), the family of three-dimensional Bianchi

IX geometries that flow is again given in (19, 20). Examining the self-duality equations in

(18), we find on the right hand side terms which reproduce (through the process described

previously) the three-dimensional Ricci tensor, but in this case there is more: an so(3) gauge

field Ã appears on the flowing three-spheres, which originates from the Levi–Civita anti-

self-dual connection A. This field reads:

Ã = Ãiσ
i = −λ̃δαiT

ασi (21)

where Tα are the generators of so(3) in the adjoint, satisfying tr(TαTβ) = −2δαβ. This so(3)

gauge field vanishes for Taub–NUT but is non-zero for Eguchi–Hanson. In both cases, how-

ever, its field strength is zero. With this field, Eqs. (18) are recast as announced in the begin-

ning:
dg̃ij

dt
= −R̃ij −

1

2
tr

(

ÃiÃj

)

. (22)

The result at hand deserves several comments. The advertised relation, that turns out to

be valid for all Bianchi A classes as we will shortly discuss, sets a correspondence between

the time evolution in self-dual gravitational instantons foliated with homogeneous leaves

and the flow (parametric in time) evolution of homogeneous spaces. For the sake of simplic-

ity, this correspondence has been exhibited here in the case of a diagonal metric, but it holds

more generally. The flow equation (22) follows directly from (16) with an so(3) gauge field

Ã = − ĨαiT
ασi. (23)

In order for the correspondence to be valid, the components Ĩαi are subject to the constraint

Ĩαℓc
ℓ

jk + ǫαβγ Ĩ
β
j Ĩ

γ
k = 0, (24)

7



which is nothing but a flatness condition: the constraint

F̃ = dÃ + [Ã, Ã] ≡ 0. (25)

The gauge field is a background field, it does not flow:

˙̃A = 0, (26)

but contributes to the flow of the metric. The flatness condition has two different solutions:

(i) the : Ã = 0 corresponds to the Taub-NUT branch whereas the Ã 6= 0 reproduces the

Eguchi–Hanson branch. Of course the flow equation is not gauge-invariant and it was not

expected to be since the actual difference between the various branches is a difference of

gauge for the anti-self-dual part of the Levi–Civita connection.

The correspondence between self-dual gravitational instantons with Bianchi homoge-

neous spatial sections, on the one hand, and three-dimensional homogeneous spaces en-

dowed with a background so(3) flat connection (25) and flowing under (22), on the other,

holds for all Bianchi A classes. These are the classes that exhibit several branches of consis-

tent instantons. Furthermore the correspondence holds for all these branches because the

classification principle for the gravitational-instanton branches is the same as the one that

classifies the flat so(3) connections over M3, which is locally G: equations (17) and (24) are

both flatness conditions, the former for the anti-self-dual part of the Levi–Civita connection,

the latter for the so(3) background gauge field. We will again illustrate this correspondence

in the case of diagonal metrics for the remaining Bianchi I, II, VI−1, VII0 and VIII. We consider

now more generally (19) with

g̃ij(t) = δijγ̃i(t). (27)

We denote the metric coefficients γ̃i since the advertised correspondence does not assume the

three-dimensional part of the four-dimensional metric to be equal to the three-dimensional

metric. Similarly, in the diagonal ansatz, we take (23) as an so(3) gauge field with

Ĩαi = λ̃iδαi, (28)

where λ̃i are subject to the constraints (24) which now read:

λ̃ic
i
jk + ǫijkλ̃jλ̃k = 0 (29)

with no summation on i, j, k. Consequently, the geometric-flow equations obtained from (22)

8



Type {γ̃1, γ̃2, γ̃3}

VI−1 {iγ1, iγ2, γ3}
VIII {γ1,−iγ2,−iγ3}

Table 2: Mapping for metric coefficients in Bianchi VI−1 and VIII.

Type {λ1, λ2, λ3}(1) {λ̃1, λ̃2, λ̃3}(1) {λ1, λ2, λ3}(2) {λ̃1, λ̃2, λ̃3}(2)

VI−1 {0, 0, 0} {i, 0, 0} {i, 0, 0} {0, 0, 0}
VIII {0, 0, 0} {0,−i,−i} {0,−i,−i} {0, 0, 0}

Table 3: Mapping for connections in Bianchi VI−1 and VIII, for each of the two branches.

can be written as

˙̃γi

γ̃i
= −

3

∑
j,k=1

1

4

[

(

ci
jk

)2
γ̃2

i − 2
(

c
j
ki

)2
γ̃2

j + 2c
j
kic

k
ijγ̃jγ̃k

]

+ λ̃2
i γ̃jγ̃k (30)

where the dot stands for d/dT = γ̃1γ̃2γ̃3d/dt. Correspondingly, the self-duality equations (16)

read:

γ̇i

γi
=

3

∑
j,k=1

ǫijk

2

[

−
ci

jk

2
γ2

i +
1

2

(

c
j
kiγ

2
j + ck

ijγ
2
k

)

]

+ λiγjγk (31)

with a similar convention for the dot. In the last two equations, there is no summation in the

last term, where i, j, k are a cyclic permutation of 1, 2, 3.

As already discussed, each of the above equations has two branches. From the self-

dual four-dimensional side, this is determined by each of the two non-equivalent homomor-

phisms of g → so(3). From the three-dimensional viewpoint, this corresponds to the two

non-equivalent flat connections of so(3) over the group manifold G. This holds over the

real numbers for I, II, VII0 and IX, whereas VI−1 and VIII require to pass to the complex.

In all Bianchi A, the advertised correspondence holds as one-to-one for each class and each

branch. It goes as follows:

1. In the cases I, II, VII0, IX, we must set for the metric γ̃i = γi, ∀i, whereas there is a fine

structure for the gauge field7: λ̃i = λi∀i for I and II, and λ̃i = 1 − λi∀i for VII0 and IX.

2. For VI−1 and VIII, the correspondence is summarized in Table 2. Note that trivial

automorphisms alow to displace the different entry in each case. A similar comment

holds for the connections given for all branches in Table 3.

Although the classes VI−1 and VIII are interesting neither for gravitational instantons nor

for the Ricci flow (because of their complex nature) they are useful for setting the correspon-

7Whenever ∃ j 6= k 6= i 6= j such that ci
jkck

ij 6= 0, that is to say for Bianchi VII0 and IX, as well as VI−1 and

VIII, the branches are “crossed”.
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dence on a more universal ground. They might also play a more physical role in the search

of self-dual solutions in a four-dimensional setting with signature (−,−, ++). We will not

pursue this analysis here.

Besides the proper interest of the intriguing correspondence presented here, it has also

the value of introducing a new kind of flow that deserves further investigation on its own

right. In this line of thought, it should be mentioned that the analysis is usually considerably

simplified by the integrable nature of the equations that appear in the framework of gravita-

tional instantons. For Bianchi IX e.g., the Taub–NUT branch (λ̃ = 0 in Eqs. (18)) is described

by the Darboux–Halphen equations studied long ago [24, 25, 26] and rediscussed over the

recent years both in the mathematical literature [27] or in more physical contexts [1, 3, 22].

The Eguchi–Hanson branch (λ̃ = 1 in Eqs. (18)) leads to the Lagrange equations (special

version of the Euler top equations) also solved long ago, possesing remarkable integrabil-

ity properties [27]. Similar results can be found for other Bianchi classes. All these results

available in the gravitational-instanton literature can be useful to tackle Ricci or related flows

beyond the usual asymptotic analysis [28].

At this stage of the developments the reader might feel frustrated by the two features

of the flow (22, 25), namely the absence of flow for Ã and the flatness of the latter so(3)

connection. Their origin can be traced back as follows: Ã originates from the anti-self-dual

part of the four-dimensional Levi–Civita connection which is required to have zero curvature

A (Eq. (12)). Time-independence of the corresponding connection A follows immediately

and is translated on the three-dimensional side as ˙̃A = 0.

More general flows with non-vanishing ˙̃A and F̃ could be reached if the self-duality con-

dition on the Riemann curvature were relaxed, and replaced by a milder condition that would

still allow for a first-order description of time evolution without imposing the anti-self-dual

Levi–Civita connection be a pure gauge. This is possible if we allow for a cosmological con-

stant in four dimensions. In this case, self-duality of the Riemann is traded for that of the

Weyl tensor

W ab = Rab −
Λc

3
θa ∧ θb (32)

and solutions of the Einstein equations (Rab = Λcgab) can thus be generated. The anti-self-

dual part of the connection now explicitly depends on time and the corresponding curvature

is non-zero. This can be illustrated in the celebrated solution of Fubini–Study for Bianchi IX

(describing in fact a metric on CP2). Translated in the three-dimensional side, the equation

for the metric flow is still given by (22) but is now accompanied with a flow for Ã and a

constraint for F̃. The gauge field now carries a dynamics, which decouples when the cosmo-

logical constant is turned off.

As a conclusion of the above analysis we would like to make some final remarks. We

should first stress the role of each of the ingredients that we have used throughout our

developments. We worked in four dimensions where the orthogonal group is factorized
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into two three-dimensional subgroups and all degrees of freedom are reduced as self-dual

plus anti-self-dual. The foliation plus homogeneity assumption further introduce three-

dimensional leaves and another three-dimensional group, G related to so(3) with non-trivial

homomorphisms. Finally, the self-duality requirement effectively reduces the system to a

three-dimensional one, whose dynamics turns out to be equivalent to a geometric flow on

homogeneous three-manifolds endowed with an so(3) gauge connection.

It is not clear to us whether the correspondence described here (involving in three di-

mensions the “square-root” of the four-dimensional metric) has a deep intrinsic geometri-

cal meaning or is a rephrasing of the dynamics. The above arguments show however that

this scheme is certainly not expected to generalize in higher dimensions and this should be

opposed to another instance, already quoted, where a similar phenomenon occurs: the non-

relativistic gravity discussed in [17]. There, the dimension is generic and the D + 1 foliation

is imposed at the level of the action, breaking explicitly the diffeomorphism invariance. This

drastically alters the structure of the propagating degrees of freedom, which in our case fol-

low from a plain Einstein–Hilbert dynamics. The relation with a D-dimensional theory is

set by the detailed-balance condition, which resembles our self-duality condition and has the

same effect, when combined with the foliation ansatz: the system effectively reduces to D-

dimensions and the dynamics captured by a first-order flow equation. This is valid for any

D because, as opposed to self-duality, the detailed-balance condition can be imposed at any

dimension. The tensors which drive the geometric flow, however, depend on D. For D = 3,

e.g. these are the Ricci and Cotton tensors. This is another difference with our set-up, again

bounded to the exclusive use of the Einstein–Hilbert action.
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