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Combining graphene with plasmonics is expected to lead to
new nanoscale applications such as sensors, photodetectors,
and optical circuits, since graphene plasmons in the infrared
have relatively low losses and are easily tunable. It was
shown that the edges of a graphene sheet completely reflect
these plasmons with negligible radiation losses. Here, how-
ever, we examine structured graphene edges, which provide
the ability to tailor and even completely cancel the reflec-
tion. These properties depend on the suitable dimensions of
the edge grating. We explain the reflection modulation via
the appearance of longitudinal Fabry–Perot type modes.
Interesting phase changes and resonances appear when the
longitudinal modes interact with lateral modes mediated
by edge plasmons. © 2015 Optical Society of America

OCIS codes: (250.5403) Plasmonics; (050.2230) Fabry-Perot;

(310.6860) Thin films, optical properties.
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Already known for its fascinating electron transport properties
[1], graphene is also widely studied in photonics for strong
light-mater interactions [2,3]. Although the optical properties
are rather invariant in the visible range (a constant 2.3% of the
light is absorbed [4]), they are very suitable for applications in
the infrared range [5]. At these frequencies graphene sustains
plasmons, which are collective oscillations of electrons that con-
fine electromagnetic waves to deeply sub-wavelength regimes.
Compared to noble-metal plasmons (or plasmon polaritons),
graphene plasmons (GPs) are considered more strongly con-
fined and propagate over a relatively longer distance [6].

A most interesting feature of these plasmons is that their
properties are easily tunable via electrostatic doping of the gra-
phene sheet [7,8]. This is a windfall for plasmonic circuitry
invented to overcome photonic downscaling and integration
problems [9]. Novel circuits using GPs are now under active
investigation [10–14]. The strong confinement and high sen-
sitivity to the environment also finds applications for nano-
sensors [15,16] or modulators [17,18]. Furthermore, GPs
were studied in nano-resonators with ribbons [19,20] and
antennas [21].

Moreover, GPs were experimentally mapped in tip-shaped
graphene sheets [22,23]. A near-total reflection of GPs at the
edge of the sheet, with negligible radiation losses, was observed.
Precise theoretical studies indicated a nontrivial phase shift
upon reflection of φr � 0.85 rad [24] (with e−jφr convention),
largely independent on wavelength and doping level.
Here we numerically show that a patterned graphene edge

can strongly tailor and even completely cancel the reflection,
in strong contrast with the unpatterned edge. We demonstrate
that this modulation arises from coupling with Fabry–Perot
cavities formed by ribbon GPs in the longitudinal direction.
Interesting features appear when there is interaction with lateral
resonances via edge modes [19]. A strong coupling with these
edge modes at patterned interfaces needs to be considered for
graphene infrared applications.
The particular pattern we study (Fig. 1) is a grating in a semi-

infinite free-standing sheet in air, that is described as a ribbon
array with elements of length l , width w, and period p. This can
be experimentally realized via chemical vapor deposition [22]
or electron-beam lithography [25]. The grating is excited via
an in-plane GP, perpendicular to the edge (incidence along
y-axis, Fig. 1).
For this problem, full 3D calculations are needed, which

we performed with COMSOL, a commercial finite element-
based software package. A single period is simulated, delim-
ited by perfect magnetic boundaries in the x-direction, with
Perfectly Matched Layers on the z- and y-boundaries in order
to account for radiation losses. Graphene optical properties are
defined by the Kubo Formula [26,27] at free-space wavelength
λ0 � 10 μm, with doping level EF � 1 eV and scattering
lifetime of electrons τg � 0.16 ps. The graphene permittivity
for an effective thickness of t � 2 nm is then ε � −185 − 6.4i
(a typical approach to accurately model the very thin sheet),
and the corresponding plasmon effective wavelength is
λp � 1.16 μm.
Note that the results are very similar for a different doping

and wavelength if the structural parameters are scaled with the
plasmon wavelength of the graphene sheet, so the conclusions
are more general.
The reflectance of an in-plane plasmon mode perpendicu-

larly incident on the grating constitutes our main result
(Fig. 2), as we observe a rich characteristic in function of the
ribbon length l (normalized to λp) and width w (normalized to
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the period p). The reflectance here is the power returned into
the counter-propagating plasmon mode (excluding the losses
in the incident section), as we fixed p � 0.95λp, so there is no
diffraction toward other directions. If the graphene edge was
unstructured, it would give total reflectance, whereas now zones
with near-zero reflectance appear (blue zones), which means
near-complete absorption as the radiation losses remain very
small. In the following we explain these features through mod-
els that are as compact as possible.

The considered structure (Fig. 1) can be viewed as a gra-
phene sheet connected with a finite graphene ribbon grating
(GRG) of length l . The reflectance dips appear when the plas-
mon is trapped in the grating: a GRG mode is reflected back
and forth with internally constructive interference. This Fabry–
Perot (FP) resonance condition is

2Rfβgl � φr21 � φr23 � 2mπ; (1)

where Rfβg is the real part of the propagation constant of the
(fundamental and only) GRG plasmonic mode, φr21 and φr23
are the reflection phases for the fundamental mode at the two
different interfaces of the GRG cavity, and m is an integer.
Upon calculating Rfβg, φr21 , and φr23 (through separate sim-
ulations), we can represent the first three orders with white lines
in Fig. 2. The single-mode description agrees well with the

full-structure simulation results, with deviations mainly for
widths w > 0.7p that increase for smaller lengths l . Indeed,
at the interfaces, evanescent modes are generated (similar to
metallic edges [28]), and they are expected to have a larger in-
fluence for short cavities (small l ) and larger w (better match
with edge mode, discussed below). Note that the complex
modal reflection (or transmission) is written following the con-
vention rij �

ffiffiffiffiffiffi
Rij

p
e−jφrij .

We are now in a position to analyze the behavior of the res-
onances in more detail, using as few parameters as possible,
amongst others via the parameters of Eq. (1). Figure 3(a) rep-
resents the real part of the effective refractive index (Rfneff g) of
the fundamental GRG mode (blue line) as a function of the
ribbon width w (where β � 2πneff∕λ0). This mode (which
builds up the resonance in the GRG) is highly confined (large
neff ) for narrow ribbons, while for wider ribbons, the mode ul-
timately reaches the index of a pristine graphene sheet plasmon
(red dashed line). If not embedded in a grating (single ribbon,
black dashed line), the dispersion of the fundamental mode ap-
proaches the edge mode dispersion (green dashed line). Note
that they dissociate at w ≈ 0.7p when the ribbon modes in the
GRG start to interact with their neighbors via the edge modes
(edge mode and GRG dispersion crossing). These edge modes
will play an important role in our description.
The phases in Eq. (1) have a direct influence on the modelled

resonances (white lines in Fig. 2). Figure 3(b) represents the
reflection and transmission phases of the GRG plasmon at
the interfaces of the FP cavity, see Fig. 3(c) for their definitions.
Figure 3(b) shows two regions where the phases rapidly change
(w∕p < 0.2 and w∕p > 0.7). These fast changes are respon-
sible for the slope variations of the FP resonances (blue regions,
Fig. 2), also explicit in the single-mode model (white lines,
Fig. 2). They are both connected to a strong coupling with lat-
eral (x-direction) FP resonances via edge modes (discussed
below). The variation in the reflection phase [29] of the GRG
at w � 0.75p (φr23 ) characterizes another lateral FP-cavity res-
onance at the end of the GRG (into air, see below). Note that
φr23 tends to the value 0.85 rad for a straight edge (w∕p � 1).
Finally, Fig. 3(d) shows the transmittance and reflectance

from GRG to a graphene sheet (T 21 and R21) and the reflec-
tance at the end of the grating (R23), see Fig. 3(c). By reciproc-
ity T 12 � T 21, so T 21 (red line) also applies for transmittance
from graphene sheet to GRG.
We also calculated the average of the magnetic field

z-component at the lateral edges of the sheet-grating interface
[Fig. 3(d), green-dot line, right axis]. At this interface only part
of the energy stays in the y-directed longitudinally propagating
modes (R21 � T 21 < 1). With negligible radiation losses and
without other longitudinally propagating modes, the remaining
energy flows toward evanescent modes, determined as ce � 1 −
R21 − T 21 [green line, Fig. 3(d)]. The evanescent contribution
ce mainly corresponds to the edge mode, propagating in the
lateral x-direction [19] [sketched in Fig. 3(c)]. This is correlated
with the averaged edge magnetic field [green line and dots
in Fig. 3(d)]: two peaks are observed at w � 0.15p and 0.7p.
The corresponding electric fields are represented in Figs. 4(a)
and 4(b) and they indicate a third-order and a first-order lateral
FP resonance along the edge, respectively. Accordingly, the
Poynting vectors [green arrows, Figs. 4(a) and 4(b)] exhibit
an enhanced energy flow along the x-direction edge. Note that
the second-order resonance is not allowed by the symmetry of

Fig. 1. Patterned edge on a graphene sheet, with period p, length l ,
and width w. The norm of the incident graphene plasmon magnetic
H-field is depicted in the background.
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Fig. 2. Reflectance of a GP impinging the patterned edge as a func-
tion of normalized ribbon width w∕p and length l∕λp. Theoretical
Fabry–Perot modes depicted with white lines.
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the excitation. At the other end of the grating (to air), a similar
edge mode lateral FP resonance at the end of the ribbons is
responsible for the R23 reflectance dip around w � 0.75p
[black dashed line, Fig. 3(d)].

Now we have the elements to understand the complete
structure. The first-order (lateral) resonance [Fig. 4(b)] is
responsible for the disappearance of the (longitudinal) FP
modes around w � 0.7p in Fig. 2 (a band of higher reflectance
appears, in between low reflectance zones). Indeed, in Fig. 3(d),
the transmittance T 21 falls to nearly zero, while edge mode
coupling reaches 40%, which weakens the GRG cavity mode.
Note that this particular width w � 0.7p corresponds with
the crossing point of the edge mode and the grating ribbon
dispersion [Fig. 3(a)].

The other lateral edge mode resonance [peak around w �
0.15p in Fig. 3(d)], however, does not spoil the reflectance
dip in Fig. 2 at w � 0.15p. This is understood considering
that the transmittance T 12 � T 21 is not affected in this case
[red line in Fig. 3(d)]. The altered parameters are the reflec-
tance of the GRG plasmon R21 where a dip appears [blue
line in Fig. 3(d)], and the slope of the phase φr21 [blue line
in Fig. 3(b)]. The latter influences the white line slopes in
Fig. 2 for w < 0.15p.

Finally, we focus on the brutal changes of transmittance T 21

and reflectance R21 when w∕p > 0.8 [Fig. 3(d)]. At the final
value (w∕p � 1), the grating becomes a graphene sheet, leading

to the absence of an interface, thus total transmittance and zero
reflectance. Therefore, in this range, the losses remain fairly
constant, while reflectance and transmittance change very rap-
idly. This leads to a particular value of w∕p that achieves critical
coupling (losses equal coupling), whereas the other values are
under- or overcoupled. This explains the localized minima
(tight blue spots in Fig. 2) in this regime, in contrast to the
more extended FP resonances for w∕p < 0.8 (elongated blue
minima zones).

Fig. 3. (a) Dispersion of the relevant modes as a function of normalized width (w∕p). (b) Reflection and transmission phase shift at the interfaces.
(c) Top view with the relevant reflection and transmission parameters at the two interfaces. Lateral edge modes ce are sketched. (d) Reflectance and
transmittance at the two interfaces. ce represents coupling with evanescent modes. The right axis shows the z-component magnetic field average at
sheet-grating interface edge (dots).

Fig. 4. Top view of the graphene sheet with the real part of the
y-component of the electric field for (a) w � 0.15p and (b) w � 0.7p,
corresponding to lateral (x-direction) FP resonances of the edge mode.
The excitation comes from the top via a semi-infinite GRG and is
transmitted to a semi-infinite graphene sheet at the bottom. Poynting
vectors are sketched in green arrows, with the arrow length depicting
the vector norm in logarithmic scale.
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We conclude that plasmon reflectance at the edge of a
graphene sheet is profoundly influenced by its shape. The
examined ribbon grating case offers longitudinal and lateral
edge-mode Fabry–Perot resonances that drastically decrease
the reflection for particular ribbon length and width combina-
tions, where it would have been nearly 100% for a nonstruc-
tured edge. The edge mode coupling is associated with phase
changes, influencing the positions of the longitudinal cavity
modes. Furthermore, the rapidly changing transmittance be-
yond such a resonance leads to particular points of critical and
near-zero reflection. These results are useful for the design of
nano-optical circuitry, sensors, and antennas that employ gra-
phene plasmons.

Belgian Science Policy Office (BELSPO) “Photonics@be”
(P7-35); Fonds De La Recherche Scientifique—FNRS
(Belgian National Fund for Scientific Research).

REFERENCES

1. A. Castro Neto, F. Guinea, N. M. R. Peres, K. Novoselov, and A. K.
Geim, Rev. Mod. Phys. 81, 109 (2009).

2. A. N. Grigorenko, M. Polini, and K. Novoselov, Nat. Photonics 6, 749
(2012).

3. F. Bonaccorso, Z. Sun, and A. Ferrari, Nat. Photonics 4, 611 (2010).
4. R. Nair, P. Blake, A. N. Grigorenko, K. Novoselov, T. Booth, T.

Stauber, N. M. R. Peres, and A. Geim, Science 320, 1308 (2008).
5. T. Low and P. Avouris, ACS Nano 8, 1086 (2014).
6. M. Jablan, H. Buljan, and M. Soljacic, Phys. Rev. B 80, 245435 (2009).
7. Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H.

Stormer, and D. N. Basov, Nat. Phys. 4, 532 (2008).
8. A. Vakil and N. Engheta, Science 332, 1291 (2011).
9. T. Ebbesen, C. Genet, and S. Bozhevolnyi, Phys. Today 61(5), 44

(2008).
10. J. L. Garcia-Pomar, A. Y. Nikitin, and L. Martin-Moreno, ACS Nano 7,

4988 (2013).

11. G. Rosolen and B. Maes, J. Opt. 17, 015002 (2015).
12. W. Lu, W. Zhu, H. Xu, Z. Ni, Z. H. Dong, and T. Cui, Opt. Express 21,

186757 (2013).
13. X. Zhu, W. Yan, N. Asger Mortensen, and S. Xiao, Opt. Express 21,

3486 (2013).
14. B. Wang, X. Zhang, X. Yuan, and J. Teng, Appl. Phys. Lett. 100,

131111 (2012).
15. K. S. Novoselov, V. I. Falko, L. Colombo, P. R. Gellert, M. G. Schwab,

and K. Kim, Nature 490, 192 (2012).
16. Q. He, S. Wu, Z. Yin, and H. Zhang, Chem. Sci. 3, 1764 (2012).
17. B. Sensale-Rodriguez, R. Yan, M. Kelly, T. Fang, K. Tahy, W. Hwang,

D. Jena, L. Liu, and H. Xing, Nat. Commun. 3, 780 (2012).
18. Z. Li and N. Yu, Appl. Phys. Lett. 102, 131108 (2013).
19. A. Y. Nikitin, F. Guinea, F. J. Garcia-Vidal, and L. Martin-Moreno,

Phys. Rev. B 84, 161407 (2011).
20. S. Thongrattanasiri, I. Silveiro, and F. Javier Garca de Abajo, Appl.

Phys. Lett. 100, 201105 (2012).
21. I. Llatser, C. Kremers, A. Cabellos-Aparicio, J. M. Jornet, E. Alarcon,

and D. N. Chigrin, Photon. Nanostr. Fundam. Appl. 10, 353
(2012).

22. J. Chen, M. Badioli, P. Alonso-Gonzalez, S. Thongrattanasiri, F. Huth,
J. Osmond, M. Spasenovoc, A. Centeno, A. Pesquera, P. Godignon,
A. Z. Elorza, N. Camara, F. Garcia de Abajo, R. Hillenbrand, and
F. H. L. Koppens, Nature 487, 77 (2012).

23. Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner,
L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler,
A. H. C. Neto, C. N. Lau, F. Keilmann, and D. N. Basov, Nature
487, 82 (2012).

24. A. Y. Nikitin, T. Low, and L. Martin-Moreno, Phys. Rev. B 90, 041407
(2014).

25. Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang,
P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. Garcia de
Abajo, ACS Nano 7, 2388 (2013).

26. L. Falkovsky and A. Varlamov, Eur. Phys. J. B 56, 281 (2007).
27. L. Falkovsky, J. Phys. 129, 1 (2008).
28. P. Lalanne and J. P. Hugonin, Nat. Phys. 2, 551 (2006).
29. B. J. J. Slagmolen, M. B. Gray, K. G. Baigent, and D. E. McClelland,

Appl. Opt. 39, 3638 (2000).

2730 Vol. 40, No. 12 / June 15 2015 / Optics Letters Letter


