JCF 2001 - Maubeuge - 26 Novembre 2001

Caractérisation de la microstructure de couches minces non homogènes par techniques optiques Application au ZnO et au LiNbO₃

Eric Dumont
Faculté Polytechnique de Mons
Belgique

Optical techniques

- Why using optical techniques for the determination of the microstructrure of a thin film ?
- Advantages: non-destructive techniques, no sample preparation, measurements in the air
- Drawbacks: use of complex mathematical models to determine this microstructure
- Optical techniques : Spectrophotometry, X-Ray reflectometry, Ellipsometry

Optical techniques

 Measurement of specular and diffuse reflectivity and transmitivity of light: R_S T_S R_D T_D

- \blacksquare R_S T_S: Spectrophotometry: wl =190 2500 nm
- R_S: X-Ray Reflectometry: wl = 0.15418 nm
- R_D T_D: Spectrophotometry with integration sphere: wl = 190 2500 nm

Optical techniques

• Measurement of the change of the polarisation state of polarised light by specular reflection : Δ and Ψ

$$R_p = E_{pr}/E_{pi}$$
 $R_s = E_{sr}/E_{si}$
 $R_p/R_s = \tan \Psi e^{j \Delta}$

■ Δ and Ψ : Ellipsometry : wl = 300 - 850 nm

Models

 Optical measurements depend on : experimental parameters and physical parameters of a film

R, T, \triangle and $\Psi = f(N_a, N_F(z), d_F, N_s, d_s, WL, AI)$

Models

 Relation between the microstructure and the optical index profile of a film

 Determination of the microstructure = calculation of the optical index profile N_F (z)

Faculté Polytechnique de Mons

Real microstructures

Relation between the index profile and the real structure of a film :

Fields of application

- Each technique has its own field where it works well,
 different from the two other ones
- Sensitivity:
 - spectrophotometry not very sensitive to the microstructure of the films \uparrow can only be used to determine the thickness of a film
 - ellipsometry not very sensitive to the presence of interfaces ↑ can only be used to determine the roughness and inhomogeneity of a film
 - X-Ray reflectometry not very sensitive to inhomogeneity \uparrow can only be used to determine the roughness or presence of interface in a film

Fields of application

- Each technique has its own field where it works well, different from the two other ones
- Thickness range :
 - spectrophotometry and ellipsometry : d_F > 50 nm
 - X-Ray reflectometry : $d_{\rm F}$ < 100 nm, sample not too rough

Ellipsometry

Annealing of a ZnO layer

Ellipsometry

Influence of the O₂ percentage in ZnO films

Ellipsometry

LiNbO₃ on sapphire

Faculté Polytechnique de Mons

X-Ray reflectometry

Index profile of a thin ZnO film

- The optical index profile depends on the wavelength wl
- \uparrow creation of a « new model » based on a volume fraction of material profile $F_v(z)$ not dependant on where
- \blacksquare \P N_F (z, wl) = f (N_{material} (wl), F_v (z)

```
Visible wavelengths : N_{material} = n - j k
X-Ray wavelengths : N_{material} = 1 - \delta - j \beta
```

• determination of the microstructure = calculation of $F_v(z)$

- The « new model » can be used with ellipsometric, spectrophotometric and X-Ray measurements together
- same model for all kinds of measurements :
 - film with roughness, inhomogeneity and interface
 - use of volume fraction profile $F_v(z)$
- Possibility of using the 3 techniques out of their usual range of thickness
- Application to a « thin » (75 nm) and a « thick » (460 nm) film of ZnO

ZnO on glass (thin film)

ZnO on glass (thick film)

Conclusions

- Optical techniques are powerfull tools for studying the microstructure of thin films
- Possibility of using the optical techniques for all kinds of films on all substrates
- Possibility of analysing several kinds of optical measurements together with a « new model » :
- use of the optical measurements out of their usual
 thickness range »
- determination of the 3 features of a microstructure simultaneously

