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Fano resonance engineering in slanted cavities with hyperbolic metamaterials
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We present the possibility to engineer Fano resonances using multilayered hyperbolic metamaterials. The
proposed cavity designs are composed of multilayers with a central slanted part. The highly tunable resonances
originate from the interference between a propagating and an evanescent mode inside the slanted section. The
propagating mode can reach an extremely high effective index, making the realization of deeply subwavelength
cavities possible, as small as 5 nm. The evanescent mode is rarely analyzed but plays an important role here, as
its contribution determines the particular shape of the cavity characteristic. Moreover, these phenomena cannot
be described using effective medium theory, and we provide a more rigorous analysis. The reported resonances
are very sensitive to any structural changes and could be used for sensing applications.
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I. INTRODUCTION

Over the last decades the enhanced control over all aspects
of light is a major research direction. As a result of the progress
in nanofabrication, metamaterials have attracted a large scien-
tific interest for their abilities to steer electromagnetic fields,
thanks to a tailoring of the subwavelength features [1–7].

A particular subclass of these materials, the hyperbolic
metamaterials (HMMs), presents multiple interesting prop-
erties, such as a very large density of states [8,9], an extreme
refractive index, and negative refraction [10,11]. Two well-
known structures with these hyperbolic properties are periodic
one-dimensional multilayers (very thin metallic and dielectric
layers) [12–16] and two-dimensional periodic arrays (metallic
nanorods in a dielectric host) [17–19].

Various designs of cavities based on HMMs have been
studied, and they present interesting features such as an
anomalous scaling law [10], whispering-gallery modes [20],
zeroth order Fabry-Perot resonances [21], and Fano resonances
[22].

Fano resonances are asymmetrically shaped resonant phe-
nomena that arise from the interference between a slowly
varying background and a narrow resonant process [23–25].
Because their features stem from the interplay between two
distinct channels, the resonances are very sensitive to any
changes, rendering them interesting, among others, for sensing
applications [26].

Here we propose very compact, high-quality cavities based
on slanted multilayer HMMs, which present Fano resonances.
Using rigorous numerical simulations and a thorough modal
analysis, we elucidate the mechanism as the simultaneous
excitation of a propagating and an evanescent mode. The
propagating mode creates Fabry-Perot resonances, whereas
the evanescent modes lead to a slowly varying background, so
that their interference leads to narrow Fano-type features. This
principle cannot be explained using effective medium theory
(EMT), and builds on a rarely exploited evanescent mode.

Moreover, because the effective index is very high in the
slanted cavity, we can create deep subwavelength cavities of a
few nanometers. In particular, cavities as small as about 5 nm
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can be designed. In addition, we show that these mechanisms
remain valid in the presence of losses for the metals.

In Sec. II we present the proposed design. Section III
inspects the light behavior using effective medium theory,
leading to an incomplete description. In Sec. IV we calculate
the correct characteristics, and explain the observed behavior.
Finally, in Sec. V we discuss the effect of lossy metals, and
Sec. VI concludes.

II. DESIGN

We study the transmission and reflection of light along the
parallel direction (so k⊥ = ky = 0) of a HMM with a finite
section of tilted layers in the middle (Fig. 1). The central tilt
section is described by A (the vertical offset), B (the horizontal
offset), and L (the parallel length) with L = √

A2 + B2 =
A

sin θ
, and θ is the tilt angle.

Because we work in the visible and near-infrared region,
we use silver (Ag) as the metal and TiO2 as the dielectric,
which are well known to provide good performances at these
frequencies [27–29]. We choose dm = 10 nm for the Ag
thickness and dd = 20 nm for the TiO2 thickness. We use
a dispersionless index for TiO2 with nTiO2 = 2.7 and a Drude
model for Ag:

εAg = 1 − ω2
p

ω2 + iωγ
, (1)

with ωp = 1.26 × 1016 Hz the plasma frequency and γ the
collision frequency that we fix equal to zero; we examine the
influence of losses in Sec. V.

We work in the regime where only one propagating Bloch
mode exists in the HMM, hence the wavelength is larger than
600 nm in our case. We excite the structure from Fig. 1 with
this propagating mode from the left and look at its reflectance
and transmittance for a Bloch momentum ky = 0.

In the next section we study this structure using an effective
medium theory, which will show its limits to describe such
systems.

III. EFFECTIVE MEDIUM THEORY

For a uniaxial multilayer using effective medium theory,
the dispersion relation for TM waves (transverse magnetic,
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FIG. 1. A multilayer HMM with a tilted section in the middle.
The modes are excited from the left. The structure is divided into
three parts along the x direction: Two identical HMMs on the left and
right and an asymmetrical HMM (or AHM) in the center.

magnetic field along z direction) is [30,31]

k2
‖

ε⊥
+ k2

⊥
ε‖

= k2
0, (2)

where k‖ (k⊥) is the wave vector in the direction parallel
(perpendicular) to the layers. The permittivity in the parallel
and normal directions depends only on the permittivity of the
constitutive materials and their filling fraction:

ε‖ = f εm + (1 − f )εd, (3)

ε⊥ = εmεd

f εd + (1 − f )εm

, (4)

where ε‖ and ε⊥ are the components of the permittivity in
the parallel and perpendicular directions, εm and εd are the
permittivity of the metal and the dielectric, respectively, and
f is the metal filling fraction.

For the used wavelength regime, these materials turn out
to be very particular anisotropic media, namely HMMs,
where components of the diagonalized permittivity tensor
have opposite sign, and Eq. (2) is thus the equation of a
hyperbola. Consequently, the HMM can support propagating
modes with extremely large wave vectors. We note, however,
that this equation also has other solutions. There is an
evanescent mode (imaginary parallel momentum and real
perpendicular momentum), and a mode with real parallel
momentum and imaginary perpendicular momentum. These
modes are often overlooked, because they are accessible only
in certain conditions. We show later on that we fulfill the
conditions to excite the evanescent mode, and it will play an
important role for the cavity mechanism in the next section.

The geometry explained in the previous section can be
divided into three different parts (Fig. 1). The left and right
parts are “standard” HMMs and are governed by Eq. (2) with
ε⊥ = εy , ε‖ = εx , and k‖ = kx , k⊥ = ky .

The central part however is a hyperbolic medium with
the optical axis tilted with respect to the x direction. In the
literature these HMMs with tilted optical axis are sometimes
referred to as asymmetric hyperbolic metamaterials (AHMs)
[32,33].

The AHM part of Fig. 1 is also governed by Eq. (2), but
with ε⊥ = εy ′ , ε‖ = εx ′ and k‖ = k′

x , k⊥ = k′
y . Even if the

thicknesses of the Ag and TiO2 layers in the central part
change (d ′

m = dm cos θ and d ′
d = dd cos θ ), we still have the

same εx = εx ′ and εy = εy ′ , because Eqs. (3) and (4) only
depend on the filling fraction f , which remains the same.

Using a coordinate transformation Eq. (2) in the AHM
becomes, in the main coordinates,

k(1,2)
x =

kyεxy ±
√(

ε2
xy − εxxεyy

)(
k2
y − k2

0εxx

)
εxx

, (5)

with the solution k(1)
x corresponding to the sign “+” in the

formula for mode propagating towards smaller x and k(2)
x to

the sign “−” for waves propagating towards larger x. Note
that in our case of normal incidence, k(1)

x and k(2)
x are equal in

magnitude. εxx , εxy , and εyy are the permittivity components
of the AHM in the main coordinates, which are obtained by
applying a rotation matrix to the diagonal permittivity tensor
in the tilted coordinates:

ε = R(θ ) ε′ R(θ )T =
(

εxx εxy

εxy εyy

)
, (6)

with R(θ ) the matrix of rotation around the z axis and ε′ =
(ε

′
x 0
0 ε′

y
) the permittivity tensor in the tilted coordinates. This

leads to

εxx = εx ′ cos2 θ + εy ′ sin2 θ, (7)

εxy = (εx ′ − εy ′ ) cos θ sin θ, (8)

εyy = εx ′ sin2 θ + εy ′ cos2 θ. (9)

For zero momentum in the y direction (i.e., ky = 0), the
momentum in the x direction is different in the HMMs

(kx = √
εy k0) and in the AHM (kx =

√
(ε2

xy−εxxεyy )(−k2
0εxx )

εxx
),

leading to reflection at the interfaces. Thus the introduced
design functions as a cavity structure of width B.

Now that we have defined the effective permittivity com-
ponents in the HMM and AHM parts, we can easily calculate
numerically the scattering characteristics of the structure with
the different parts replaced by homogeneous blocks with these
effective parameters. The reflectance of light as a function of
the tilt angle θ and the length L at a wavelength λ0 = 700 nm
is shown in Fig. 2.

We observe two distinct behaviors above and below a
transition tilt angle of about θt ≈ 21◦. This phenomenon can
be understood by looking at the isofrequency contours of the
HMM and the AHM section, respectively (Fig. 3).

Blue curves correspond to the isofrequency contour of
propagating modes, thus with real components for the x and
y momenta (therefore, real part of momenta is plotted). Green
curves correspond to evanescent modes with imaginary mo-
mentum components in both directions (therefore, imaginary
part of momenta is plotted). Red curves correspond to modes
with real x momentum and imaginary y momentum (therefore,
the real part of the momentum is plotted on the abscissa and
the imaginary part is plotted on the ordinate). Note that the
isofrequency contours of Fig. 3(b) are just the isofrequency
contours of Fig. 3(a) rotated by 45◦.
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FIG. 2. Reflectance versus tilt length L and angle θ using effective
medium theory.

The conservation of the momentum in the transverse
direction (ky = 0) imposes in the tilted coordinates (x ′,y ′):

ky = k′
x sin θ + k′

y cos θ = 0 (10)

so

k′
x sin θ = −k′

y cos θ (11)

and thus, the mode evanescent in the y ′ direction and
propagating in the x ′ direction (red curves in Fig. 3) inside the
AHM cannot be excited because Eq. (11) cannot be fulfilled.
The mode evanescent in all directions (green curves in Fig. 3)
and the propagating one (blue curves in Fig. 3) however
can fulfill Eq. (11) and can be excited for normal incidence
(ky = 0).

The orange arrow in Fig. 3(a) shows the incident momentum
inside the HMM. From Fig. 3(b) we see that transverse
momentum conservation [the orange arrow in Fig. 3(b) needs
to be horizontal] requires that only one mode at a time is
excited inside the AHM. The latter mode is either propagating
(blue) or evanescent (green), in function of the tilt angle.

The transition angle θt between the two regimes is de-
termined by the asymptote of the hyperbolic contours (the

FIG. 3. Isofrequency contours (a) in the HMM and (b) in the
AHM for a tilt angle of 45◦ with EMT, for λ0 = 700 nm. Blue
curve corresponds to propagating waves, green curve corresponds
to evanescent waves, and red curve corresponds to propagating wave
in the x direction and evanescent in the y direction. The orange arrow
in (a) indicates the input wave vector, in (b) the dominant (green)
mode in the AHM. (a) HMM. (b) AHM.

FIG. 4. Exact reflectance in function of θ and L. Black dashed line
corresponds to the eight first orders of the Fabry-Perot constructive
interferences. The wavelength is 700 nm.

same asymptote for both blue or green contours), this angle
equals

θt = atan

(√
εx

εy

)
≈ 21.6◦ (12)

at λ0 = 700 nm.
Thus, below θt only a propagating mode (orange arrow

touches blue curve) is excited inside the AHM, so the lobes in
the lower part of Fig. 2 are Fabry-Perot resonances of the
cavity. The fairly weak reflectance of the lobes is typical
of Fabry-Perot cavities with low reflection at each interface,
which is the case for small tilt angles.

Above θt only the evanescent mode (orange arrow touches
green curve) is excited in the AHM, leading to the absence
of Fabry-Perot fringes. Furthermore, the reflectance increases
monotonously with B (= L cos θ ), because the mode ampli-
tude decreases exponentially with the length of propagation.

In the next section we show that this EMT description is
actually incomplete, and only provides for qualitative trends
compared to the exact simulations.

IV. RIGOROUS CALCULATIONS AND ANALYSIS

We employ the commercial finite-element software COM-
SOL Multiphysics 5.2 to calculate the exact propagation
through the structure (Fig. 1), with slightly rounded corners to
avoid hotspots. The reflectance in function of the tilt angle θ

and the parallel propagation length L is shown in Fig. 4. The
same lobelike behavior as with EMT below θt is present, but
the behavior above θt is completely different.

In order to understand this difference, we need to take
into account the exact dispersion relation obtained by solv-
ing Maxwell’s equations and applying Bloch’s theorem
[13,34]

cos (kyD) = (κdεm + κmεd )2

4κdκmεdεm

cosh (κddd + κmdm)

− (κdεm − κmεd )2

4κdκmεdεm

cosh (κddd − κmdm), (13)
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FIG. 5. Exact isofrequency contours (a) in the HMM and (b)
in the AHM for a tilt angle of 45◦ in the first Brillouin zone for
λ0 = 700 nm. Blue curves correspond to propagating waves and
green curves correspond to evanescent waves. Conservation of the
transverse wave vector is illustrated by the orange and green arrows.
(a) HMM. (b) AHM.

with D = dm + dd the period and κd,m =
√

k2
x − k2

0εd,m the
decay coefficients in the dielectric and metallic layers, respec-
tively. This dispersion relation is also valid in the AHM, by
replacing (kx,ky) with (k′

x,k
′
y), dd,m with d ′

d,m = dd,m cos θ ,
and D with D′ = D cos θ . Combining Eq. (13) with the
transverse momentum conservation condition [Eq. (11)] in the
AHM, we finally arrive at

cos (k′
xD

′ tan θ ) = (κdεm + κmεd )2

4κdκmεdεm

cosh (κdd
′
d + κmd ′

m)

− (κdεm − κmεd )2

4κdκmεdεm

cosh (κdd
′
d − κmd ′

m).

(14)

The main conclusion is that two modes satisfy this equation
at the same time for all tilt angles θ : an evanescent one and a
propagating one. This result is consistent with the rigorously
simulated isofrequency contours (Fig. 5), where the blue curve
represents the propagating mode and the green curve the
evanescent mode.

The orange arrow in Fig. 5(a) shows the incident momentum
inside the HMM. In Fig. 5(b), two horizontal arrows are
needed to represent the momentum of the two excited modes
inside the AHM. The orange arrow represents the momentum
of the propagating mode and the green arrow represents the
momentum of the evanescent mode.

The first important difference with the EMT contours of
Fig. 3 is that the evanescent wave contour (green contours),
which was an open curve, is now a closed curve for the exact
calculations of Fig. 5. Second, because the structure is periodic,
all the information is encoded in the first Brillouin zone, thus
the isofrequency contour of the propagating wave (blue curves)
is also periodic and is not limited by asymptotes, in contrast
with the EMT contours.

For these reasons, inside the AHM, an evanescent and
a propagating mode are always excited together. The inter-
ferences between these two modes inside the AHM cavity
are responsible for the Fano resonances appearing in Fig. 4.
Indeed, Fano resonances can be described as arising from the
interference between a slowly varying background (here the
evanescent wave) and a resonant process (here the Fabry-Perot
oscillations of the propagating mode).
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FIG. 6. Comparison between the exact calculation of the re-
flectance (blue solid curve) and the slowly varying background
of the evanescent mode (green solid curve) and the Fabry-Perot
oscillations of the propagating mode (red dashed curve) for θ = 45◦

at λ0 = 700 nm.

The Fano nature is more visible in Fig. 6 (blue curve),
which shows the reflectance for an angle θ = 45◦ as a function
of the width B of the cavity. Figure 6 further illustrates the
cavity principle in detail: the Fabry-Perot oscillations of the
propagating mode (red dashed curve) and the slowly increasing
evanescent background (green curve) are shown separately.
Both reflectance curves are obtained using a transfer matrix
method under the hypothesis of an isotropic medium (a good
approximation for normal incidence) as

R = |r|2 =
∣∣∣∣ rHA + rAH exp (2ikxB + ϕ)

1 + rHArAH exp (2ikxB + ϕ)

∣∣∣∣
2

, (15)

with rHA and rAH the Fresnel coefficients of the propagating
(evanescent) mode for the HMM-AHM and AHM-HMM
interfaces, kx the wave vector in the x direction of the
propagating (evanescent) mode, and ϕ a fitted phase term.

The exact reflectance thus arises from the interference of
these two phenomena (leading to the blue curve). When the
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FIG. 7. Momentum in the x direction kx inside the AHM in
function of the tilt angle for ky = 0. Blue curve and axis represent
the propagating mode, green curve and axis represent the evanescent
mode.
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cavity length B becomes larger, the effect of the evanescent
mode disappears, as its resulting reflectance (green curve)
tends to 1, as the mode decays and does not manage to transmit.
Then the characteristic only consists of typical Fabry-Perot
oscillations from the propagating mode. For smaller lengths
we obtain the typical asymmetric double-peak (maximum-
minimum or vice versa) Fano characteristics.

Black dashed lines in Fig. 4 show the good correspondence
between the Fano resonances and the Fabry-Perot peaks of
the propagating mode; the latter are plotted using a typical
phase-matching round-trip relation

2kx(θ )B + 2ϕ(θ ) = 2πm, (16)

with m an integer indicating the order, ϕ(θ ) the phase change
at each interface obtained by fitting, and kx(θ ) the wave vector
in the x direction for ky = 0 obtained from Eq. (14) (and using
kx = k′

x cos θ − k′
y sin θ ). The momentum in the x direction

for the evanescent and propagating modes is shown in Fig. 7.

FIG. 8. Reflectance spectra with (a) A = 5 nm, B = 5 nm. (b)
A = 35 nm, B = 35 nm. Insets show the magnitude of the electric
field at the resonance wavelength λ0 = 700 nm for a single unit cell
of the periodic stacks.

The very high value of the mode inside the cavity leads to
the possibility to create very compact cavities, on the order
of 5 nm width for θ = 45◦ (first peak in Fig. 6). For the
first order (m = 1) the reflectance shows a single peak, so
no asymmetric double-peak characteristic, which is similar to
other contexts, such as a cavity placed on the side of a wave
guide [35]. The latter effect is intuitively acceptable as the
evanescent mode background (the “direct” channel) has a very
large transmission for very thin cavities.

The resonance shapes are also present in the spectra of
the structure. We show these spectra in two cases for θ =
45◦, with a reflectance peak for A = 5 nm, B = 5 nm [first
order resonance, Fig. 8(a)], and with asymmetric Fano shapes
for A = 35 nm, B = 35 nm [third order resonance for λ0 =
700 nm, second order for λ0 = 885 nm, Fig. 8(b)].

The insets of Fig. 8 presents the magnitude of the electric
field at the first order resonance [inset of Fig. 8(a)] and third
order resonance [inset of Fig. 8(b)] for the wavelength λ0 =
700 nm. As we can expect, the first order resonance does
not present a node in the cavity and the third order profile
indicates two nodes. The field inside the cavity for the first
order resonance is quite large, so one needs to pay attention to
losses, this is discussed in the next section.
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FIG. 9. Reflectance for specific configurations at λ0 = 700 nm:
(a) θ = 30◦. (b) θ = 60◦.
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The reflectance for two specific tilt angles is presented
in Fig. 9, showing that cavity engineering is possible in the
regime where hyperbolic modes are supported. For an angle
θ = 30◦ and λ0 = 700 nm [Fig. 9(a)], the green curve of the
isofrequency contour of Fig. 5(b) indicates that the imaginary
part of the momentum of the evanescent mode is fairly high,
which is true for small θ (see also Fig. 7). This explains why the
asymmetric Fano resonances disappear rapidly, and quickly
lead to standard Fabry-Perot features.

For θ = 60◦ and λ0 = 700 nm [Fig. 9(b)] the imaginary
part for the evanescent mode is low enough to allow for the
existence of Fano resonances over a large range of cavity
widths (see also Fig. 7). Moreover, as the reflection of the
propagating mode at each HMM-AHM interface is larger
(because of the larger effective index, see Fig. 7), the peaks
are narrower than for the smaller tilt angle [e.g., Fig. 9(a)]. In
the next section we introduce losses in the metal and proceed
with the same kind of analysis.

V. LOSS EFFECT

Here we use a Drude model with loss for the metal. The
collision frequency in Eq. (1) is now γ = 0.5 × 1014 Hz, which
fits well with experimental measurements [10,36].

Unlike the lossless model, modes with purely real or purely
imaginary propagation constant no longer exist. However,
the mainly evanescent and propagating modes still exist (if
losses are not too large) and are excited with the provision of
momentum conversation [Eq. (11)]. Furthermore, in order to
show the same Fano mechanism as in the previous section, the
modal parameters should obey certain conditions. Specifically,
the propagating mode should have a large real part and small
imaginary part of the modal refractive index in the x direction,
whereas the evanescent mode should have an imaginary part of
the mode index in the x direction in the range between around
1 and 2 (above 2 the Fano resonances disappear quickly, below
1 the slowly varying background is not effective).

We focus on structures with metal filling fraction f = 1
3

as in the previous sections. Equation (14) is still valid, so
we can calculate the refractive index of the modes inside the
AHM. Figures 10 and 11 show the ratio between the real and

FIG. 10. Ratio between the real and imaginary parts of the
refractive index of the propagating mode inside the AHM.

FIG. 11. Imaginary part of the refractive index of the evanescent
mode inside the AHM.

imaginary parts of the propagating mode, and the imaginary
part of the evanescent mode, respectively. The structure with
period of 30 nm and tilt angle of 65◦ respects the conditions
cited above, so we use these parameters for the simulations.

From the field profiles (insets of Fig. 8) we can see hotspots
created by sharp corners. These hotspots are critical in the
presence of loss and can kill the resonance effect, therefore we
limit their influence by replacing sharp corners with sections
of 10 nm radius circles.

The reflectance and transmittance in function of the cavity
width B is shown in Fig. 12. We still observe the Fano
resonances and the extreme sensitivity to small changes in the
cavity width. The cavity principle thus remains operational, as
the spectrum in Fig. 13 also illustrates. Note that the decrease
in transmittance corresponds to an increase in reflectance, so it
is an interference effect, and not only due to metal absorption.
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Reflectance
Transmittance

FIG. 12. Reflectance and transmittance with period 30 nm and
tilt angle 65◦ with losses. Blue curve corresponds to the reflectance,
red curve to transmittance.
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FIG. 13. Reflectance and transmittance spectrum with period 30
nm, tilt angle of 65◦, and cavity width B = 17.7 nm with losses. Blue
curve corresponds to the reflectance, red curve to transmittance.

VI. CONCLUSION

We show that a multilayer structure with a tilted section
in the middle corresponds to a cavity made of an asymmetric

hyperbolic metamaterial. Inside this cavity, for normal inci-
dence (ky = 0), a propagating mode and an evanescent mode
are always excited. The propagating mode is responsible for
Fabry-Perot oscillations, while the evanescent mode “direct”
channel leads to a slowly varying background.

The interference between these two modes leads to so-
called Fano resonances with asymmetric shapes. Furthermore,
effective medium theory cannot explain the existence of these
resonances, as it only predicts a single mode at a time, either
propagating or evanescent.

The relatively large effective index inside the cavity offers
the possibility to create very compact extremely subwave-
length cavities. Furthermore, the specific characteristic can
be tailored, either presenting total transmittance or total
reflectance at resonance, or an asymmetric spectrum.

For structures with metal losses these Fano resonances still
exist. This bimodal interference mechanism thus offers new
practical possibilities, for instance in the domain of sensing
applications.
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