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Gravity-driven flows of granular matter are involved in a wide variety of situations, ranging from
industrial processes to geophysical phenomena, such as avalanches or landslides. These flows are
characterized by the coexistence of solid and fluid phases, whose stability is directly related to the erosion
and sedimentation occurring at the solid-fluid interface. To describe these mechanisms, we build a
microscopic model involving friction, geometry, and a nonlocal cooperativity emerging from the
propagation of collisions. This new picture enables us to obtain a detailed description of the exchanges
between the fluid and solid phases. The model predicts a phase diagram including the limits of erosion and
sedimentation, in quantitative agreement with experiments and discrete-element-method simulations.
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Over the last two decades, different theoretical
approaches have been proposed to describe dense granular
flows. The most widely used models are based on the μðIÞ
rheology [1]. This approach consists of a semiempirical
description of granular matter, through an effective friction
coefficient μ, that is a function of an inertial number I
directly related to the flow velocity [2]. Extensions of this
μðIÞ rheology have been proposed by several authors to
address spatial heterogeneities and nonlocal effects [3–7].
For instance, the yield stress increases as the thickness of
the flow region reduces, which manifests itself through a
thickness-dependent stop angle in granular flows down
inclined planes [8]. In parallel, semiempirical models have
been developed to describe the dynamics of dense granular
flows atop static granular solids. These systems exhibit
complex behaviors due to the transfers of energy and matter
between the fluid and solid phases at their interface. The
erosion of the solid phase by an avalanche feeds the fluid
phase, whereas the sedimentation of the fluid phase tends
to stop the motion. The Bouchaud-Cates-Ravi-Prakash-
Edwards (BCRE) model was proposed to account for this
coupled dynamics [9–12]. The two key ingredients of this
approach are (i) the intuitive idea that the evolution of
the interface between the two phases is determined by its
local tilt angle θ (see Fig. 1); and (ii) the assumed existence
of a neutral angle θ� such that for θ > θ�, erosion occurs,
whereas for θ < θ�, sedimentation occurs. Subsequent
studies suggested that θ� ¼ arctanðμdynÞ [13], where μdyn
is an effective friction coefficient depending on the flow
rate and the fluid-layer thickness [14].
In this Letter, we propose a new microscopic description of

the erosion and sedimentation processes at play in dense

granular flows driven by gravity. Our model involves a
flowing layer of grains over a static, yet erodible one and
includes a nonlocal cooperativity emerging from the propa-
gation of collisions. Its predictions are directly confronted to
numerical results obtained from discrete-element-method
(DEM) simulations in two canonical configurations: an
inclined plane and a heap. Despite its simplicity, the proposed
model enables us to obtain a detailed description of the
exchange mechanisms between the fluid and solid phases, as
well as a complete phase diagram of erosion and sedimenta-
tion. The model quantitatively describes the observed tran-
sitions between sedimentation, stationary flow, and erosion.
Moreover, it allows us to rationalize an important observable
from inclined-plane experiments in the literature: the stop
angle of a granular flow.
We consider a system made of spheres of diameter d

and mass m, with an interparticle sliding (resp rolling)
friction coefficient μS (resp μR) [15]. These two coefficients
are merged into a single effective coefficient μeff [16]. Our
description is a mean field approach, involving average
quantities and avoiding the actual irregularities present in a
real granular medium. As schematized in Fig. 1, we consider
a moving layer of thickness R (in number of grains and
counted vertically), i.e., the fluid phase, above a static layer,
i.e., the solid phase. The roughness of the solid-fluid
interface is characterized by an angle φsol with respect to
the normal to the interface, quantifying the angular depth
of the hole between two grains. The value of φsol ranges
between 23.4° and 30° for spherical grains [23]. In the
following, we focus on the motion of a single moving grain
at the solid-fluid interface. This grain is subjected to the
weight exerted by the R grains above it, belonging to the
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moving layer and is not allowed to jump. To move forward,
the grain has to slide and/or roll over the bumpy underlying
static layer. The instantaneous position of the moving grain
is described through a single variable: the angle φ between
the normal to the interface and the contact interparticle-
distance unit vector e⃗r (see Fig. 1).
As in previous studies [24–26], the motion is divided

into two subsequent steps. First, the grain starts at angular
position −φsol with angular velocity _φþ

n , and then it moves
above a static grain indexed by n until it arrives at þφsol
with angular velocity _φ−

n . Second, it elastically collides with
the next static grain indexed by nþ 1, which induces a
sharp change of its velocity (orientation and norm), as well
as secondary elastic collisions within the fluid and solid
phases. A new cycle then starts for the moving grain, with
an initial angular velocity _φþ

nþ1.
During the first step, the trajectory of the grain is circular.

The force components that contribute to the variation of its
kinetic energy are along the tangential unit vector e⃗φ: the
transverse projection Rmg sinðφþ θÞe⃗φ of the weight, and
the effective friction force −μeffRmg cosðφþ θÞe⃗φ gener-
ated by the normal projection of the weight. We assumed
that most of the frictional dissipation occurs through the
contact of the moving grain and the static layer, since all the
grains of the moving layer have similar velocities.
The total force along e⃗φ can be recast as the derivative of

an effective potential energy, −ð1=dÞdEpot=dφ, where

EpotðφÞ ¼ Rmgdfcosðφþ θÞ − cosðφsol − θÞ
þ μeff ½sinðφþ θÞ þ sinðφsol − θÞ�g:

The origin of energies has been chosen at φ ¼ −φsol (see
Fig. 1). At φ ¼ arctanðμeffÞ − θ, this potential energy is
maximal, resulting in an energy barrier that the grain has to
overcome:

ΔEB ¼ Rmgd
h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ μ2eff

q
− cosðφsol − θÞ

þ μeff sinðφsol − θÞ
i
: ð1Þ

If the moving grain has enough initial kinetic energy
md2ð _φþ

n Þ2=2 to overcome the barrier, it gains at the end
of the first step the kinetic energy:

ΔEK ¼ md2

2
½ð _φ−

n Þ2 − ð _φþ
n Þ2�; ð2Þ

¼ 2Rmgd½sinðθÞ − μeff cosðθÞ� sinðφsolÞ: ð3Þ

Up to now, we have not considered the contacts between
grains within each of the two layers, leading to the nonlocal
cooperative effects. In our model, these naturally appear in
the second step of motion. Indeed, after the primary elastic
collision with the (nþ 1)th static grain (see Fig. 1), the
velocity of the considered moving grain changes sud-
denly; and cascades of secondary elastic collisions occur
within the fluid and solid phases. This process leads to a
cooperative energy reallocation that forms the essence
of nonlocality. The energy transferred by the moving
grain to the static grain during the primary collision is
assumed to be proportional to the incoming energy, and
it reads amd2ð _φ−

n Þ2=2, with a a constant prefactor
(0 < a < 1). After the primary collision, the energies of
the moving grain and the static grain temporarily become
ð1 − aÞmd2ð _φ−

n Þ2=2 and amd2ð _φ−
n Þ2=2 before energy

reallocation. Then, cascades of secondary elastic collisions
are triggered in both phases. In a minimal description,
we assume that they involve (i) N flu and N sol grains in the
fluid and solid phases; and (ii) some energy equipartition
among those grains.
For the fluid phase, the energy primarily lost by the

moving grain is redistributed over the N flu moving grains.
Over the primary and secondary collisions, the total energy
loss ΔE0 ¼ md2½ð _φ−

n Þ2 − ð _φþ
nþ1Þ2�=2 for the moving grain

thus reads

ΔE0 ¼
amd2

2N flu
ð _φ−

n Þ2: ð4Þ

As a consequence, the ratio α ¼ ð _φþ
nþ1= _φ

−
n Þ2 between the

kinetic energies after and before the collisions is given by
α ¼ 1 − a=N flu and represents a direct signature of coop-
erativity in the fluid phase. Invoking the previous relations
and Eq. (2), one finally gets the central recursive equation

FIG. 1. A dense fluid phase (yellow) moves over a static solid
phase (orange). The instantaneous position of a grain, moving
above a static grain n, is described through the angle φ (see text
for details). Also shown is the effective potential energy EpotðφÞ,
during the first step of the grain motion, within one cycle where
φ ∈ ½−φsol;þφsol�.
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ð _φþ
nþ1Þ2 ¼ α

�
ð _φþ

n Þ2 þ
2ΔEK

md2

�
: ð5Þ

Assuming a global translational invariance in the system,
and thus looking for the fixed point of Eq. (5), one gets
ð _φþ

∞Þ2 ¼ 2αΔEK=½md2ð1 − αÞ�. In this homogeneous
state, during each cycle, the kinetic energy gained by the
moving grain when going down the effective potential
is exactly compensated for by the loss due to the sub-
sequent collisional process, such that ΔEK ¼ ΔE0. The
homogeneous state is stable only if the associated kinetic
energy E∞

K ¼ md2ð _φþ
∞Þ2=2 ¼ αΔEK=ð1 − αÞ, set by

Eq. (3), is larger than the barrier ΔEB, set by Eq. (1),
giving a limiting condition

α

1 − α
ΔEKðθsed;RÞ ¼ ΔEBðθsed;RÞ; ð6Þ

which determines the sedimentation angle θsedðRÞ. If
θ < θsed, the lowest layer of the fluid phase stops, and
R decreases. If θ > θsed, the kinetic energy is higher than
the potential barrier, and the lowest layer of the fluid phase
does not stop.
A similar reasoning allows us to discuss erosion.

Considering the solid phase, the energy amd2ð _φ−
n Þ2=2

gained by the static grain at the solid-fluid interface after
the primary collision is redistributed over the N sol static
grains through the cascade of secondary elastic collisions.
Over one complete cycle, the solid phase receives a global
energy amd2ð _φ−

∞Þ2=2 ¼ N fluΔEK. Invoking the energy
equipartition among the N sol grains, the static grain at
the solid-fluid interface thus receives an overall net kinetic
energy N fluΔEK=N sol, set by Eq. (3). The homogeneous
state is stable only if this kinetic energy remains smaller
than the energy required to drive the static grain into
motion, given by the energy barrier ΔEBðθ;Rþ 1Þ, set by
Eq. (1). The limiting condition

N flu

N sol
ΔEKðθero;RÞ ¼ ΔEBðθero;Rþ 1Þ ð7Þ

determines the erosion angle θeroðRÞ. If θ > θero, the
highest layer of the solid phase starts to flow, and R
increases. The right-hand side of Eq. (7) represents the
absolute value of a cohesion energy of the solid phase. For
dry granular assembly, only friction and geometry control
this cohesion. However, additional forces can be added
in Eq. (7), such as capillary forces for wet grains [2,27].
The static grains can even be glued, as in inclined-plane
experiments [8].
To solve Eqs. (6) and (7), we need to specify furtherN sol

andN flu, i.e., the shape and size of the cooperative regions
in each phase. In the bulk, we assume a cooperative region
of either phase to contain ξ grains and to have a fractal
dimension D. Its typical length scale is given by ∼ξ1=D.
When the thickness of a phase becomes smaller than ξ1=D,

the cooperative regions are altered by the boundaries and
the bulk description should be modified. In a heap-flow
configuration, the solid phase is deep enough to ensure that
N sol ¼ ξ. In contrast, the fluid-air interface acts as a free-
volume reservoir, which is expected to truncate the neigh-
boring cooperative regions. At small R=ξ1=D, the number
of grains in the cooperative regions of the fluid phase
becomes ∼ξ1−1=DR, whereas at large R=ξ1=D, it saturates
to ξ. To interpolate these two limiting behaviors, we
propose the ansatz N fluðRÞ ¼ ξ½1 − exp ð−R=ξ1=DÞ�. It
should be noted that the precise functional form defining
N fluðRÞ is not crucial because other expressions produce
similar results [16]. The key point here is that N flu first
increases with R before saturating.
With these expressions for N sol and N flu, the evolutions

of θsed and θero can be computed by numerically solving
Eqs. (6) and (7). There are five dimensionless parameters:
μeff , φsol, a, ξ, and D. The coefficient a is close to 0.5 [24],
whereas the effective friction coefficient is fixed to μeff ¼
tanð20°Þ [16] and φsol spans the range [23.4°,30°] [23].
Thus, ξ and D are the only free parameters. As shown in
Fig. 2, θsed and θero rapidly decrease as R increases over a
typical length scale ∼ξ1=D before saturating for thick fluid
phases. For large R, the sedimentation angle is close to
arctanðμeffÞ, whereas the erosion angle is clearly above.

Sedimentation

Intermediate

Erosion

θheap - DEM Simulations
θstop  - DEM Simulations
θstop  - Experiments [8]
θero   - Equation (7)
θsed   - Equation (6)
arctan(μeff)

θ(
°)

17.5

20

22.5

25

27.5

30

32.5

35

R
0 5 15

FIG. 2. The θ −R phase diagram. Results from (i) DEM
simulations for inclined-plane (θstop) and heap (θheap) configu-
rations; (ii) inclined-plane experiments (θstop) [8]; and (iii) pre-
dictions (θero, θsed) from the model. The fixed parameters are
μeff ¼ tanð20°Þ [8], a ¼ 0.5 [24], and φsol ∈ ½23.4°; 30°� [23].
The two adjustable parameters are ξ ¼ 4.7 and D ¼ 0.94. The
horizontal and vertical dashed lines indicate θ ¼ arctanðμeffÞ
and R ¼ 1.
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These two curves define sedimentation and erosion, and
they collectively determine the phase diagram for a flowing
layer of grains atop a static one. Below the θsedðRÞ curve,
the flow is unstable. The moving grains at the solid-fluid
interface do not have enough kinetic energy to overcome
their potential barrier (see Fig. 1). Therefore, the thickness
of the fluid phase decreases continuously and full sed-
imentation eventually occurs. Above the θeroðRÞ curve, the
energy transmitted from the fluid phase to the solid one
through collisions is sufficient for the barrier energy of the
static grains at the solid-fluid interface to be overcome. The
thickness of the fluid phase increases continuously, and full
erosion eventually occurs. In between these curves, the
model predicts neither sedimentation nor erosion, and the
flow might be considered as stable.
To test the model, one should ideally investigate the flow

stability for experiments or numerical simulations with
various (θ, R) sampling the three domains of the phase
diagram. For practical reasons, it is difficult to design such
tests. Finite-size heap-flow experiments involve a continuous
injection of grains at the top and their removal at the bottom.
The fluid-phase thickness RðQÞ and heap angle θheapðQÞ
self-adjust to the incoming fluxQ of grains until a stationary
state is reached—they cannot be controlled independently. In
practice, we only have access to a unique relation θheapðRÞ.
Nevertheless, by building the initial heap with a sufficiently
large angle (e.g., near 90°), we enforce the system to start far
up in the erosion domain. Subsequently, erosion occurs until
the θero line is reached. The heap spontaneously stabilizes at
the upper limit of the stationary zone, thus allowing for a
practical determination of θeroðRÞ.
In order to probe the sedimentation limit, the inclined-

plane configuration [8,28–31] is particularly relevant. The
solid phase is made of a nonerodible monolayer of grains
glued on the incline [i.e., right-hand side of Eq. (7)
becomes infinite]. The central observable is the stop angle
θstop, defined as the minimal tilt angle of the substrate for
which a stationary flow is observed. As discussed above,
when θ < θsedðRÞ, the lowest layer of the fluid phase stops
and R reduces by one unit. As shown in Fig. 2, the
monotonic decrease of θsedðRÞ suggests that the system
remains in the sedimentation domain. The sedimentation
front thus propagates upwards in the granular assembly,
until the whole system is stopped. The stop angle should be
identified to the sedimentation one, thus allowing for a
practical determination of θsedðRÞ.
We performed DEM numerical simulations for these two

experimental configurations: heap and inclined plane (see
Fig. 3) with the same microscopic parameters [16]. As
shown in Fig. 2, the DEM results for the two different
configurations and previous experimental results for the
inclined-plane configuration [8] are in quantitative agree-
ment with the model predictions under the proposed
identifications: θheap ≃ θero and θstop ≃ θsed. The best-fit
values of the two free parameters are D ¼ 0.94 and

ξ ¼ 4.7, which suggest chainlike cooperative regions of
a few grains and might be related to the force-chain
network in static granular contact [32,33]. The two limiting
θðRÞ curves emerging from the model are corroborated by
experiments and/or simulations. Above θero, there is nec-
essarily erosion; and below θsed, there is perforce sedi-
mentation. To probe the intermediate region, we carried out
additional simulations. In the inclined-plane configuration,
we enforce the system to start in a biphasic composition,
i.e., a flowing layer of grains atop a static one made of
frozen grains [16]. After equilibration, we release all the
grains of the static layer at once. With the parameters used
here, we observe that the flowing grains fully erode the
static layer to ultimately yield a single flowing layer.
Malloggi et al. performed experiments for similar systems
[30]. They observed that the final stationary state depends
on the nature of the grains. The static layer is stable for sand
while full erosion is observed for glass beads. In between
the erosion and sedimentation limits, while our mean-field
model is consistent with stable flow, experimental obser-
vations show that either erosion, sedimentation, or stable
flow might occur, depending on the experimental condi-
tions (nature of grains, boundary conditions). The inter-
mediate region is quite sensitive to fluctuations, and it
might not be described by a mean-field model. Further
refinements should then include fluctuations, dilatancy,
and other processes. Nevertheless, our results suggest that
below θsed and above θero, the fluctuations are negligible
and the mean-field description is relevant.
Since θsedðRÞ < θeroðRÞ, stationary flows might exist

for angles ranging between these two disjoined boundaries.
First, this opens a gap within the BCRE picture [10],

FIG. 3. Snapshots of the DEM simulations for (top) heap flow
with fixed flow rate and (bottom) inclined-plane flow. The color
maps refer to the velocity of the grains, as indicated in the
scale bar.
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characterized by a single neutral angle θ�: within our
description, this neutral angle should be split into two
distinct angles. Second, the decays of θsed and θero with R
are direct consequences of the energy-equipartition and
cooperativity-truncation ingredients in the model. An
increase of R implies that more grains of the fluid phase
share the energy losses due to the collisions with the static
layer, which renders flow and erosion easier, i.e., requiring
smaller angles. Surface flow in yielded athermal granular
media are inhibited by the truncation of cooperativity—as
opposed to supercooled liquids at equilibrium [34]. Third,
the saturations of θsedðRÞ and θeroðRÞ at large R are
consistent with observations showing that the flow proper-
ties of thick granular layers are independent of the fluid-
phase thickness [2,8]. This allows us to reconsider the
previous suggestion of a friction coefficient depending on
the fluid-layer thickness R [13,14].
In conclusion, we built a novel microscopic model

involving friction, geometry, and nonlocal collisional
effects to describe erosion and sedimentation processes
in dense granular flows atop static granular layers. In
contrast to previous work [9–11], our model suggests that
each process might have its own critical angle, which
depends on the fluid-layer thickness. This indicates the
existence of an intermediate region, between these two
limits, where granular systems become quite sensitive to
experimental details, which would probably require
beyond-mean-field refinements. Besides, the increase of
both the erosion and sedimentation angles as the fluid-layer
thickness decreases could be rationalized by considering
a reduction in size of the cooperative region in the fluid
phase. From our model, two classical experimental con-
figurations—inclined plane and heap—(usually analyzed
separately) could be described within a unified picture
through a single phase diagram. These results might be
useful in the design of hydrodynamic models, such as
BCRE and the depth-averaged method [35].
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