Meet Your Expectations With Guarantees:
 Beyond Worst-Case Synthesis in Quantitative Games

V. Bruyère (UMONS) E. Filiot (ULB)
M. Randour (UMONS-ULB) J.-F. Raskin (ULB)

$$
03.09 .2014
$$

Highlights of Logic, Games and Automata

Context

■ Verification and synthesis:
\triangleright a reactive system to control,
\triangleright an interacting environment,
\triangleright a specification to enforce.

■ Focus on quantitative properties.

Context

■ Verification and synthesis:
\triangleright a reactive system to control,
\triangleright an interacting environment,
\triangleright a specification to enforce.

■ Focus on quantitative properties.

- Several ways to look at the interactions, and in particular, the nature of the environment.

Beyond worst-case synthesis

Beyond worst-case synthesis

Beyond worst-case synthesis

Advertisement

Featured in STACS'14 [BFRR14]

Full paper available on arXiv: abs/1309.5439

Example: going to work (shortest path)

\triangleright Weights $=$ minutes
\triangleright Goal: minimize our expected time to reach "work"
\triangleright But, important meeting in one hour! Requires strict guarantees on the worst-case reaching time.

Example: going to work (shortest path)

\triangleright Optimal expectation strategy: take the car.

- $\mathbb{E}=33, W C=71>60$.
\triangleright Optimal worst-case strategy: bicycle.

■ $\mathbb{E}=W C=45<60$.

Example: going to work (shortest path)

\triangleright Optimal expectation strategy: take the car.

- $\mathbb{E}=33, W C=71>60$.
\triangleright Optimal worst-case strategy: bicycle.

■ $\mathbb{E}=\mathrm{WC}=45<60$.
\triangleright Sample BWC strategy: try train up to 3 delays then switch to bicycle.

■ $\mathbb{E} \approx 37.56, W C=59<60$.

- Optimal \mathbb{E} under WC constraint
- Uses finite memory

Beyond worst-case synthesis

Definition

Given a game $G=\left(S_{1}, S_{2}, E, w\right)$, an initial state $s_{\text {init }} \in S$, a finite-memory stochastic model $\lambda_{2}^{\text {stoch }} \in \Lambda_{2}^{F}$ of the adversary, a measurable value function $f: \operatorname{Plays}(G) \rightarrow \mathbb{R} \cup\{-\infty, \infty\}$, and two rational thresholds $\mu, \nu \in \mathbb{Q}$, the beyond worst-case (BWC) problem asks to decide if \mathcal{P}_{1} has a finite-memory strategy $\lambda_{1} \in \Lambda_{1}^{F}$ such that

$$
\left\{\begin{array}{l}
\forall \lambda_{2} \in \Lambda_{2}, \forall \pi \in \text { Outs }_{G}\left(s_{\text {init }}, \lambda_{1}, \lambda_{2}\right), f(\pi)>\mu \tag{1}\\
\mathbb{E}_{s_{\text {init }}}^{G\left[\lambda_{1}, \lambda_{2}^{\text {stoch }}\right]}(f)>\nu
\end{array}\right.
$$

and the BWC synthesis problem asks to synthesize such a strategy if one exists.

Beyond worst-case synthesis

Definition

Given a game $G=\left(S_{1}, S_{2}, E, w\right)$, an initial state $s_{\text {init }} \in S$, a finite-memory stochastic model $\lambda_{2}^{\text {stoch }} \in \Lambda_{2}^{F}$ of the adversary, a measurable value function $f: \operatorname{Plays}(G) \rightarrow \mathbb{R} \cup\{-\infty, \infty\}$, and two rational thresholds $\mu, \nu \in \mathbb{Q}$, the beyond worst-case (BWC) problem asks to decide if \mathcal{P}_{1} has a finite-memory strategy $\lambda_{1} \in \Lambda_{1}^{F}$ such that

$$
\left\{\begin{array}{l}
\forall \lambda_{2} \in \Lambda_{2}, \forall \pi \in \operatorname{Outs}_{G}\left(s_{\text {init }}, \lambda_{1}, \lambda_{2}\right), f(\pi)>\mu \tag{1}\\
\mathbb{E}_{S_{\text {init }}}^{G\left[\lambda_{1}, \lambda_{2}^{\text {stoch }}\right]}(f)>\nu
\end{array}\right.
$$

and the BWC synthesis problem asks to synthesize such a strategy if one exists.
Notice the highlighted parts!

Related work

Common philosophy: avoiding outlier outcomes

1 Our strategies are strongly risk averse
\triangleright avoid risk at all costs and optimize among safe strategies

Related work

Common philosophy: avoiding outlier outcomes

1 Our strategies are strongly risk averse
\triangleright avoid risk at all costs and optimize among safe strategies
2 Other notions of risk ensure low probability of risked behavior [WL99, FKR95]
\triangleright without worst-case guarantee
\triangleright without good expectation

Related work

Common philosophy: avoiding outlier outcomes

1 Our strategies are strongly risk averse
\triangleright avoid risk at all costs and optimize among safe strategies
2 Other notions of risk ensure low probability of risked behavior [WL99, FKR95]
\triangleright without worst-case guarantee
\triangleright without good expectation
3 Trade-off between expectation and variance [BCFK13, MT11]
\triangleright statistical measure of the stability of the performance
\triangleright no strict guarantee on individual outcomes

Mean-payoff

- $\mathrm{MP}(\pi)=\liminf _{n \rightarrow \infty}\left[\frac{1}{n} \cdot \sum_{i=0}^{i=n-1} w\left(\left(s_{i}, s_{i+1}\right)\right)\right]$
- Sample play $\pi=2,-1,-4,5,(2,2,5)^{\omega}$
$\triangleright \mathrm{MP}(\pi)=3$
\triangleright long-run average weight \sim prefix-independent

Mean-payoff

- $\mathrm{MP}(\pi)=\liminf _{n \rightarrow \infty}\left[\frac{1}{n} \cdot \sum_{i=0}^{i=n-1} w\left(\left(s_{i}, s_{i+1}\right)\right)\right]$
- Sample play $\pi=2,-1,-4,5,(2,2,5)^{\omega}$
$\triangleright \operatorname{MP}(\pi)=3$
\triangleright long-run average weight \sim prefix-independent

	worst-case	expected value	BWC
complexity	NP \cap coNP	P	NP \cap coNP
memory	memoryless	memoryless	pseudo-polynomial

\triangleright [LL69, EM79, ZP96, Jur98, GS09, Put94, FV97]
\triangleright Additional modeling power for free!

Shortest path

- Strictly positive integer weights, w: $E \rightarrow \mathbb{N}_{0}$
- \mathcal{P}_{1} wants to minimize its total cost up to target
\triangleright inequalities are reversed

Shortest path

- Strictly positive integer weights, $w: E \rightarrow \mathbb{N}_{0}$
- \mathcal{P}_{1} wants to minimize its total cost up to target
\triangleright inequalities are reversed

	worst-case	expected value	BWC
complexity	P	P	pseudo-poly. / NP-hard
memory	memoryless	memoryless	pseudo-poly.

\triangleright [BT91, dA99]
\triangleright Problem inherently harder than worst-case and expectation.
\triangleright NP-hardness by $K^{t h}$ largest subset problem [JK78, GJ79]

Beyond BWC synthesis?

Possible future works include
■ study of other quantitative objectives,

- extension of our results to more general settings (multi-dimension [CDHR10, CRR12], decidable classes of games with imperfect information [DDG ${ }^{+} 10$], etc),
- other related strategies,

■ application of the BWC problem to various practical cases.

Beyond BWC synthesis?

Possible future works include
■ study of other quantitative objectives,

- extension of our results to more general settings (multi-dimension [CDHR10, CRR12], decidable classes of games with imperfect information [DDG ${ }^{+} 10$], etc),
- other related strategies,

■ application of the BWC problem to various practical cases.

Thanks!
Do not hesitate to discuss with us!

References I

T. Brázdil, K. Chatterjee, V. Forejt, and A. Kucera.

Trading performance for stability in Markov decision processes.
In Proc. of LICS, pages 331-340. IEEE Computer Society, 2013.
V. Bruyère, E. Filiot, M. Randour, and J.-F. Raskin.

Meet your expectations with guarantees: beyond worst-case synthesis in quantitative games.
In Proc. of STACS, LIPIcs 25, pages 199-213. Schloss Dagstuhl - LZI, 2014.

D.P. Bertsekas and J.N. Tsitsiklis.

An analysis of stochastic shortest path problems.
Mathematics of Operations Research, 16:580-595, 1991.
K. Chatterjee, L. Doyen, T.A. Henzinger, and J.-F. Raskin.

Generalized mean-payoff and energy games.
In Proc. of FSTTCS, LIPIcs 8, pages 505-516. Schloss Dagstuhl - LZI, 2010.
K. Chatterjee, L. Doyen, M. Randour, and J.-F. Raskin.

Looking at mean-payoff and total-payoff through windows.
In Proc. of ATVA, LNCS 8172, pages 118-132. Springer, 2013.
K. Chatterjee, M. Randour, and J.-F. Raskin.

Strategy synthesis for multi-dimensional quantitative objectives.
In Proc. of CONCUR, LNCS 7454, pages 115-131. Springer, 2012.
L. de Alfaro.

Computing minimum and maximum reachability times in probabilistic systems.
In Proc. of CONCUR, LNCS 1664, pages 66-81. Springer, 1999.

References II

A. Degorre, L. Doyen, R. Gentilini, J.-F. Raskin, and S. Torunczyk.

Energy and mean-payoff games with imperfect information.
In Proc. of CSL, LNCS 6247, pages 260-274. Springer, 2010.

A. Ehrenfeucht and J. Mycielski.

Positional strategies for mean payoff games.
Int. Journal of Game Theory, 8(2):109-113, 1979.

J.A. Filar, D. Krass, and K.W. Ross.

Percentile performance criteria for limiting average Markov decision processes.
Transactions on Automatic Control, pages 2-10, 1995.
J. Filar and K. Vrieze.

Competitive Markov decision processes.
Springer, 1997.
M.R. Garey and D.S. Johnson.

Computers and intractability: a guide to the Theory of NP-Completeness.
Freeman New York, 1979.

P.W. Glynn and D. Ormoneit.

Hoeffding's inequality for uniformly ergodic Markov chains.
Statistics \& Probability Letters, 56(2):143-146, 2002.

T. Gawlitza and H. Seidl.

Games through nested fixpoints.
In Proc. of CAV, LNCS 5643, pages 291-305. Springer, 2009.

References III

D.B. Johnson and S.D. Kashdan.

Lower bounds for selection in $\mathrm{X}+\mathrm{Y}$ and other multisets.
Journal of the ACM, 25(4):556-570, 1978.
M. Jurdziński.

Deciding the winner in parity games is in UP \cap co-UP.
Inf. Process. Lett., 68(3):119-124, 1998.

T.M. Liggett and S.A. Lippman.

Stochastic games with perfect information and time average payoff.
Siam Review, 11(4):604-607, 1969.
S. Mannor and J.N. Tsitsiklis.

Mean-variance optimization in Markov decision processes.
In Proc. of ICML, pages 177-184. Omnipress, 2011.

M.L. Puterman.

Markov decision processes: discrete stochastic dynamic programming.
John Wiley \& Sons, Inc., New York, NY, USA, 1st edition, 1994.
M. Tracol.

Fast convergence to state-action frequency polytopes for MDPs.
Oper. Res. Lett., 37(2):123-126, 2009.

C. Wu and Y. Lin.

Minimizing risk models in Markov decision processes with policies depending on target values. Journal of Mathematical Analysis and Applications, 231(1):47-67, 1999.

References IV

U. Zwick and M. Paterson.

The complexity of mean payoff games on graphs.
Theoretical Computer Science, 158:343-359, 1996.

Quantitative games on graphs

■ Graph $\mathcal{G}=(S, E, w)$ with $w: E \rightarrow \mathbb{Z}$

- Two-player game $G=\left(\mathcal{G}, S_{1}, S_{2}\right)$
$\triangleright \mathcal{P}_{1}$ states $=\bigcirc$
$\triangleright \mathcal{P}_{2}$ states $=\square$
- Plays have values
$\triangleright f: \operatorname{Plays}(\mathcal{G}) \rightarrow \mathbb{R} \cup\{-\infty, \infty\}$
■ Players follow strategies
$\triangleright \lambda_{i}: \operatorname{Prefs}_{i}(G) \rightarrow \mathcal{D}(S)$
\triangleright Finite memory \Rightarrow stochastic output Moore machine $\mathcal{M}\left(\lambda_{i}\right)=\left(\right.$ Mem, $\left.\mathrm{m}_{0}, \alpha_{\mathrm{u}}, \alpha_{\mathrm{n}}\right)$

Quantitative games on graphs

■ Graph $\mathcal{G}=(S, E, w)$ with $w: E \rightarrow \mathbb{Z}$

- Two-player game $G=\left(\mathcal{G}, S_{1}, S_{2}\right)$
$\triangleright \mathcal{P}_{1}$ states $=\bigcirc$
$\triangleright \mathcal{P}_{2}$ states $=\square$
- Plays have values
$\triangleright f: \operatorname{Plays}(\mathcal{G}) \rightarrow \mathbb{R} \cup\{-\infty, \infty\}$
■ Players follow strategies
$\triangleright \lambda_{i}: \operatorname{Prefs}_{i}(G) \rightarrow \mathcal{D}(S)$
\triangleright Finite memory \Rightarrow stochastic output Moore machine $\mathcal{M}\left(\lambda_{i}\right)=\left(\right.$ Mem, $\left.\mathrm{m}_{0}, \alpha_{\mathrm{u}}, \alpha_{\mathrm{n}}\right)$

Quantitative games on graphs

■ Graph $\mathcal{G}=(S, E, w)$ with $w: E \rightarrow \mathbb{Z}$

- Two-player game $G=\left(\mathcal{G}, S_{1}, S_{2}\right)$
$\triangleright \mathcal{P}_{1}$ states $=\bigcirc$
$\triangleright \mathcal{P}_{2}$ states $=\square$
- Plays have values
$\triangleright f: \operatorname{Plays}(\mathcal{G}) \rightarrow \mathbb{R} \cup\{-\infty, \infty\}$
■ Players follow strategies
$\triangleright \lambda_{i}: \operatorname{Prefs}_{i}(G) \rightarrow \mathcal{D}(S)$
\triangleright Finite memory \Rightarrow stochastic output Moore machine $\mathcal{M}\left(\lambda_{i}\right)=\left(\right.$ Mem, $\left.\mathrm{m}_{0}, \alpha_{\mathrm{u}}, \alpha_{\mathrm{n}}\right)$

Quantitative games on graphs

■ Graph $\mathcal{G}=(S, E, w)$ with $w: E \rightarrow \mathbb{Z}$

- Two-player game $G=\left(\mathcal{G}, S_{1}, S_{2}\right)$
$\triangleright \mathcal{P}_{1}$ states $=\bigcirc$
$\triangleright \mathcal{P}_{2}$ states $=\square$
- Plays have values
$\triangleright f: \operatorname{Plays}(\mathcal{G}) \rightarrow \mathbb{R} \cup\{-\infty, \infty\}$
■ Players follow strategies
$\triangleright \lambda_{i}: \operatorname{Prefs}_{i}(G) \rightarrow \mathcal{D}(S)$
\triangleright Finite memory \Rightarrow stochastic output Moore machine $\mathcal{M}\left(\lambda_{i}\right)=\left(\right.$ Mem, $\left.\mathrm{m}_{0}, \alpha_{\mathrm{u}}, \alpha_{\mathrm{n}}\right)$

Quantitative games on graphs

■ Graph $\mathcal{G}=(S, E, w)$ with $w: E \rightarrow \mathbb{Z}$

- Two-player game $G=\left(\mathcal{G}, S_{1}, S_{2}\right)$
$\triangleright \mathcal{P}_{1}$ states $=\bigcirc$
$\triangleright \mathcal{P}_{2}$ states $=\square$
- Plays have values
$\triangleright f: \operatorname{Plays}(\mathcal{G}) \rightarrow \mathbb{R} \cup\{-\infty, \infty\}$
■ Players follow strategies
$\triangleright \lambda_{i}: \operatorname{Prefs}_{i}(G) \rightarrow \mathcal{D}(S)$
\triangleright Finite memory \Rightarrow stochastic output Moore machine $\mathcal{M}\left(\lambda_{i}\right)=\left(\right.$ Mem, $\left.\mathrm{m}_{0}, \alpha_{\mathrm{u}}, \alpha_{\mathrm{n}}\right)$

Quantitative games on graphs

■ Graph $\mathcal{G}=(S, E, w)$ with $w: E \rightarrow \mathbb{Z}$

- Two-player game $G=\left(\mathcal{G}, S_{1}, S_{2}\right)$
$\triangleright \mathcal{P}_{1}$ states $=\bigcirc$
$\triangleright \mathcal{P}_{2}$ states $=\square$
- Plays have values
$\triangleright f: \operatorname{Plays}(\mathcal{G}) \rightarrow \mathbb{R} \cup\{-\infty, \infty\}$
■ Players follow strategies
$\triangleright \lambda_{i}: \operatorname{Prefs}_{i}(G) \rightarrow \mathcal{D}(S)$
\triangleright Finite memory \Rightarrow stochastic output Moore machine $\mathcal{M}\left(\lambda_{i}\right)=\left(\right.$ Mem, $\left.\mathrm{m}_{0}, \alpha_{\mathrm{u}}, \alpha_{\mathrm{n}}\right)$

Quantitative games on graphs

Then, $(2,5,2)^{\omega}$

■ Graph $\mathcal{G}=(S, E, w)$ with $w: E \rightarrow \mathbb{Z}$

- Two-player game $G=\left(\mathcal{G}, S_{1}, S_{2}\right)$
$\triangleright \mathcal{P}_{1}$ states $=\bigcirc$
$\triangleright \mathcal{P}_{2}$ states $=\square$
- Plays have values
$\triangleright f: \operatorname{Plays}(\mathcal{G}) \rightarrow \mathbb{R} \cup\{-\infty, \infty\}$
■ Players follow strategies
$\triangleright \lambda_{i}: \operatorname{Prefs}_{i}(G) \rightarrow \mathcal{D}(S)$
\triangleright Finite memory \Rightarrow stochastic output Moore machine $\mathcal{M}\left(\lambda_{i}\right)=\left(\right.$ Mem, $\left.\mathrm{m}_{0}, \alpha_{\mathrm{u}}, \alpha_{\mathrm{n}}\right)$

Markov decision processes

- MDP $P=\left(\mathcal{G}, S_{1}, S_{\Delta}, \Delta\right)$ with $\Delta: S_{\Delta} \rightarrow \mathcal{D}(S)$
$\triangleright \mathcal{P}_{1}$ states $=\bigcirc$
\triangleright stochastic states $=\square$
■ MDP $=$ game + strategy of \mathcal{P}_{2}
$\triangleright P=G\left[\lambda_{2}\right]$

Markov chains

- MC $M=(\mathcal{G}, \delta)$ with $\delta: S \rightarrow \mathcal{D}(S)$
$■ \mathrm{MC}=\mathrm{MDP}+$ strategy of \mathcal{P}_{1}
$=$ game + both strategies
$\triangleright M=P\left[\lambda_{1}\right]=G\left[\lambda_{1}, \lambda_{2}\right]$

Markov chains

- MC $M=(\mathcal{G}, \delta)$ with $\delta: S \rightarrow \mathcal{D}(S)$

■ $\mathrm{MC}=\mathrm{MDP}+$ strategy of \mathcal{P}_{1}
$=$ game + both strategies
$\triangleright M=P\left[\lambda_{1}\right]=G\left[\lambda_{1}, \lambda_{2}\right]$

- Event $\mathcal{A} \subseteq \operatorname{Plays}(\mathcal{G})$
\triangleright probability $\mathbb{P}_{S_{\text {sitit }}}^{M}(\mathcal{A})$
■ Measurable $f: \operatorname{Plays}(\mathcal{G}) \rightarrow \mathbb{R} \cup\{-\infty, \infty\}$
\triangleright expected value $\mathbb{E}_{S_{\text {init }}}^{M}(f)$

Classical interpretations

■ System trying to ensure a specification $=\mathcal{P}_{1}$
\triangleright whatever the actions of its environment

Classical interpretations

■ System trying to ensure a specification $=\mathcal{P}_{1}$
\triangleright whatever the actions of its environment
■ The environment can be seen as
\triangleright antagonistic

- two-player game, worst-case threshold problem for $\mu \in \mathbb{Q}$
- \exists ? $\lambda_{1} \in \Lambda_{1}, \forall \lambda_{2} \in \Lambda_{2}, \forall \pi \in \operatorname{Outs}_{G}\left(s_{\text {init }}, \lambda_{1}, \lambda_{2}\right), f(\pi) \geq \mu$

Classical interpretations

■ System trying to ensure a specification $=\mathcal{P}_{1}$
\triangleright whatever the actions of its environment
■ The environment can be seen as
\triangleright antagonistic
■ two-player game, worst-case threshold problem for $\mu \in \mathbb{Q}$
■ \exists ? $\lambda_{1} \in \Lambda_{1}, \forall \lambda_{2} \in \Lambda_{2}, \forall \pi \in \operatorname{Outs}_{G}\left(s_{\text {init }}, \lambda_{1}, \lambda_{2}\right), f(\pi) \geq \mu$
\triangleright fully stochastic
■ MDP, expected value threshold problem for $\nu \in \mathbb{Q}$
$■ \exists$? $\lambda_{1} \in \Lambda_{1}, \mathbb{E}_{S_{\text {init }}}^{P\left[\lambda_{1}\right]}(f) \geq \nu$

An ideal situation

An ideal situation

Game interpretation
\triangleright Worst-case threshold is $\mu=0$
\triangleright All states are winning: memoryless optimal worst-case strategy $\lambda_{1}^{w c} \in \Lambda_{1}^{P M}(G)$, ensuring $\mu^{*}=1>0$

An ideal situation

Game interpretation
\triangleright Worst-case threshold is $\mu=0$
\triangleright All states are winning: memoryless optimal worst-case strategy $\lambda_{1}^{w c} \in \Lambda_{1}^{P M}(G)$, ensuring $\mu^{*}=1>0$
MDP interpretation
\triangleright Memoryless optimal expected value strategy $\lambda_{1}^{e} \in \Lambda_{1}^{P M}(P)$ achieves $\nu^{*}=2$

A cornerstone of our approach

BWC problem: what kind of threholds $(0, \nu)$ can we achieve?

A cornerstone of our approach

BWC problem: what kind of threholds $(0, \nu)$ can we achieve?

Key result
For all $\varepsilon>0$, there exists a finite-memory strategy of \mathcal{P}_{1} that satisfies the BWC problem for the thresholds pair $\left(0, \nu^{*}-\varepsilon\right)$.
\triangleright We can be arbitrarily close to the optimal expectation while ensuring the worst-case!

Combined strategy

Outcomes of the form

$\mathbb{E}=$??

Combined strategy

Outcomes of the form

What we want

$$
K, L \rightarrow \infty
$$

$\mathbb{E}=\nu^{*}=2$

Combined strategy: crux of the proof

Precise reasoning on convergence rates using involved techniques

- When K grows, L needs to grow linearly to ensure WC

Combined strategy: crux of the proof

Precise reasoning on convergence rates using involved techniques

- When K grows, L needs to grow linearly to ensure WC
- When K grows, $\mathbb{P}(\longmapsto-1) \rightarrow 0$ and it decreases exponentially fast
\triangleright application of Chernoff bounds and Hoeffding's inequality for Markov chains [Tra09, GO02]

Combined strategy: crux of the proof

Precise reasoning on convergence rates using involved techniques

- When K grows, L needs to grow linearly to ensure WC
- When K grows, $\mathbb{P}(\longmapsto-1) \rightarrow 0$ and it decreases exponentially fast
\triangleright application of Chernoff bounds and Hoeffding's inequality for Markov chains [Tra09, GO02]
- Overall we are good: WC >0 and $\mathbb{E}>\nu^{*}-\varepsilon$ for sufficiently large K, L.

