Percentile Queries

in Multi-Dimensional Markov Decision Processes

Mickael Randour (LSV - CNRS & ENS Cachan) Jean-François Raskin (ULB) Ocan Sankur (ULB)

23.01.2015

Centre Fédéré en Vérification, Bruxelles

ContextPercentile QueriesShortest PathDiscounted Sum00000000000000000000000	00

The talk in one slide

Strategy synthesis for Markov Decision Processes (MDPs)

Finding **good** controllers for systems interacting with a *stochastic* environment.

Context 0000	Percentile Queries	Shortest Path 000000	Discounted Sum	Conclusion 00

The talk in one slide

Strategy synthesis for Markov Decision Processes (MDPs)

Finding **good** controllers for systems interacting with a *stochastic* environment.

- Good? Performance evaluated through *payoff functions*.
- Usual problem is to optimize the *expected performance* or the *probability of achieving a given performance level*.
- Not sufficient for many practical applications.
 - \triangleright Several extensions, more expressive but also more complex...

Context 0000	Percentile Queries	Shortest Path 000000	Discounted Sum 000000	Conclusion 00

The talk in one slide

Strategy synthesis for Markov Decision Processes (MDPs)

Finding **good** controllers for systems interacting with a *stochastic* environment.

- Good? Performance evaluated through *payoff functions*.
- Usual problem is to optimize the *expected performance* or the *probability of achieving a given performance level*.
- Not sufficient for many practical applications.
 - ▷ Several extensions, more expressive but also more complex...

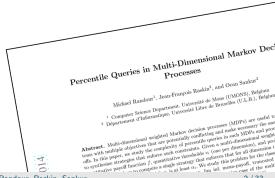
Aim of this talk

Multi-constraint percentile queries: generalizes the problem to multiple dimensions, multiple constraints.

Context	Percentile Queries	Shortest Path	Discounted Sum	Conclusion
0000	0000000	000000	000000	00

Advertisement

Full paper available on arXiv [RRS14]: abs/1410.4801



Multi-Constraint Percentile Queries

Randour, Raskin, Sankur

Context	Percentile Queries	Shortest Path	Discounted Sum	Conclusion
0000	0000000	000000	000000	00

1 Context, MDPs, Strategies

- 2 Percentile Queries
- 3 Shortest Path
- 4 Discounted Sum
- 5 Conclusion

Context	Percentile Queries	Shortest Path	Discounted Sum	Conclusion
0000	0000000	000000	000000	00

1 Context, MDPs, Strategies

- 2 Percentile Queries
- 3 Shortest Path
- 4 Discounted Sum
- 5 Conclusion

Context	Percentile Queries	Shortest Path	Discounted Sum	Conclusion
●000	0000000	000000		00

- Verification and synthesis:
 - > a reactive **system** to *control*,
 - ▷ an *interacting* environment,
 - ▷ a **specification** to *enforce*.

Context ●000	Percentile Queries	Shortest Path 000000	Discounted Sum	Conclusion 00

- Verification and synthesis:
 - ▷ a reactive **system** to *control*,
 - ▷ an *interacting* environment,
 - ▷ a **specification** to *enforce*.
- Model of the (discrete) interaction?
 - > Antagonistic environment: 2-player game on graph.
 - **Stochastic environment: MDP.**

Context ●000	Percentile Queries	Shortest Path 000000	Discounted Sum	Conclusion 00

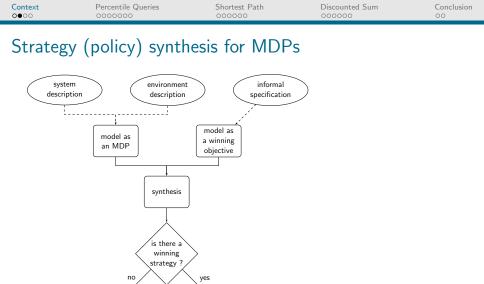
- Verification and synthesis:
 - ▷ a reactive **system** to *control*,
 - ▷ an *interacting* environment,
 - ▷ a **specification** to *enforce*.
- Model of the (discrete) interaction?
 - > Antagonistic environment: 2-player game on graph.
 - **Stochastic environment: MDP.**
- Quantitative specifications. Examples:
 - \triangleright Reach a state *s* before *x* time units \rightsquigarrow shortest path.
 - $\,\triangleright\,$ Minimize the average response-time \rightsquigarrow mean-payoff.

Context •000	Percentile Queries	Shortest Path 000000	Discounted Sum	Conclusion 00

- Verification and synthesis:
 - ▷ a reactive **system** to *control*,
 - ▷ an *interacting* environment,
 - ▷ a **specification** to *enforce*.
- Model of the (discrete) interaction?
 - > Antagonistic environment: 2-player game on graph.
 - **Stochastic environment: MDP.**
- Quantitative specifications. Examples:
 - \triangleright Reach a state *s* before *x* time units \rightsquigarrow shortest path.
 - $\,\triangleright\,$ Minimize the average response-time \rightsquigarrow mean-payoff.

Focus on multi-criteria quantitative models

▷ to reason about *trade-offs* and *interplays*.



empower system capabilities

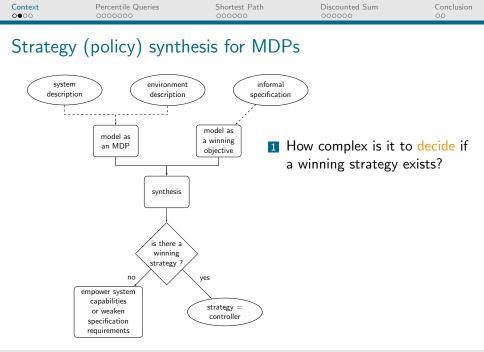
or weaken

specification requirements

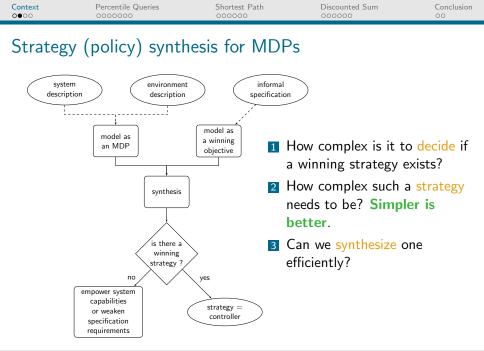
Randour, Raskin, Sankur

strategy =

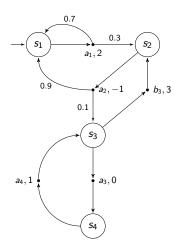
controller







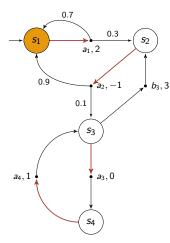
Context	Percentile Queries	Shortest Path	Discounted Sum	Conclusion
0000	0000000	000000	000000	00



• MDP $M = (S, A, \delta, w)$

- \triangleright finite sets of states S and actions A
- \triangleright probabilistic transition $\delta \colon S \times A \to \mathcal{D}(S)$
- \triangleright weight function $w: A \to \mathbb{Z}^d$
- Run (or play): ρ = s₁a₁... a_{n-1}s_n... such that δ(s_i, a_i, s_{i+1}) > 0 for all i ≥ 1
 ▷ set of runs R(M)
 ▷ set of histories (finite runs) H(M)
- **Strategy** σ : $\mathcal{H}(M) \rightarrow \mathcal{D}(A)$ $\triangleright \forall h \text{ ending in } s, \operatorname{Supp}(\sigma(h)) \in A(s)$

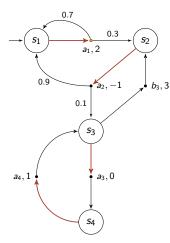
Context	Percentile Queries	Shortest Path	Discounted Sum	Conclusion
0000	000000	000000	000000	00



Sample pure memoryless strategy σ

Sample run $\rho = s_1$

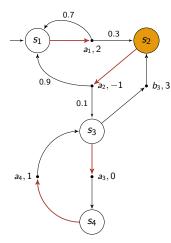
Context	Percentile Queries	Shortest Path	Discounted Sum	Conclusion
0000	0000000	000000	000000	00



Sample pure memoryless strategy σ

Sample run $\rho = s_1 a_1$

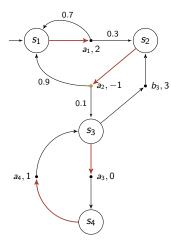
Context	Percentile Queries	Shortest Path	Discounted Sum	Conclusion
0000	0000000	000000	000000	00



Sample pure memoryless strategy σ

Sample run $\rho = s_1 a_1 s_2$

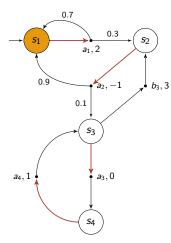
Context	Percentile Queries	Shortest Path	Discounted Sum	Conclusion
0000	0000000	000000	000000	00



Sample pure memoryless strategy σ

Sample run $\rho = s_1 a_1 s_2 a_2$

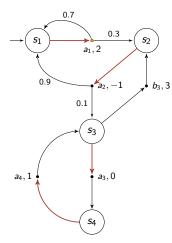
Context	Percentile Queries	Shortest Path	Discounted Sum	Conclusion
0000	0000000	000000	000000	00



Sample pure memoryless strategy σ

Sample run $\rho = s_1 a_1 s_2 a_2 s_1$

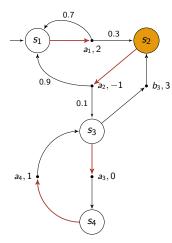
Context	Percentile Queries	Shortest Path	Discounted Sum	Conclusion
0000	0000000	000000	000000	00



Sample pure memoryless strategy σ

Sample run $\rho = s_1 a_1 s_2 a_2 s_1 a_1$

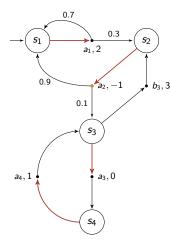
Context	Percentile Queries	Shortest Path	Discounted Sum	Conclusion
0000	0000000	000000	000000	00



Sample pure memoryless strategy σ

Sample run $\rho = s_1 a_1 s_2 a_2 s_1 a_1 s_2$

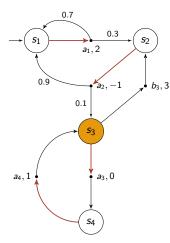
Context	Percentile Queries	Shortest Path	Discounted Sum	Conclusion
0000	0000000	000000	000000	00



Sample pure memoryless strategy σ

Sample run $\rho = s_1 a_1 s_2 a_2 s_1 a_1 s_2 a_2$

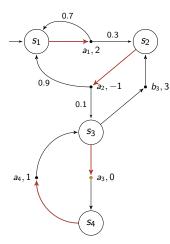
Context	Percentile Queries	Shortest Path	Discounted Sum	Conclusion
0000	0000000	000000	000000	00



Sample pure memoryless strategy σ

Sample run $\rho = s_1 a_1 s_2 a_2 s_1 a_1 s_2 a_2 s_3$

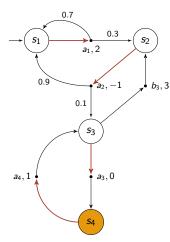
Context	Percentile Queries	Shortest Path	Discounted Sum	Conclusion
0000	000000	000000	000000	00
				/



Sample pure memoryless strategy σ

Sample run $\rho = s_1 a_1 s_2 a_2 s_1 a_1 s_2 a_2 s_3 a_3$

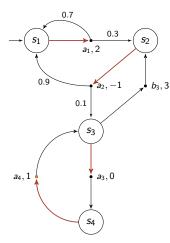
Context	Percentile Queries	Shortest Path	Discounted Sum	Conclusion
0000	000000	000000	000000	00



Sample pure memoryless strategy σ

Sample run $\rho = s_1 a_1 s_2 a_2 s_1 a_1 s_2 a_2 s_3 a_3 s_4$

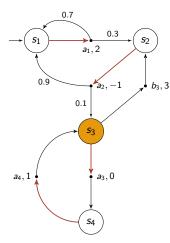
Context	Percentile Queries	Shortest Path	Discounted Sum	Conclusion
0000	0000000	000000	000000	00



Sample *pure memoryless* strategy σ

Sample run $\rho = s_1 a_1 s_2 a_2 s_1 a_1 s_2 a_2 s_3 a_3 s_4 a_4$

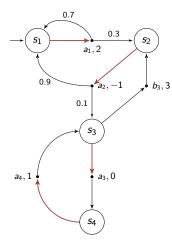
Context	Percentile Queries	Shortest Path	Discounted Sum	Conclusion
0000	0000000	000000	000000	00



Sample pure memoryless strategy σ

Sample run $\rho = s_1 a_1 s_2 a_2 s_1 a_1 s_2 a_2 (s_3 a_3 s_4 a_4)^{\omega}$

Context	Percentile Queries	Shortest Path	Discounted Sum	Conclusion
0000	0000000	000000	000000	00

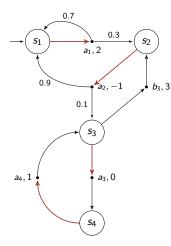


Sample pure memoryless strategy σ

Sample run $\rho = s_1 a_1 s_2 a_2 s_1 a_1 s_2 a_2 (s_3 a_3 s_4 a_4)^{\omega}$

Other possible run $\rho' = s_1 a_1 s_2 a_2 (s_3 a_3 s_4 a_4)^{\omega}$

Context	Percentile Queries	Shortest Path	Discounted Sum	Conclusion
0000	0000000	000000	000000	00



Sample pure memoryless strategy σ

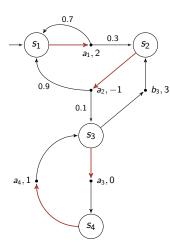
Sample run $\rho = s_1 a_1 s_2 a_2 s_1 a_1 s_2 a_2 (s_3 a_3 s_4 a_4)^{\omega}$

Other possible run $\rho' = s_1 a_1 s_2 a_2 (s_3 a_3 s_4 a_4)^{\omega}$

- Strategies may use
 - \triangleright finite or infinite **memory**
 - ▷ randomness
- Payoff functions map runs to numerical values
 - ▷ truncated sum up to $T = \{s_3\}$: TS^T(ρ) = 2, TS^T(ρ') = 1
 - \triangleright mean-payoff: $\underline{\mathsf{MP}}(\rho) = \underline{\mathsf{MP}}(\rho') = 1/2$
 - ▷ many more

Context	Percentile Queries	Shortest Path	Discounted Sum	Conclusion
○○O●	0000000	000000		00

Markov chains

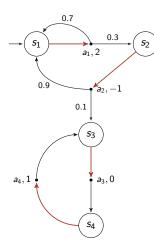


Once initial state $s_{\rm init}$ and strategy σ fixed, fully stochastic process

→ Markov chain (MC)

Context ○○O●	Percentile Queries	Shortest Path 000000	Discounted Sum	Conclusion 00

Markov chains



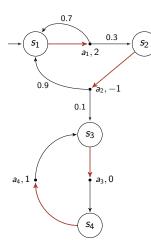
Once initial state $s_{\rm init}$ and strategy σ fixed, fully stochastic process

→ Markov chain (MC)

State space = product of the MDP and the memory of σ

Context ○○O●	Percentile Queries	Shortest Path 000000	Discounted Sum	Conclusion 00

Markov chains



Once initial state s_{init} and strategy σ fixed, fully stochastic process

→ Markov chain (MC)

State space = product of the MDP and the memory of σ

• Event $\mathcal{E} \subseteq \mathcal{R}(M)$

 \triangleright probability $\mathbb{P}^{\sigma}_{M, s_{\text{init}}}(\mathcal{E})$

■ Measurable $f : \mathcal{R}(M) \to (\mathbb{R} \cup \{-\infty, \infty\})^d$ \triangleright expected value $\mathbb{E}^{\sigma}_{M, s_{\text{nit}}}(f)$

Context	Percentile Queries	Shortest Path	Discounted Sum	Conclusion
0000	000000	000000	000000	00

- 2 Percentile Queries
- 3 Shortest Path
- 4 Discounted Sum
- 5 Conclusion

Context	Percentile Queries	Shortest Path	Discounted Sum	Conclusion
0000	• 000 000	000000	000000	00

Single-constraint percentile problem

Ensuring a given performance level with sufficient probability

- ▷ uni-dimensional weight function $w: A \to \mathbb{Z}$ and payoff function $f: \mathcal{R}(M) \to \mathbb{R} \cup \{-\infty, \infty\}$
- ▷ well-studied for various payoffs

Single-constraint percentile problem

Given MDP $M = (S, A, \delta, w)$, initial state s_{init} , payoff function f, value threshold $v \in \mathbb{Q}$, and probability threshold $\alpha \in [0, 1] \cap \mathbb{Q}$, decide if there exists a strategy σ such that

$$\mathbb{P}^{\sigma}_{M, s_{\text{init}}} \big[\{ \rho \in \mathcal{R}_{s_{\text{init}}}(M) \mid f(\rho) \geq v \} \big] \geq \alpha.$$

Context	Percentile Queries	Shortest Path	Discounted Sum	Conclusion
0000	• 000 000	000000	000000	00

Single-constraint percentile problem

Ensuring a given performance level with sufficient probability

- ▷ uni-dimensional weight function $w: A \to \mathbb{Z}$ and payoff function $f: \mathcal{R}(M) \to \mathbb{R} \cup \{-\infty, \infty\}$
- ▷ well-studied for various payoffs

Single-constraint percentile problem

Given MDP $M = (S, A, \delta, w)$, initial state s_{init} , payoff function f, value threshold $v \in \mathbb{Q}$, and probability threshold $\alpha \in [0, 1] \cap \mathbb{Q}$, decide if there exists a strategy σ such that

 $\mathbb{P}^{\sigma}_{M,s_{\text{init}}}\big[\{\rho\in\mathcal{R}_{s_{\text{init}}}(M)\mid f(\rho)\geq v\}\big]\geq\alpha.$

▷ percentile constraint, often $\mathbb{P}^{\sigma}_{M, S_{\text{init}}}[f \ge v] \ge \alpha$

Multi-Constraint Percentile Queries

Context	Percentile Queries	Shortest Path	Discounted Sum	Conclusion
0000	000000	000000	000000	00

Illustration: stochastic shortest path problem

Shortest path (SP) problem for *weighted graphs*

Given state $s \in S$ and target set $T \subseteq S$, find a path from s to a state $t \in T$ that *minimizes* the sum of weights along edges.

▷ PTIME algorithms (Dijkstra, Bellman-Ford, etc) [CGR96]

Context	Percentile Queries	Shortest Path	Discounted Sum	Conclusion
0000	000000	000000	000000	00

Illustration: stochastic shortest path problem

Shortest path (SP) problem for *weighted graphs*

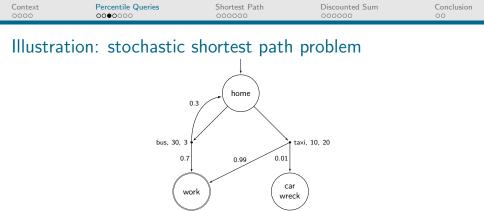
Given state $s \in S$ and target set $T \subseteq S$, find a path from s to a state $t \in T$ that *minimizes* the sum of weights along edges.

▷ PTIME algorithms (Dijkstra, Bellman-Ford, etc) [CGR96]

For SP, we focus on MDPs with **positive weights**

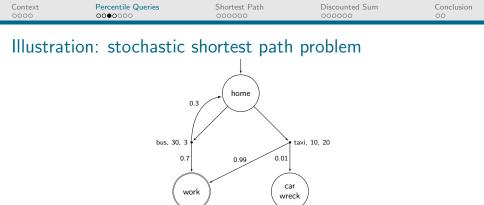
▷ **Truncated sum** payoff function for $\rho = s_1 a_1 s_2 a_2 ...$ and target set T:

$$\mathsf{TS}^{\mathsf{T}}(\rho) = \begin{cases} \sum_{j=1}^{n-1} w(a_j) \text{ if } s_n \text{ first visit of } T\\ \infty \text{ if } T \text{ is never reached} \end{cases}$$



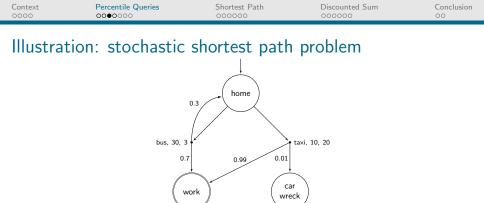
Two-dimensional weights on actions: *time* and *cost*.

Often necessary to consider trade-offs: e.g., between the probability to reach work in due time and the risks of an expensive journey.



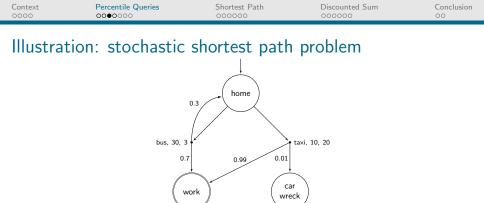
Classical problem considers only a single percentile constraint.

- **C1**: 80% of runs reach work in at most 40 minutes.
 - \triangleright Taxi \sim \leq 10 minutes with probability 0.99 > 0.8.



Classical problem considers only a single percentile constraint.

- **C1**: 80% of runs reach work in at most 40 minutes.
 - \triangleright Taxi $\sim \leq 10$ minutes with probability 0.99 > 0.8.
- **C2**: 50% of them cost at most 10\$ to reach work.
 - \triangleright Bus $\sim \geq 70\%$ of the runs reach work for 3\$.

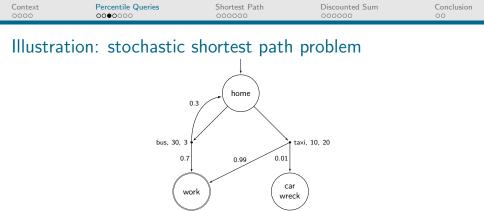


Classical problem considers only a single percentile constraint.

- **C1**: 80% of runs reach work in at most 40 minutes.
 - \triangleright Taxi $\sim \leq 10$ minutes with probability 0.99 > 0.8.
- **C2**: 50% of them cost at most 10\$ to reach work.

▷ Bus $\rightarrow \ge 70\%$ of the runs reach work for 3\$.

Taxi $\not\models$ C2, bus $\not\models$ C1. What if we want C1 \land C2?



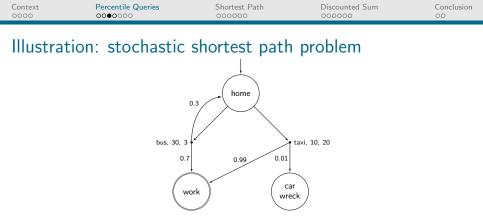
- **C1**: 80% of runs reach work in at most 40 minutes.
- **C2**: 50% of them cost at most 10\$ to reach work.

Study of multi-constraint percentile queries.

- ▷ Sample strategy: bus once, then taxi. Requires *memory*.
- ▷ Another strategy: bus with probability 3/5, taxi with probability 2/5. Requires *randomness*.

Multi-Constraint Percentile Queries

Randour, Raskin, Sankur



- **C1**: 80% of runs reach work in at most 40 minutes.
- **C2**: 50% of them cost at most 10\$ to reach work.

Study of multi-constraint percentile queries.

In general, *both* memory *and* randomness are required.

 \neq classical problems (single constraint, expected value, etc)

Context	Percentile Queries	Shortest Path	Discounted Sum	Conclusion
0000	0000000	000000	000000	00

Multi-constraint percentile problem

Multi-constraint percentile problem

Given *d*-dimensional MDP $M = (S, A, \delta, w)$, initial state s_{init} , payoff function f, and $q \in \mathbb{N}$ percentile constraints described by dimensions $l_i \in \{1, \ldots, d\}$, value thresholds $v_i \in \mathbb{Q}$ and probability thresholds $\alpha_i \in [0, 1] \cap \mathbb{Q}$, where $i \in \{1, \ldots, q\}$, decide if there exists a strategy σ such that query Q holds, with

$$\mathcal{Q} \coloneqq \bigwedge_{i=1} \mathbb{P}^{\sigma}_{M, s_{\text{init}}} \big[f_{l_i} \geq v_i \big] \geq \alpha_i.$$

Very general framework allowing for: multiple constraints related to \neq or = dimensions, \neq value and probability thresholds.

 \rightsquigarrow For SP, even \neq targets for each constraint.

 \rightsquigarrow Great flexibility in modeling applications.

Context 0000	Percentile Queries	Shortest Path 000000	Discounted Sum	Conclusion 00

Results overview (1/2)

Wide range of payoff functions

- multiple reachability,
- \triangleright mean-payoff ($\overline{\text{MP}}$, $\underline{\text{MP}}$),
- \triangleright discounted sum (DS).

- ▷ inf, sup, lim inf, lim sup,
- ▷ shortest path (SP),

Context	Percentile Queries	Shortest Path	Discounted Sum	Conclusion
0000	000000	000000	000000	00

Results overview (1/2)

Wide range of payoff functions

- multiple reachability,
- \triangleright mean-payoff ($\overline{\text{MP}}$, $\underline{\text{MP}}$),
- \triangleright discounted sum (DS).

Several variants:

- ▷ multi-dim. multi-constraint,
- ▷ single-constraint.

- ▷ inf, sup, lim inf, lim sup,
- ▷ shortest path (SP),

▷ single-dim. multi-constraint,

Context	Percentile Queries	Shortest Path	Discounted Sum	Conclusion
0000	000000	000000	000000	00

Results overview (1/2)

Wide range of payoff functions

- multiple reachability,
- \triangleright mean-payoff ($\overline{\text{MP}}$, $\underline{\text{MP}}$),
- \triangleright discounted sum (DS).

Several variants:

- multi-dim. multi-constraint,
- ▷ single-constraint.

For each one:

- ▷ algorithms,
- ▷ memory requirements.
- → **Complete picture** for this new framework.

- ▷ inf, sup, lim inf, lim sup,
- ▷ shortest path (SP),

▷ single-dim. multi-constraint,

 \triangleright lower bounds,

Context 0000	Percentile Queries	Shortest Path 000000	Discounted S	Sum Conclusio 00	on
Results	overview (2/2)				
	Single-constraint	Single-o	dim.	Multi-dim.	

	Single-constraint	Single-dim.	Multi-dim.
	Single-constraint	Multi-constraint	Multi-constraint
Reachability	P [Put94]	$P(M) \cdot E(Q)$ [EKVY08], PSPACE-h	—
$f \in \mathcal{F}$	P [CH09]	Р	$P(M) \cdot E(Q)$
$r \in \mathcal{F}$		r	PSPACE-h.
MP	P [Put94]	Р	Р
MP	P [Put94]	$P(M) \cdot E(\mathcal{Q})$	$P(M) \cdot E(\mathcal{Q})$
SP	$P(M) \cdot P_{ps}(Q)$ [HK14]	$P(M) \cdot P_{ps}(\mathcal{Q})$ (one target)	$P(M) \cdot E(Q)$
SP	PSPACE-h. [HK14]	PSPACE-h. [HK14]	PSPACE-h. [HK14]
ε -gap DS	$P_{ps}(M, \mathcal{Q}, \varepsilon)$	$P_{ps}(M,\varepsilon)\cdotE(\mathcal{Q})$	$P_{ps}(M,\varepsilon)\cdotE(\mathcal{Q})$
c-gap D3	NP-h.	NP-h.	PSPACE-h.

- $\triangleright \mathcal{F} = \{\inf, \sup, \liminf, \limsup\}$
- \triangleright *M* = model size, *Q* = query size
- \triangleright P(x), E(x) and P_{ps}(x) resp. denote polynomial, exponential and pseudo-polynomial time in parameter x.

All results without reference are new.

Multi-Constraint Percentile Queries

Conte 0000		Percentile Queries	Shortest Path Discounted	Sum Conclusio			
Re	Results overview (2/2)						
		Single-constraint	Single-dim.	Multi-dim.			
		Single-constraint	Multi-constraint	Multi-constraint			
	Reachability	P [Put94]	$P(M) \cdot E(Q)$ [EKVY08], PSPACE-h	_			
	$f \in \mathcal{F}$	P [CH09]	Р	$P(M) \cdot E(Q)$			
	$I \in J$	r [Chos]	r I	PSPACE-h.			
	MP	P [Put94]	Р	Р			
	MP	P [Put94]	$P(M) \cdot E(Q)$	$P(M) \cdot E(Q)$			
	SP	$P(M) \cdot P_{ps}(Q)$ [HK14]	$P(M) \cdot P_{ps}(Q)$ (one target)	$P(M) \cdot E(Q)$			
	SP	PSPACE-h. [HK14]	PSPACE-h. [HK14]	PSPACE-h. [HK14]			
	ε -gap DS	$P_{ps}(M, \mathcal{Q}, \varepsilon)$	$P_{ps}(M,\varepsilon)\cdotE(\mathcal{Q})$	$P_{ps}(M,\varepsilon)\cdotE(\mathcal{Q})$			
	c-gap D3	NP-h.	NP-h.	PSPACE-h.			

In most cases, only polynomial in the model size.

In practice, the query size can often be bounded while the model can be very large.

Conte 0000		Percentile Queries	Shortest Path Discounted	Sum Conclusion
Re	sults ove	erview (2/2)		
		Single-constraint	Single-dim.	Multi-dim.
		Single-constraint	Multi-constraint	Multi-constraint
	Reachability	P [Put94]	$P(M) \cdot E(Q)$ [EKVY08], PSPACE-h	_
	$f \in \mathcal{F}$	P [CH09]	Р	$P(M) \cdot E(Q)$
	$I \in \mathcal{F}$	r [Ch09]	F	PSPACE-h.
	MP	P [Put94]	Р	Р
	MP	P [Put94]	$P(M) \cdot E(Q)$	$P(M) \cdot E(Q)$
	SP	$P(M) \cdot P_{ps}(Q)$ [HK14]	$P(M) \cdot P_{ps}(\mathcal{Q})$ (one target)	$P(M) \cdot E(Q)$
	JF	PSPACE-h. [HK14]	PSPACE-h. [HK14]	PSPACE-h. [HK14]
		$P_{ps}(M, \mathcal{Q}, \varepsilon)$	$P_{ps}(M,\varepsilon)\cdotE(\mathcal{Q})$	$P_{ps}(M,\varepsilon)\cdotE(\mathcal{Q})$
	ε -gap DS	NP-h.	NP-h.	PSPACE-h.

No time to discuss every result!

Cont 000		Percentile Queries	Shortest Path Discounted	Sum Conclus	ion	
Re	Results overview (2/2)					
		Single-constraint	Single-dim.	Multi-dim.		
		Single-constraint	Multi-constraint	Multi-constraint		
	Reachability	P [Put94]	$P(M) \cdot E(Q)$ [EKVY08], PSPACE-h	—		
	$f \in \mathcal{F}$	P [CH09]	Р	$P(M) \cdot E(Q)$		
	$r \in J$		r I	PSPACE-h.		
	MP	P [Put94]	Р	Р		
	MP	P [Put94]	$P(M) \cdot E(Q)$	$P(M) \cdot E(Q)$		
	SP	$P(M) \cdot P_{ps}(Q)$ [HK14]	$P(M) \cdot P_{ps}(\mathcal{Q})$ (one target)	$P(M) \cdot E(Q)$		
	SP	PSPACE-h. [HK14]	PSPACE-h. [HK14]	PSPACE-h. [HK14]		
		$P_{ps}(M, \mathcal{Q}, \varepsilon)$	$P_{ps}(M,\varepsilon)\cdotE(\mathcal{Q})$	$P_{ps}(M,\varepsilon)\cdotE(\mathcal{Q})$		
	ε -gap DS	NP-h.	NP-h.	PSPACE-h.		

- Reachability. Algorithm based on multi-objective linear programming (LP) in [EKVY08]. We refine the complexity analysis, provide LBs and tractable subclasses.
 - Useful tool for many payoff functions!

Cont 000		Percentile Queries	Shortest Path Discour 000000 00000	ted Sum Conclusion
Re	esults ove	erview (2/2)		
		Single-constraint	Single-dim. Multi-constraint	Multi-dim. Multi-constraint
	Reachability	P [Put94]	$P(M) \cdot E(Q)$ [EKVY08], PSPACE	E-h —
	$f\in \mathcal{F}$	P [CH09]	Р	$P(M) \cdot E(Q)$ PSPACE-h.
	MP	P [Put94]	Р	Р
	MP	P [Put94]	$P(M) \cdot E(\mathcal{Q})$	$P(M) \cdot E(Q)$
	SP	$P(M) \cdot P_{ps}(Q)$ [HK14]	$P(M) \cdot P_{ps}(\mathcal{Q})$ (one target)	$P(M) \cdot E(Q)$
	51	PSPACE-h. [HK14]	PSPACE-h. [HK14]	PSPACE-h. [HK14]
	ε -gap DS	$P_{ps}(M, \mathcal{Q}, \varepsilon)$	$P_{ps}(M,\varepsilon)\cdotE(\mathcal{Q})$	$P_{ps}(M,\varepsilon)\cdotE(\mathcal{Q})$

2 \mathcal{F} and $\overline{\text{MP}}$. Easiest cases.

NP-h.

- ▷ inf and sup: reduction to *multiple reachability*.
- ▷ lim inf, lim sup and MP: maximal end-component (MEC) decomposition + reduction to multiple reachability.

NP-h.

PSPACE-h.

Cont 000		Percentile Queries	Shortest Path Discour 000000 00000	nted Sum Conclusio
Re	esults ove	erview (2/2)		
		Single-constraint	Single-dim. Multi-constraint	Multi-dim. Multi-constraint
	Reachability	P [Put94]	$P(M) \cdot E(Q)$ [EKVY08], PSPACE	E-h —
	$f\in \mathcal{F}$	P [CH09]	Р	$P(M) \cdot E(Q)$ PSPACE-h.
	MP	P [Put94]	Р	Р
	MP	P [Put94]	$P(M) \cdot E(Q)$	$P(M) \cdot E(Q)$
	SP	$P(M) \cdot P_{ps}(Q)$ [HK14]	$P(M) \cdot P_{ps}(\mathcal{Q})$ (one target)	$P(M) \cdot E(Q)$
	Jr	PSPACE-h. [HK14]	PSPACE-h. [HK14]	PSPACE-h. [HK14]
	ε -gap DS	$P_{ps}(M, \mathcal{Q}, \varepsilon)$	$P_{ps}(M,\varepsilon)\cdotE(\mathcal{Q})$	$P_{ps}(M,\varepsilon)\cdotE(\mathcal{Q})$

<u>3</u> <u>MP</u>. Technically involved.

NP-h.

 Inside MECs: (a) strategies satisfying maximal subsets of constraints, (b) combine them linearly.

NP-h.

Overall: write an LP combining multiple reachability toward MECs and those linear combinations equations.

Multi-Constraint Percentile Queries

PSPACE-h.

Conte		Percentile Queries ○○○○○●○	Shortest Path Discounted	Sum Conclusio			
Re	Results overview (2/2)						
Single constraint		Single-constraint	Single-dim.	Multi-dim.			
		Single-constraint	Multi-constraint	Multi-constraint			
	Reachability	P [Put94]	$P(M) \cdot E(Q)$ [EKVY08], PSPACE-h	_			
	$f \in \mathcal{F}$	P [CH09]	Р	$P(M) \cdot E(Q)$			
	$I \in \mathcal{F}$	r [Ch09]	F	PSPACE-h.			
	MP	P [Put94]	Р	Р			
	MP	P [Put94]	$P(M) \cdot E(Q)$	$P(M) \cdot E(Q)$			
	SP	$P(M) \cdot P_{ps}(Q)$ [HK14]	$P(M) \cdot P_{ps}(Q)$ (one target)	$P(M) \cdot E(Q)$			
	PSPACE-h. [HK14]		PSPACE-h. [HK14]	PSPACE-h. [HK14]			
	ε -gap DS	$P_{ps}(M, \mathcal{Q}, \varepsilon)$	$P_{ps}(M,\varepsilon)\cdotE(\mathcal{Q})$	$P_{ps}(M,\varepsilon)\cdotE(\mathcal{Q})$			
	c-gap D3	NP-h.	NP-h.	PSPACE-h.			

4 SP and DS. Based on *unfoldings* and multiple reachability.

- \triangleright For SP, we bound the size of the unfolding by *node merging*.
- For DS, we can only *approximate* the answer in general. Need to analyze the cumulative error due to necessary *roundings*.

Cont 000		Percentile Queries	Shortest Path Discounted	Sum Conclusio	on
Re	sults ove	erview (2/2)			
Single-constraint		Single constraint	Single-dim.	Multi-dim.	
		Single-constraint	Multi-constraint	Multi-constraint	
	Reachability	P [Put94]	$P(M) \cdot E(Q)$ [EKVY08], PSPACE-h	_	
	$f \in \mathcal{F}$	$f \in \mathcal{F}$ P [CH09] P		$P(M) \cdot E(Q)$	
	$I \in \mathcal{F}$	P [CH09]	F	PSPACE-h.	
	MP	P [Put94]	Р	Р	
	MP	P [Put94]	$P(M) \cdot E(Q)$	$P(M) \cdot E(Q)$	
	SP	$P(M) \cdot P_{ps}(Q)$ [HK14]	$P(M) \cdot P_{ps}(\mathcal{Q})$ (one target)	$P(M) \cdot E(Q)$	
	38	PSPACE-h. [HK14]	PSPACE-h. [HK14]	PSPACE-h. [HK14]	

4 SP and DS.

 \rightsquigarrow Technical focus of this talk.

 $P_{ps}(M, Q, \varepsilon)$

NP-h.

- ▷ Intuitive unfoldings, interesting tricks for DS.
- ▷ Start simple and iteratively extend the solution.

 ε -gap DS

 $P_{ps}(M,\varepsilon) \cdot E(Q)$

NP-h.

 $\mathsf{P}_{ps}(M,\varepsilon)\cdot\mathsf{E}(\mathcal{Q})$

PSPACE-h.

Context 0000	Percentile Queries 000000●	Shortest Path 000000	Discounted Sum	Conclusion 00

- Same philosophy (i.e., beyond uni-dimensional 𝔅 or 𝒫 maximization), ≠ approaches.
 - \triangleright Beyond worst-case synthesis: \mathbb{E} + worst-case [BFRR14b].
 - \triangleright Survey of recent extensions in VMCAI'15 [RRS15].

Context 0000	Percentile Queries 000000●	Shortest Path 000000	Discounted Sum	Conclusion 00

- Same philosophy (i.e., beyond uni-dimensional 𝔅 or 𝒫 maximization), ≠ approaches.
 - \triangleright Beyond worst-case synthesis: \mathbb{E} + worst-case [BFRR14b].
 - \triangleright Survey of recent extensions in VMCAI'15 [RRS15].
- Multi-dim. MDPs: DS [CMH06], MP [BBC⁺14, FKR95].

Context 0000	Percentile Queries	Shortest Path 000000	Discounted Sum	Conclusion 00

- Same philosophy (i.e., beyond uni-dimensional 𝔅 or 𝒫 maximization), ≠ approaches.
 - \triangleright Beyond worst-case synthesis: \mathbb{E} + worst-case [BFRR14b].
 - ▷ Survey of recent extensions in VMCAI'15 [RRS15].
- Multi-dim. MDPs: DS [CMH06], MP [BBC⁺14, FKR95].
- Many related works for each particular payoff: MP [Put94], SP [UB13, HK14], DS [Whi93, WL99, BCF⁺13], etc.
 - ▷ All with a *single* constraint.

Context 0000	Percentile Queries 000000●	Shortest Path 000000	Discounted Sum 000000	Conclusion 00

- Same philosophy (i.e., beyond uni-dimensional 𝔅 or 𝒫 maximization), ≠ approaches.
 - \triangleright Beyond worst-case synthesis: \mathbb{E} + worst-case [BFRR14b].
 - ▷ Survey of recent extensions in VMCAI'15 [RRS15].
- Multi-dim. MDPs: DS [CMH06], MP [BBC⁺14, FKR95].
- Many related works for each particular payoff: MP [Put94], SP [UB13, HK14], DS [Whi93, WL99, BCF⁺13], etc.
 All with a *single* constraint.
- Multi-constraint percentile queries for LTL [EKVY08].
 - \triangleright Closest to our work.
 - ▷ We use *multiple reachability*.

Context	Percentile Queries	Shortest Path	Discounted Sum	Conclusion
0000	000000	000000	000000	00

1 Context, MDPs, Strategies

2 Percentile Queries

3 Shortest Path

4 Discounted Sum

5 Conclusion

Context	Percentile Queries	Shortest Path	Discounted Sum	Conclusion
0000	000000	00 000	000000	00

Single-constraint queries

Single-constraint percentile problem for SP

Given MDP $M = (S, A, \delta, w)$, initial state s_{init} , target set T, threshold $v \in \mathbb{N}$, and probability threshold $\alpha \in [0, 1] \cap \mathbb{Q}$, decide if there exists a strategy σ such that $\mathbb{P}^{\sigma}_{M, s_{\text{init}}}[\mathsf{TS}^T \leq v] \geq \alpha$.

▷ Hypothesis: all weights are non-negative.

Theorem

The above problem can be decided in pseudo-polynomial time and is PSPACE-hard. Optimal pure strategies with pseudo-polynomial memory exist and can be constructed in pseudo-polynomial time.

Polynomial in the size of the MDP, but also in the threshold v.
 See [HK14] for hardness.

Multi-Constraint Percentile Queries

Conte	xt Percentile Queries	Shortest Path	Discounted Sum	Conclusion
0000	0000000	00000	000000	00

Pseudo-PTIME algorithm (1/2)

Key idea: pseudo-PTIME reduction to the **stochastic reachability problem** (**SR** - single target).

Context	Percentile Queries	Shortest Path	Discounted Sum	Conclusion
0000	000000	00000	000000	00

Pseudo-PTIME algorithm (1/2)

Key idea: pseudo-PTIME reduction to the **stochastic reachability problem** (**SR** - single target).

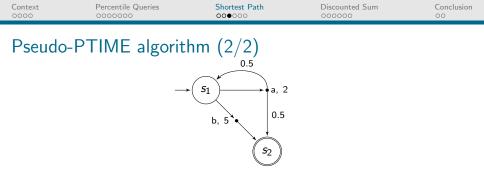
SR problem

Given unweighted MDP $M = (S, A, \delta)$, initial state s_{init} , target set T and probability threshold $\alpha \in [0, 1] \cap \mathbb{Q}$, decide if there exists a strategy σ such that $\mathbb{P}^{\sigma}_{M, s_{init}}[\Diamond T] \geq \alpha$.

Theorem

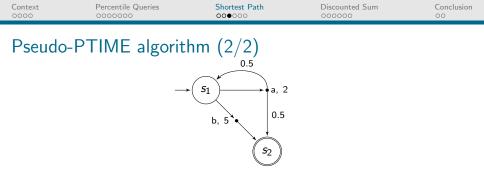
The SR problem can be decided in polynomial time. Optimal pure memoryless strategies exist and can be constructed in polynomial time.

Linear programming.



Sketch of the reduction

1 Start from
$$M$$
, $T = \{s_2\}$, and $v = 7$.

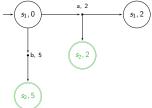


Sketch of the reduction

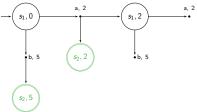
- **1** Start from M, $T = \{s_2\}$, and v = 7.
- 2 Build M_v by unfolding M, tracking the current sum *up to the threshold v*, and integrating it in the states of the expanded MDP.

Context 0000	Percentile Queries	Shortest Path	Discounted Sum	Conclusion 00
	PTIME algorit			

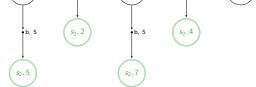
Context 0000	Percentile Queries	Shortest Path	Discounted Sum	Conclusion 00		
Pseudo-PTIME algorithm $(2/2)$						
		b, 5 0.5				
		(52)				
\rightarrow ($s_1, 0$)	$a, 2$ $(s_1, 2)$					



Context 0000	Percentile Queries	Shortest Path 000000	Discounted Sum	Conclusion 00
0000	TIME algorithm	00000		



Context 0000	Percentile Queries	Shortest Path	Discounted Sum	Conclusion 00	
		52			
\rightarrow $(s_1, 0)$	a, 2 (s1, 2)	$a, 2$ $(s_1, 4)$			



Context 0000	Percentile Queries	Shortest Path	Discounted Sum	Conclusion 00
Pseudo-F	PTIME algorithn →	$\begin{array}{c} n (2/2) \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 52 \end{array}$		
\rightarrow $(s_1, 0)$ \rightarrow	a, 2 a, 2 a, 2 b, 5 b, 5 b, 5	$(s_1, 4)$ $a_r, 2$ $b_r, 5$		

 $s_2, 7$

 $s_2, 5$

Context 0000	Percentile Queries	Shortest Path	Discounted Sum	Conclusion 00
Pseud	lo-PTIME algorith →(0.5 51 a	, 2 .5	
\rightarrow $(s_1, 0)$ (b, 5)	a, 2 $(s_2, 2)$ $(s_2, 2)$ $(s_2, 2)$ $(s_2, 2)$ $(s_2, 2)$ $(s_2, 2)$ $(s_2, 2)$ $(s_2, 2)$ $(s_1, 2)$ $(s_1, 2)$ $(s_2, 2)$ $(s_1, 2)$ $(s_2, 2)$ $(s_1, 2)$ $(s_2, 2)$ $(s_1, 2)$ $(s_2, 2)$ $(s_1, 2)$ $(s_2, 2)$ $(s_2, 2)$ $(s_2, 2)$ $(s_3, 2)$ (s	(s ₁ , 4)	a, 2 $(s_2, 6)$ $(s_1, 6)$	

Multi-Constraint Percentile Queries

Context 0000	Percentile Queries	Shortest Path	Discounted Sum	Conclusion 00
Pseud	o-PTIME algorit	thm $(2/2)_{_{0.5}}$		
	_	\rightarrow s_1 a_1 z_2	2	
		b, 5 0.5		
\rightarrow $(s_1, 0)$	a, 2 (51, 2)	$a, 2$ $(s_1, 4)$	$a, 2$ $(s_1, 6)$	$a, 2$ (s_1, \bot)
• b, 5	(s ₂ , 2) b, 5 (s ₂ ,4 b, 5	(s ₂ , 6) , 5	
\$2,5	\$2,7			

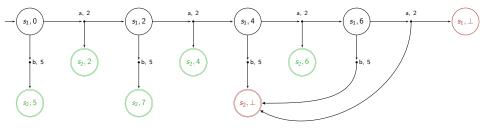
Multi-Constraint Percentile Queries

Context	Percentile Queries	Shortest Path	Discounted Sum	Conclusion
0000	0000000	000000	000000	00

Pseudo-PTIME algorithm (2/2)

3 Bijection between runs of M and M_v

$$\mathsf{TS}^{\mathsf{T}}(
ho) \leq \mathsf{v} \quad \Leftrightarrow \quad
ho' \models \Diamond \mathsf{T}', \; \mathsf{T}' = \mathsf{T} imes \{0, 1, \dots, \mathsf{v}\}$$



Multi-Constraint Percentile Queries

Context 0000	Percentile Queries	Shortest Path	Discounted Sum	Conclusion 00

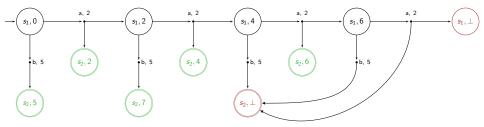
Pseudo-PTIME algorithm (2/2)

3 Bijection between runs of M and M_v

$$\mathsf{TS}^{T}(
ho) \leq \mathsf{v} \quad \Leftrightarrow \quad
ho' \models \diamondsuit T', \ T' = T imes \{0, 1, \dots, \mathsf{v}\}$$

4 Solve the SR problem on M_{ν}

 \triangleright Memoryless strategy in $M_{
m v} \rightsquigarrow$ pseudo-polynomial memory in M in general



Multi-Constraint Percentile Queries

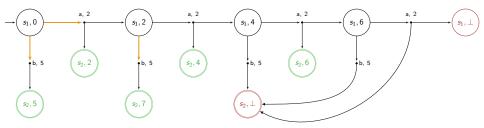
Context	Percentile Queries	Shortest Path	Discounted Sum	Conclusion
0000	000000	000000	000000	00

Pseudo-PTIME algorithm (2/2)

- If we just want to minimize the risk of exceeding v = 7,
 - \triangleright an obvious possibility is to play *b* directly,
 - ▷ playing *a* only once is also acceptable.

For the single-constraint problem, both strategies are equivalent

 \rightsquigarrow we can discriminate them with richer queries



Multi-Constraint Percentile Queries

Multi-constraint queries (1/2)

Multi-constraint percentile problem for SP

Given *d*-dimensional MDP $M = (S, A, \delta, w)$, initial state s_{init} and $q \in \mathbb{N}$ percentile constraints described by target sets $T_i \subseteq S$, dimensions $l_i \in \{1, \ldots, d\}$, value thresholds $v_i \in \mathbb{N}$ and probability thresholds $\alpha_i \in [0, 1] \cap \mathbb{Q}$, where $i \in \{1, \ldots, q\}$, decide if there exists a strategy σ such that query Q holds, with

$$\mathcal{Q} \coloneqq \bigwedge_{i=1}^{q} \mathbb{P}^{\sigma}_{M, s_{\text{init}}} \big[\mathsf{TS}^{\mathcal{T}_i}_{I_i} \le \mathsf{v}_i \big] \ge \alpha_i,$$

where $\mathsf{TS}_{l_i}^{T_i}$ denotes the truncated sum on dimension l_i and w.r.t. target set T_i .

Multi-constraint queries (2/2)

Theorem

This problem can be decided in

- exponential time in general,
- pseudo-polynomial time for single-dimension single-target multi-contraint queries.

It is PSPACE-hard even for single-constraint queries. Randomized exponential-memory strategies are always sufficient and in general necessary, and can be constructed in exponential time.

- \triangleright Polynomial in the size of the MDP, blowup due to the query.
- ▷ Hardness already true for single-constraint [HK14].
- \rightsquigarrow wide extension for basically no price in complexity.

△ Undecidable for arbitrary weights (2CM reduction)!

Context	Percentile Queries	Shortest Path	Discounted Sum	Conclusion
0000	000000	00000	000000	00

1 Build an unfolded MDP M_v similar to single-constraint case:

▷ stop unfolding when *all* dimensions reach sum $v = \max_i v_i$.

Context	Percentile Queries	Shortest Path	Discounted Sum	Conclusion
0000	0000000	00000	000000	00

- **1** Build an unfolded MDP M_v similar to single-constraint case:
 - ▷ stop unfolding when *all* dimensions reach sum $v = \max_i v_i$.
- 2 Maintain *single*-exponential size by defining an equivalence relation between states of M_v :

$$\triangleright \ S_{\mathsf{v}} \subseteq S \times \left(\{0,\ldots,\mathsf{v}\} \cup \{\bot\}\right)^d,$$

▷ pseudo-poly. if
$$d = 1$$
.

Context	Percentile Queries	Shortest Path	Discounted Sum	Conclusion
0000	0000000	00000	000000	00

- **1** Build an unfolded MDP M_v similar to single-constraint case:
 - \triangleright stop unfolding when *all* dimensions reach sum $v = \max_i v_i$.
- 2 Maintain *single*-exponential size by defining an equivalence relation between states of M_v :

$$\triangleright \ S_{\nu} \subseteq S \times (\{0,\ldots,\nu\} \cup \{\bot\})^d,$$

- \triangleright pseudo-poly. if d = 1.
- **3** For each constraint *i*, compute a target set R_i in M_v : $\triangleright \ \rho \models \text{constraint } i \text{ in } M \Leftrightarrow \rho' \models \Diamond R_i \text{ in } M_v.$

Context	Percentile Queries	Shortest Path	Discounted Sum	Conclusion
0000	000000	00000	000000	00

- **1** Build an unfolded MDP M_v similar to single-constraint case:
 - \triangleright stop unfolding when *all* dimensions reach sum $v = \max_i v_i$.
- 2 Maintain *single*-exponential size by defining an equivalence relation between states of M_v :

$$\triangleright \ S_{\nu} \subseteq S \times (\{0,\ldots,\nu\} \cup \{\bot\})^{d},$$

- \triangleright pseudo-poly. if d = 1.
- **3** For each constraint *i*, compute a target set R_i in M_v : $\triangleright \ \rho \models \text{constraint } i \text{ in } M \Leftrightarrow \rho' \models \Diamond R_i \text{ in } M_v.$
- **4** Solve a multiple reachability problem on M_{ν} .
 - \triangleright Generalizes the SR problem [EKVY08, RRS14].
 - \triangleright Time polynomial in M_v but exponential in q.

Context	Percentile Queries	Shortest Path	Discounted Sum	Conclusion
0000	000000	000000	000000	00

1 Context, MDPs, Strategies

- 2 Percentile Queries
- 3 Shortest Path
- 4 Discounted Sum

5 Conclusion

Context F	Percentile Queries	Shortest Path	Discounted Sum	Conclusion
0000 0	000000	000000	0 0000	00

Multi-constraint queries

Multi-constraint percentile problem for DS

Given *d*-dimensional MDP $M = (S, A, \delta, w)$, initial state s_{init} and $q \in \mathbb{N}$ percentile constraints described by discount factors $\lambda_i \in]0, 1[\cap \mathbb{Q}, \text{ dimensions } l_i \in \{1, \dots, d\}, \text{ value thresholds } v_i \in \mathbb{N}$ and probability thresholds $\alpha_i \in [0, 1] \cap \mathbb{Q}$, where $i \in \{1, \dots, q\}$, decide if there exists a strategy σ such that query Q holds, with

$$\mathcal{Q} \coloneqq \bigwedge_{i=1}^{q} \mathbb{P}^{\sigma}_{M,s_{\text{init}}} \left[\mathsf{DS}_{l_i}^{\lambda_i} \geq v_i \right] \geq \alpha_i,$$

where $\mathsf{DS}_{l_i}^{\lambda_i}(\rho) = \sum_{j=1}^{\infty} \lambda_i^j \cdot w_{l_i}(a_j)$ denotes the discounted sum on dimension l_i and w.r.t. discount factor λ_i .

We allow arbitrary weights.

Multi-Constraint Percentile Queries

Context Percen	ntile Queries S	Shortest Path	Discounted Sum	Conclusion
0000 0000	000 (000000	00000	00

Precise discounted sum problem is hard

Precise DS problem

Given value $t \in \mathbb{Q}$, and discount factor $\lambda \in]0, 1[$, does there exist an infinite binary sequence $\tau = \tau_1 \tau_2 \tau_3 \ldots \in \{0, 1\}^{\omega}$ such that $\sum_{j=1}^{\infty} \lambda^j \cdot \tau_j = t$?

- Reduces to an almost-sure percentile problem on a single-state 2-dim. MDP.
- Still not known to be decidable!
 - ∼ related to open questions such as the *universality problem for discounted-sum automata* [BHO15, CFW13, BH14].

Context Percen	ntile Queries S	Shortest Path	Discounted Sum	Conclusion
0000 0000	000 (000000	00000	00

Precise discounted sum problem is hard

Precise DS problem

Given value $t \in \mathbb{Q}$, and discount factor $\lambda \in]0, 1[$, does there exist an infinite binary sequence $\tau = \tau_1 \tau_2 \tau_3 \ldots \in \{0, 1\}^{\omega}$ such that $\sum_{j=1}^{\infty} \lambda^j \cdot \tau_j = t$?

- Reduces to an almost-sure percentile problem on a single-state 2-dim. MDP.
- Still not known to be decidable!
 - ∼ related to open questions such as the *universality problem for discounted-sum automata* [BHO15, CFW13, BH14].

We cannot solve the exact problem but we can approximate correct answers.

Context 0000	Percentile Queries	Shortest Path 000000	Discounted Sum	Conclusion 00

ε -gap percentile problem (1/3)

Classical decision problem.

- ▷ Two types of inputs: *yes*-inputs and *no*-inputs.
- ▷ Correct answers required for both types.

00
_

ε -gap percentile problem (1/3)

Classical decision problem.

- ▷ Two types of inputs: *yes*-inputs and *no*-inputs.
- ▷ Correct answers required for both types.
- Promise problem [Gol06].
 - ▷ Three types: *yes*-inputs, *no*-inputs, *remaining* inputs.
 - ▷ Correct answers required for yes-inputs and no-inputs, arbitrary answer OK for the remaining ones.

00

ε -gap percentile problem (1/3)

Classical decision problem.

- ▷ Two types of inputs: *yes*-inputs and *no*-inputs.
- ▷ Correct answers required for both types.
- Promise problem [Gol06].
 - ▷ Three types: *yes*-inputs, *no*-inputs, *remaining* inputs.
 - ▷ Correct answers required for yes-inputs and no-inputs, arbitrary answer OK for the remaining ones.
- ε-gap problem.
 - ▷ The uncertainty zone can be made arbitrarily small, parametrized by value $\varepsilon > 0$.

ε -gap percentile problem (2/3)

We build an algorithm.

- Inputs: query Q and precision factor $\varepsilon > 0$.
- Output: Yes, No or Unknown.
 - ▷ If Yes, then a strategy exists and can be synthesized.
 - \triangleright If No, then no strategy exists.
 - $\triangleright~$ Answer Unknown can only be output within an uncertainty zone of size $\sim \varepsilon.$
 - \Rightarrow Incremental approximation scheme.

Context I	Percentile Queries	Shortest Path	Discounted Sum	Conclusion
0000	000000	000000	000000	00

ε -gap percentile problem (3/3)

Theorem

There is an algorithm that, given an MDP, a percentile query Q for the DS and a precision factor $\varepsilon > 0$, solves the following ε -gap problem in exponential time. It answers

- Yes if **there is** a strategy satisfying query $Q_{2 \cdot \varepsilon}$;
- No if there is no strategy satisfying query $Q_{-2\cdot\varepsilon}$;
- and arbitrarily otherwise.
- ▷ Shifted query: $Q_x \equiv Q$ with value thresholds $v_i + x$ (all other things being equal).

Context I	Percentile Queries	Shortest Path	Discounted Sum	Conclusion
0000	000000	000000	000000	00

ε -gap percentile problem (3/3)

Theorem

There is an algorithm that, given an MDP, a percentile query Q for the DS and a precision factor $\varepsilon > 0$, solves the following ε -gap problem in exponential time. It answers

- Yes if **there is** a strategy satisfying query $Q_{2 \cdot \varepsilon}$;
- No if there is no strategy satisfying query $Q_{-2\cdot\varepsilon}$;
- and arbitrarily otherwise.
- ▷ Shifted query: $Q_x \equiv Q$ with value thresholds $v_i + x$ (all other things being equal).
- + PSPACE-hard ($d \ge 2$, subset-sum games [Tra06]), NP-hard for q = 1 (*K*-th largest subset problem [GJ79, BFRR14b]), exponential memory sufficient and necessary.

Multi-Constraint Percentile Queries

Context 0000	Percentile Queries	Shortest Path 000000	Discounted Sum ○○○○○●	Conclusion 00

1 Goal: multiple reachability over appropriate *unfolding*.

Context 0000	Percentile Queries	Shortest Path 000000	Discounted Sum	Conclusion 00

- **1** Goal: multiple reachability over appropriate *unfolding*.
- **2** Finite unfolding?
 - ▷ Sums not necessarily increasing (\neq SP).
 - $\Rightarrow~$ Not easy to know when to stop.

Context 0000	Percentile Queries	Shortest Path 000000	Discounted Sum	Conclusion 00

1 Goal: multiple reachability over appropriate *unfolding*.

2 Finite unfolding?

- ▷ Sums not necessarily increasing (\neq SP).
 - \Rightarrow Not easy to know when to stop.
- \triangleright Use the **discount factor**.
 - $\Rightarrow\,$ Weights contribute less and less to the sum along a run.
 - $\Rightarrow~$ The range of possible futures narrows the deeper we go.
 - ⇒ Cutting all branches after a pseudo-polynomial depth changes the overall sum by at most $\varepsilon/2$.

Context 0000	Percentile Queries	Shortest Path 000000	Discounted Sum ○○○○○●	Conclusion 00

- **1** Goal: multiple reachability over appropriate *unfolding*.
- 2 Pseudo-polynomial depth.
 - > 2-exponential unfolding overall!

Context 0000	Percentile Queries	Shortest Path 000000	Discounted Sum ○○○○○●	Conclusion 00

- **1** Goal: multiple reachability over appropriate *unfolding*.
- 2 Pseudo-polynomial depth.
 - 2-exponential unfolding overall!
- **3** Reduce the overall size?
 - \triangleright No direct merging of nodes (no integer labels, \neq SP), too many possible label values.
 - Introduce a rounding scheme of the numbers involved (inspired by [BCF⁺13]).
 - \Rightarrow We bound the error due to cumulated roundings by $\varepsilon/2$.
 - \Rightarrow Single-exponential width.

Context 0000	Percentile Queries	Shortest Path 000000	Discounted Sum	Conclusion 00

- **1** Goal: multiple reachability over appropriate *unfolding*.
- 2 Pseudo-polynomial depth.
- **3** Single-exponential width.
- **4 Leaf labels are off by at most** *ε*. Classify each leaf w.r.t. each constraint.
 - $\sim\,$ Same idea as for SP.
 - $\Rightarrow~$ Defining target sets for multiple reachability.
 - ▷ Leaves can be good, bad or uncertain (if too close to threshold).

Context 0000	Percentile Queries	Shortest Path 000000	Discounted Sum	Conclusion 00

- **1** Goal: multiple reachability over appropriate *unfolding*.
- 2 Pseudo-polynomial depth.
- **3** Single-exponential width.
- 4 Leaf labels are off by at most ε. Classify each leaf w.r.t. each constraint.
 - Leaves can be good, bad or uncertain (if too close to threshold).
- 5 Finally, two multiple reachability problems to solve.
 - \triangleright If OK for good leaves, then answer Yes.
 - ▷ If KO for good but OK for uncertain, then answer Unknown.
 - \triangleright If KO for both, then answer No.

Context 0000	Percentile Queries	Shortest Path 000000	Discounted Sum	Conclusion 00

- **1** Goal: multiple reachability over appropriate *unfolding*.
- 2 Pseudo-polynomial depth.
- **3** Single-exponential width.
- 4 Leaf labels are off by at most ε. Classify each leaf w.r.t. each constraint.
 - Leaves can be good, bad or uncertain (if too close to threshold).
- 5 Finally, two multiple reachability problems to solve.
 - \triangleright If OK for good leaves, then answer Yes.
 - \triangleright If KO for good but OK for uncertain, then answer Unknown.
 - \triangleright If KO for both, then answer No.

That solves the ε -gap problem.

Multi-Constraint Percentile Queries

Context	Percentile Queries	Shortest Path	Discounted Sum	Conclusion
0000	000000	000000	000000	00

1 Context, MDPs, Strategies

- 2 Percentile Queries
- 3 Shortest Path
- 4 Discounted Sum

Context 0000	Percentile Queries	Shortest Path 000000	Discounted Sum	Conclusion • 0

Summary

Multi-constraint percentile queries.

> Generalizes the classical threshold probability problem.

 Wide range of payoffs: reachability, inf, sup, lim inf, lim sup, mean-payoff, shortest path, discounted sum.

▷ Various techniques are needed.

• Complexity usually acceptable.

Often only polynomial in the model size, while exponential in the query size for the most general variants.

Conte		Percentile Queries	Shortest Path Discounted	I Sum Conclusio	on
Re	sults ove	erview			
		Single-constraint	Single-dim.	Multi-dim.	
		Single-constraint	Multi-constraint	Multi-constraint	
	Reachability	P [Put94]	$P(M) \cdot E(Q)$ [EKVY08], PSPACE-h	—	
	$f \in \mathcal{F}$	P [CH09]	Р	$P(M) \cdot E(Q)$	
	$r \in J$		r	PSPACE-h.	
	MP	P [Put94]	Р	Р	
	MP	P [Put94]	$P(M) \cdot E(Q)$	$P(M) \cdot E(Q)$	
	SP	$P(M) \cdot P_{ps}(Q)$ [HK14]	$P(M) \cdot P_{ps}(\mathcal{Q})$ (one target)	$P(M) \cdot E(Q)$	
	Jr	PSPACE-h. [HK14]	PSPACE-h. [HK14]	PSPACE-h. [HK14]	
	c can DS	$P_{ps}(M, \mathcal{Q}, \varepsilon)$	$P_{ps}(M,\varepsilon)\cdotE(\mathcal{Q})$	$P_{ps}(M,\varepsilon)\cdotE(\mathcal{Q})$	
	ε -gap DS	NP-h.	NP-h.	PSPACE-h.	

- $\triangleright \mathcal{F} = \{\inf, \sup, \liminf, \limsup\}$
- \triangleright *M* = model size, *Q* = query size
- \triangleright P(x), E(x) and P_{ps}(x) resp. denote polynomial, exponential and pseudo-polynomial time in parameter x.

Thank you! Any question?

Multi-Constraint Percentile Queries

References I

Tomáš Brázdil, Václav Brozek, Krishnendu Chatterjee, Vojtech Forejt, and Antonín Kucera. Markov decision processes with multiple long-run average objectives. LMCS, 10(13):1–29, 2014.

Tomás Brázdil, Taolue Chen, Vojtech Forejt, Petr Novotný, and Aistis Simaitis. Solvency Markov decision processes with interest. In Proc. of FSTTCS, LIPIcs 24, pages 487-499. Schloss Dagstuhl - LZI, 2013.

Véronique Bruyère, Emmanuel Filiot, Mickael Randour, and Jean-François Raskin. Expectations or guarantees? I want it all! A crossroad between games and MDPs. In Proc. of SR, EPTCS 146, pages 1–8, 2014.

Véronique Bruyère, Emmanuel Filiot, Mickael Randour, and Jean-François Raskin.

Meet your expectations with guarantees: Beyond worst-case synthesis in quantitative games. In Proc. of STACS, LIPIcs 25, pages 199–213. Schloss Dagstuhl - LZI, 2014.

Udi Boker and Thomas A. Henzinger.

Exact and approximate determinization of discounted-sum automata. LMCS, 10(1), 2014.

Udi Boker, Thomas A. Henzinger, and Jan Otop.

The target discounted-sum problem. technical report, 2015.

Krishnendu Chatterjee, Laurent Doyen, Mickael Randour, and Jean-François Raskin.

Looking at mean-payoff and total-payoff through windows. In Proc. of ATVA, LNCS 8172, pages 118–132. Springer, 2013.

References II

```
Krishnendu Chatterjee, Vojtech Forejt, and Dominik Wojtczak.
Multi-objective discounted reward verification in graphs and MDPs.
In Proc. of LPAR, LNCS 8312. Springer, 2013.
```



```
Boris V. Cherkassky, Andrew V. Goldberg, and Tomasz Radzik.
```

Shortest paths algorithms: Theory and experimental evaluation. Math. programming, 73(2):129–174, 1996.

Krishnendu Chatterjee and ThomasA. Henzinger.

Probabilistic systems with limsup and liminf objectives.

In Margaret Archibald, Vasco Brattka, Valentin Goranko, and Benedikt Löwe, editors, <u>Infinity in Logic and</u> Computation, volume 5489 of <u>Lecture Notes in Computer Science</u>, pages 32–45. Springer Berlin Heidelberg, 2009.

Krishnendu Chatterjee, Rupak Majumdar, and Thomas A. Henzinger.

Markov decision processes with multiple objectives.

In Bruno Durand and Wolfgang Thomas, editors, <u>STACS 2006</u>, volume 3884 of <u>Lecture Notes in Computer</u> Science, pages 325–336. Springer Berlin Heidelberg, 2006.

Krishnendu Chatterjee, Mickael Randour, and Jean-François Raskin.

Strategy synthesis for multi-dimensional quantitative objectives. Acta Informatica, 51(3-4):129–163, 2014.

Kousha Etessami, Marta Z. Kwiatkowska, Moshe Y. Vardi, and Mihalis Yannakakis.

Multi-objective model checking of Markov decision processes. LMCS, 4(4), 2008.

References III

J.A. Filar, D. Krass, and K.W. Ross.

 $\label{eq:percentile performance criteria for limiting average markov decision processes. \\ Automatic Control, IEEE Transactions on, 40(1):2–10, 1995. \\$

Michael R. Garey and David S. Johnson.

Computers and intractability: a guide to the Theory of NP-Completeness. Freeman New York, 1979.

Oded Goldreich.

On promise problems: A survey.

In Theoretical Computer Science, Essays in Memory of Shimon Even, LNCS 3895, pages 254–290. Springer, 2006.

Christoph Haase and Stefan Kiefer.

The odds of staying on budget. CoRR, abs/1409.8228, 2014.

Martin L. Puterman.

Markov Decision Processes: Discrete Stochastic Dynamic Programming. John Wiley & Sons, Inc., New York, NY, USA, 1st edition, 1994.

Mickael Randour, Jean-François Raskin, and Ocan Sankur.

Percentile queries in multi-dimensional Markov decision processes. CoRR, abs/1410.4801, 2014.

Mickael Randour, Jean-François Raskin, and Ocan Sankur.

Variations on the stochastic shortest path problem. In Proc. of VMCAI, LNCS 8931, pages 1–18. Springer, 2015.

References IV

Stephen D. Travers.

The complexity of membership problems for circuits over sets of integers. Theor. Comput. Sci., 369(1-3):211–229, 2006.

Michael Ummels and Christel Baier.

Computing quantiles in Markov reward models. In Proc. of FOSSACS, LNCS 7794, pages 353–368. Springer, 2013.

Douglas J. White.

Minimizing a threshold probability in discounted Markov decision processes. J. of Math. Anal. and App., 173(2):634 – 646, 1993.

Congbin Wu and Yuanlie Lin.

Minimizing risk models in Markov decision processes with policies depending on target values. J. of Math. Anal. and App., 231(1), 1999.