
European Journal of Operational Research 291 (2021) 4 91–4 96 

Contents lists available at ScienceDirect 

European Journal of Operational Research 

journal homepage: www.elsevier.com/locate/ejor 

Generalized derivatives of the optimal value of a linear program with 

respect to matrix coefficients 

Daniel De Wolf a , b , ∗, Yves Smeers b 

a TVES (EA 4477), Université du Littoral Côte d’Opale, 220 avenue de l’Université, F-59140 Dunkerque, France 
b CORE, Université Catholique de Louvain, Voie du Roman Pays 34, 1348 Louvain-La-Neuve, Belgique 

a r t i c l e i n f o 

Article history: 

Received 15 February 2019 

Accepted 12 November 2019 

Available online 18 November 2019 

Keywords: 

Linear programming 

Parametric linear programming 

Nondifferentiable programming 

a b s t r a c t 

We present here a characterization of the Clarke subdifferential of the optimal value function of a linear 

program as a function of matrix coefficients. We generalize the result of Freund (1985) to the cases where 

derivatives may not be defined because of the existence of multiple primal or dual solutions. 

© 2020 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

1

 

l  

f  

t  

g

 

t  

o  

m  

l  

t  

t  

t  

t

 

t  

t  

h  

i  

b  

g  

a

2

y

 

o  

o  

i  

u  

F  

m  

s  

c  

w  

S  

c  

c  

o  

t  

t

2

f

 

g  

s  

o  

h

0

. Introduction 

In the framework of linear programming, we consider the prob-

em of estimating the variation of the objective function resulting

rom changes in some matrix coefficients. Our objective is to ex-

end results already available for the right-hand side to this more

eneral problem. 

The interpretation of the dual variables as derivatives of the op-

imal value of the objective function with respect to the elements

f the right-hand side is well known in mathematical program-

ing. This result can be extended to the case of multiple dual so-

utions. The set of all dual solutions is then the subdifferential of

he optimal value of the objective function, seen as a convex func-

ion of the right-hand side. The object of this paper is to extend

hese well known results to the derivative of the optimal value of

he objective function with respect to matrix coefficients. 

It is easy to show on a simple example that the objective func-

ion value of a linear program is not a convex function of the ma-

rix coefficients. The subdifferential concept is thus inappropriate

ere. One must therefore resort to Clarke’s notion of a general-

zed gradient. A characterization of this generalized gradient will

e derived and sufficient conditions of existence of the generalized

radient will be given for this particular application of nonsmooth

nalysis. 
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The paper is organized as follows. Section 2 presents a study

f the literature about generalized derivatives and subdifferentials

f optimal function value. Then Section 3 presents the basic def-

nitions and mains properties of nonmooth analysis that will be

seful for our application. Then In Section 4 we recall the result of

reund (1985) in the smooth case, namely the gradient of the opti-

al value function in the case where the optimal primal and dual

olutions of the linear problem are unique. Then in Section 5 , a

omplete characterization of the generalized gradient for the case

here the primal or dual solutions are not unique is established.

ince the Locally Lipschitz property plays an essential role in this

haracterization, we will give sufficient conditions to prove the Lo-

al Lipschitz property. Section 6 presents a practical application

f this characterization coming from the gas industry, namely, the

wo-stage problem of optimal dimensioning and operating of a gas

ransmission network. Then Section 7 presents some conclusions. 

. Generalized derivatives and subdifferentials of optimal value 

unctions 

Before establishing the main result concerning the generalized

radient of the optimal value function of a linear program with re-

pect to matrix coefficients, let us say a word about the literature

n the problem of the computation of the generalized derivatives

nd subdifferentials of the optimal value function in general opti-

ization problems. 

One of the first papers on the subject was the paper of Gauvin

1979) who considered a general mathematical programming prob-

em with equality and inequality constraints and pertubation of

he right-hand side of the contraints, noted u i for constraint i .

e estimated the generalized gradient of the optimal value of the
nder the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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problem considered as a function of the right-hand side perturba-

tion: 

z(u ) = max x f (x ) , x ∈ R 

n 

s.t. g i (x ) ≤ u i , i = 1 , . . . m 

h i (x ) = u i , i = m + 1 , . . . p 

Note that this case corresponds, for the particular case of a linear

program, to a perturbation of the right-hand side b of the linear

programming problem since we consider a perturbation (noted A

in our case) that appears as a coefficient of the variables x of the

problem . 

Several developments concerning this case (i.e. the perturba-

tion only in the right-hand side of the constraints) where made

since that time. For example, the regularity properties of the op-

timal value function in nonlinear programs where the perturba-

tion parameters appears only in the right-hand side was done

by Craven and Janin (1993) . For affine case, namely when g(x ) =
Ax + b, an expression is given for its directional derivative, not as-

suming the optimum to be unique. Recently, Höffner, Khan, and

Barton (2016) consider the computation of generalized derivatives

of dynamic systems with a linear program embedded. They con-

sider the optimal value of a linear program as a function of the

right-hand side of the constraints and present an approach to com-

pute an element of the generalized gradient. The approach is illus-

trated through a large-scale dynamic flux balance analysis exam-

ple. Last year, Gomez, Höffner, Khan, and Barton (2018) studied the

generalized derivatives problem of parametric Lexicographic Lin-

ear programs using the lexicographic directional derivative (See

Barton, Khan, Stechlinski, and Watson (2018) for a survey on the

lexicographic directional derivative). The paper derives generalized

derivatives information. 

Unfortunately, this results can not be applied to our problem

since the perturbation appears only in the right-hand side of the

contraints and doesn’t appear as a coefficient of the decision’s vari-

ables. 

Rockafellar (1984) considered the directional derivative of the

optimal value function in nonlinear programming problem with

a perturbation u that appears in the left-hand side of the con-

straints: 

z(u ) = max x f (x, u ) , x ∈ R 

n 

s.t. g i (x, u ) ≤ 0 , i = 1 , . . . m (1)

h i (x, u ) = 0 , i = m + 1 , . . . p 

Under the assumption that every optimal solution x ∗ satisfies the

second order constraints qualification condition , Rockafellar proved

that the function z ( u ) is locally Lipchitz and finite. Rockafellar also

gives an upper bound on the generalized derivative of Clarke of the

function z ( u ). 

Note also that many developments were made from this orig-

inal paper for the general case where the perturbation appears

in the left-hand side of the constraints. For example, Thibault

(1991) considered a general mathematical programming problem

in which the constraints are defined by multifunctions and depend

on a parameter u . A special study is done of problems in which

the multifunctions defining the constraints take convex values. For

these problems, generalized gradients of z ( u ) are given in terms

of the generalized gradients of the support functions of the multi-

functions. Bonnans and Shapiro (20 0 0) studied the first order dif-

ferentiability analysis of the optimal value function as a function of

a parameter that appears in the objective function and in the left-

hand side of the contraints. Under a constraint qualification condi-

tion, they give an upper bound on the directional derivative. Note

that in our case of a linear program, we will give a complete char-

acterization of the generalized gradient, not only upper bound on

the directional derivative. Penot (2004) considers the differentia-
ility properties of optimal value functions for the particular case

here the perturbation parameter only appears in the objective

unction. More recently, Mordukhovich, Nam, and Yen (2007) con-

ider the subgradient of marginal functions in parametric math-

matical programming. The authors show that the subdifferential

btained for the corresponding marginal value function are given

n terms of Lagrange multipliers. Last year, Im (2018) studied the

ensitivity analysis for the special case of linear optimization. In

articular, he gives conditions for the objective function value of a

inear problem to be a Locally Lipschitz function of matrix coeffi-

ients. We will use these conditions in our main characterization

f the generalize gradient. 

In the present paper, we shall give a complete characterization

f the generalized gradient for a particular case, namely the linear

ase, and not only upper bound on directional derivative. 

. Basic definitions and properties 

This section recalls some basic concepts and properties of non-

mooth optimization useful for our application. An introduction

o the first-order generalized derivative can be found in Clarke

1990) for the case of a locally Lipschitz function. 

efinition 3.1. A function f from R 

n (or a subset of R 

n ) into R is

ocally Lipschitz if for any bounded set B from the interior of the

omain of f there exists a positive scalar K such that 

 f (x ) − f (y ) | ≤ K‖ x − y ‖ ∀ x, y ∈ B 

here |.| denotes the absolute value and ‖ . ‖ the usual Euclidian

orm. 

The locally Lipschitz property can be interpreted as a finite

ound on the variation of the function. It is well known that the

ocally Lipschitz property implies the continuity of f . 

The Rademacher theorem says that a locally Lipschitz function f

as a gradient almost everywhere (i.e. everywhere except on a set

 f of zero (Lebesque) measure on R 

n ). 

efinition 3.2. In the locally Lipschitz case, the generalized gra-

ient is defined as the convex hull of all the points lim ∇f ( x k )

here { x k } is any sequence which converges to x while avoiding

he points where ∇f ( x ) does not exist: 

f (x ) = con v 
{ 

lim 

k →∞ 

∇ f (x k ) : x k → x, ∇ f (x k ) exists 

} 

(2)

here con v denotes the convex hull. 

Another essential concept in nonsmooth optimization is the di-

ectional derivative. This notion can also be generalized to the non-

onvex case. 

efinition 3.3. The generalized directional derivative of f evaluated

t x in the direction d is defined (using the notation of Clarke) as 

f 0 (x ; d) = lim sup 

y → x ;t↓ 0 
f (y + td) − f (y ) 

t 

In the convex case, this notion reduces to the classical notion

f directional derivative 

f ′ (x ; d) = lim 

t↓ 0 
f (x + td) − f (x ) 

t 

We shall also use the following proposition for the proof of our

haracterization of the generalized gradient: 

roposition 3.1. Let f be a function from R 

n into R almost every-

here continuously differentiable. Then f is continuously differentiable

t x if and only if ∂ f ( x ) reduces to a singleton. 

roof. See Clarke (1990) . �
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We have the following general remark. The definition of the

eneralized gradient (2) is only valid for the locally Lipschitz case.

f the function is simply almost everywhere differentiable, one can

onstruct examples for which the generalized gradient is not de-

ned. A more general definition based on the cone of normals

s given by Clarke (1990) in the case of a lower semi-continuous

unction. 

. Gradient of the optimal value function 

Returning now to our problem, we consider the optimal value

f a linear problem as a function of the matrix coefficients: 

(A ) = max x c 
T x 

ubject to 

{
Ax = b 

x ≥ 0 

(3) 

here c is the n -column vector of objective coefficients, x is the

 -column vector of variables, A is the m × n matrix of left-hand

ide coefficients and b is the m -column vector of right-hand side

oefficients. 

We first recall the result for the smooth case. It is established

n Freund (1985) under the two following assumptions: 

(H1) The optimal solution of the primal problem (3) is unique; 

(H2) The optimal solution of the dual problem of (3) is unique. 

The result in the smooth case can then be written as follows: 

roposition 4.1. ( Freund (1985) ). If assumptions (H1) and (H2) are

oth satisfied for A , then z ( A ) is continuously differentiable and we

ave that 

∂z 

∂a i j 

= −u 

∗
i x 

∗
j (4) 

here u ∗
i 

is the optimal dual variable associated to row i and x ∗
j 

is

he optimal primal variable associated to column j. 

A complete analysis of the subject in the differentiable case can

e found in Gal (1995) . 

. Generalized gradient characterization. 

Before examining the case where the optimal basis is not unique ,

e show on an example that z ( A ) does not enjoy any convexity

roperty. Consider the following linear problem with a single para-

etric matrix coefficient: 

(a ) = min x x 1 + x 2 

.t. 

{
ax 1 + x 2 = 1 

x 1 , x 2 ≥ 0 

Using the constraint, x 2 can be substituted: 

(a ) = min x 1 + (1 − a ) x 1 

s.t. 0 ≤ x 1 ≤ 1 

a 

The optimal objective function can thus be written explicitly

s: 

(a ) = 

{
1 if a < 1 

1 /a if a ≥ 1 

t is clear that z ( a ) is neither convex nor concave. Because of this

ack of convexity, the notion to be used is the Clarke’s generalized

radient. 

If A is such that the linear program is infeasible, we define

(A ) = −∞ . Denote by dom ( z ), the domain where z ( A ) is finite. Be-

ore stating the characterization of the generalized gradient, we
rst recall the following propositions which result from Renegar

1994) . 

roposition 5.1. If the set of optimal primal solutions for A is un-

ounded, then A is not an interior point of dom ( z ) . 

roposition 5.2. If the set of optimal dual solutions for A is un-

ounded, then A is not an interior point of dom ( z ) . 

We will use the following notation u × x for the outer product

f an n -column vector u by the n -row vector x T . The following the-

rem states a characterization of the generalized gradient. 

heorem 5.1. If A is an interior point of dom ( z ) and if z ( A ) is locally

ipschitz in a neighborhood of A , then 

z(A ) = con v {−u × x where u is any optimal dual solution 

and x is any primal optimal solution of (3) } 
roof. 

1. Suppose first that there is a single optimal basis. Since A is

an interior point of dom ( z ), we know by Propositions 5.1 and

5.2 that there are no extreme rays of primal or dual optimal

solutions. In this case, a single optimal basis is a sufficient con-

dition to have primal and dual nondegeneracy. We know from

Proposition 4.1 that ∂z ( A ) reduces to a single matrix, which can

be computed by the following formula: 

∂z(A ) = { −u × x } 
where u and x are the dual and primal solutions associated to

the unique optimal basis for (3) . This proves the theorem. 

2. Suppose next that there are several optimal basis. Lets first in-

troduce some useful notation from linear programming. For a

particular optimal basis, we denote by B the columns of matrix

A corresponding to the basic variables noted x B and we denote

by N the columns of matrix A corresponding to non basic vari-

ables, noted x N . The constraints can by rewritten as follows: 

Ax = b ⇔ (B, N)(x B , x N ) 
T = b ⇔ Bx B = b ⇔ x B = B 

−1 b 

Denote c b the objective coefficient corresponding to basic vari-

ables, it follows that the objective function can be rewritten for

a particular basis as follows: 

z(A ) = c T B B 

−1 b 

We first prove the following inclusion: 

con v {−u × x such that u 

T = c T B B 

−1 , x B = B 

−1 b, x N = 0 

and B corresponds to an optimal basis of (3) } ⊂ ∂z(A ) 

Let B corresponds to an optimal basis of (3) . Since this optimal

basis is not unique, there must be at least one non-basic vari-

able x j with a zero reduced cost: 

c j − c T B B 

−1 a j = 0 

where a j denotes the column j of matrix A . Using the definition

of the vector of dual variables u T = c T 
B 

B −1 , this condition can be

rewritten: 

c j − u 

T a j = 0 

We can exclude the pathological case where u = 0 . In fact, this

case can be treated by a perturbation of the objective coeffi-

cients. This only requires to consider A as the extended matrix

of the system where the objective is added as a constraint. 

We can thus take u i different from zero and define the follow-

ing perturbation of the column a j for any column with zero re-

duced cost: if u i > 0, subtract ε > 0 ( ε < 0 if u i < 0) from the i th

component of a j . For the perturbed problem, all the reduced

costs are strictly positive, and therefore the optimal solution

becomes unique. 
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More specifically, let a sequence of matrices A ( ε) where the ob-

jective function is differentiable conver ging towards matrix A

where it is not differentiable. The primal and dual optimality

conditions hold for each point of the sequence and the opti-

mal primal and dual variables are continuous functions of the

perturbed matrix since this latter is a perturbation of an invert-

ible matrix at the limit point. The limits of the primal and dual

variables at each point of the sequence thus exist and satisfy

the primal dual relations at the limit point. 

It can be concluded that all the points associated with all the

optimal basis for the problem (3) belong to the generalized gra-

dient, since they can be written as the limit of perturbed prob-

lems where the optimal basis is unique and so where the func-

tion z is continuously differentiable in A ( ε) for all ε > 0. 

Now consider the inverse inclusion: 

∂z(A ) ⊂ con v {−u × x such that u 

T = c T B B 

−1 , x B = B 

−1 b, x N = 0 

and B corresponds to an optimal basis of (3) } 
Let { A k } be any sequence such that ∇z ( A k ) exists and converges.

The optimal basis associated with each A k does not have to be

unique. As shown by Freund (1985) , we can have, for a given

matrix A , several degenerate optimal basis although z is contin-

uously differentiable for matrix A . We will show, in this case,

that any optimal basis associated with A k must give the same

point ( . . . , −u i x j , . . . ) . 

Suppose the opposite, that is, there are two different optimal

basis for A k , giving two different points ( . . . , −u 1 
i 
x 1 

j 
, . . . ) and

( . . . , −u 2 
i 
x 2 

j 
, . . . ) respectively. As done in part i) of the proof, the

matrix A k can be perturbed in order to have no more than one

of the two basis optimal. By taking this limit, we obtain that

the first point is in the generalized gradient. By applying the

same procedure of perturbation to the second basis, we show

that the second point is also in the generalized gradient. We

can therefore conclude that ∂z ( A k ) is not a singleton. Applying

Proposition 3.1 , this contradicts the fact that z is continuously

differentiable in A k . 

The gradient can therefore be associated with any of the op-

timal basis. Note by { βk } a sequence of optimal basis for A k 

(i.e. βk is an optimal basis for A k ). By a basis β , we mean here

a partition of the variables between basic and non-basic vari-

ables. As { βk } is an infinite sequence of basis and as there is

only a finite choice of m columns among the n columns of the

A matrix, so there must be a special basis β which is repeated

infinitely often in the sequence. Let { B l } be the subsequence

corresponding to this basis which is repeated infinitely often.

The corresponding subsequence { ( . . . , −x j u i , . . . ) } l of gradients

associated with this basis converges to the same point as the

original sequence. As 

c T N − c T B (B l ) 
−1 ≥ 0 

(B l ) 
−1 b ≥ 0 

for all l , these inequalities remain true for l → ∞ and so { B l }

converges to an optimal basis for (3) . This completes the proof

of the reverse inclusion. 

3. We finally show that 

∂z(A ) = con v {−u × x where u is any optimal dual solution 

and x is any primal optimal solution of (3) } 
Because the sets of primal and dual optimal solutions corre-

sponding to point A are bounded by Propositions 5.1 and 5.2 ,

u and x are convex combinations of extreme dual and primal

solutions respectively. Let 
u = 

∑ 

k 

μk u 

k where 
∑ 

k 

μk = 1 and μk ≥ 0 

x = 

∑ 

l 

λl x 
l where 

∑ 

l 

λl = 1 and λl ≥ 0 

Suppose first that u is a convex combination of extreme u k 

while x is an extreme optimal point. One has 

u i x j = 

∑ 

k 

λk u 

k 
i x j 

for a given set of λk and for all i and j . Therefore 

−u × x = −
∑ 

k 

λk u 

k × x k 

This implies that 

con v {−u × x where u is any optimal dual solution 

and x B = B 

−1 b, x N = 0 , where B is the optimal basis } 
= con v {−u × x where u = c T B B 

−1 , x B = B 

−1 b, 

x N = 0 and B is any optimal basis of (3) } 
The same reasoning can be made in order to relax the require-

ment that x is an extreme solution into the weaker one that x

is any optimal solution of problem (3) . �

Before illustrating the theorem on an example, let us say a

ew words about the requirements for A to be an interior point

f dom ( z ) and for z ( A ) to be Lipschitz in a neighborhood of A . Im

2018) proves that these two requirements holds true if the follow-

ng conditions are satisfied: 

ssumption 5.1. The matrix A is of full rank and the Slater con-

traints qualification is satisfied. 

roposition 5.3. If matrix A is a full rank matrix and if the Slater

onstraints qualification is satisfied, then 

• A is an interior point of dom ( z ) and 
• the function z ( A ) is Lipchitz in a neighborhood of A. 

roof. See Im (2018) , pages 74–76. 

As indicated by Höffner et al. (2016) , any linear program can be

educed to an equivalent linear program that satisfies the full rank

roperty for A by removing linearly dependent rows. 

The following simple example illustrates Theorem 5.1 : 

(a ) = max 
x 

x 1 + x 2 

s.t. 

{ 

x 1 + 2 x 2 ≤ 3 

x 1 + ax 2 ≤ 2 

x 1 , x 2 ≥ 0 

he feasible region and the objective function are represented in

ig. 1 for the particular choice of a = 1. 

For a = 1 , there exists two different basic solutions. The first

ne is obtained with x 1 and x 2 in the basis: (x 1 , x 2 ) = (1 , 1) and

he reduced cost of s 1 , the first slack variable, is zero. The sec-

nd solution is obtained by taking x 1 and s 1 in the basis: (x 1 , x 2 ) =
(2 , 0) and the reduced cost of x 2 is zero. In both cases, the optimal

ual values are given by (u 1 , u 2 ) = (0 , 1) . 

Take a = 1 − ε and let ε go to zero. We obtain the first solu-

ion and the reduced cost associated to s 1 is strictly negative. Take

 = 1 + ε and let ε go to zero. We obtain the second solution and

he reduced cost associated to x 2 is strictly negative. The extreme

oints of the generalized gradient are thus: 

u 2 x 2 = −1 (first case) 

u 2 x 2 = 0 (second case). 

ne therefore obtains: 

z(1) = [ −1 , 0] 
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Fig. 1. Illustrative example. 

Fig. 2. Graph of the optimal value of the objective function. 
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n fact, the general expression of z ( a ) can be computed explicitly

s: 

(a ) = 

{ 

3 a − 5 

a − 2 

if a < 1 

2 if a ≥ 1 

he graph of the optimal value of the function z ( a ) is represented

n Fig. 2 as a function of parameter a . The two points −1 and 0

orrespond thus to the left- and right-derivatives of z ( a ) at point

 = 1 respectively. �

. Pratical application 

The motivation for considerating the computation of the gener-

lized gradient of the objective function of a linear problem with

espect to the matrix coefficients is the general problem where

here is a two-stage problem where at the first stage a capacity

nvestment decision is made and at the second stage the operating

f the system is optimized taking into account this investment de-

ision. In some cases, the investment decision appears in the right-

and side (such as capacity level decision). We consider the case

here the investment decision appears as coefficient of the second-

tage decision variables. Let us illustrate this fact with an example

rom the gas industry. 
Consider the problem of the optimal dimensioning of pipe

etworks for the transmission of natural gas. See, for example,

e Wolf and Smeers (1996) who consider the following two-stage

roblem for investment and exploitation of gas transmission net-

orks. At the first stage, the optimal diameters of pipe lines , de-

oted D , must be determined in order to minimize the sum of the

irect investment cost function , denoted C ( D ), and Q ( D ), the future

perating cost function . 

min D F (D ) = C(D ) + Q(D ) 

s.t. D i j ≥ 0 , ∀ (i, j) ∈ SA 

(5) 

here SA denotes the set of arcs of the network. 

The operations problem for a given choice of the diameters can

hus be formulated as follows: 

(D ) = min 

f,s,p 

∑ 

j∈ N s 
c j s j 

.t. 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

∑ 

j | (i, j ) ∈ A 
f i j −

∑ 

j| ( j,i ) ∈ A 
f ji = s i ∀ i ∈ N 

sign ( f i j ) f 
2 
i j = K 

2 
i j D 

5 
i j (p 2 i − p 2 j ) ∀ (i, j) ∈ SA 

s i ≤ s i ≤ s i ∀ i ∈ N 

p i ≤ p i ≤ p i ∀ i ∈ N 

(6) 

here the variables of the problem are f ij , the flow in the arc ( i , j ),

 i , the net supply at the node i and p i , the pressures at node i . The

et of nodes is denoted N . For simplicity of notation, we define the

ariable π i as the square of the pressure at node i : 

i = p 2 i . 

Let us replace in the only nonlinear relation of exploitation

roblem (6) , the D ij variable by the following substitute: 

 i j = D 

5 
i j 

n fact, taking the x ij as parameters, we find that they appear as

inear coefficients of the squared pressure variables in the equa-

ion: 

ign ( f i j ) f 
2 
i j − K 

2 
i j D 

5 
i j (πi − π j ) = 0 . (7)

De Wolf and Smeers (20 0 0) solve the problem of the gas trans-

ission problem by an extension of the Simplex algorithm using

iecewise linearisation of the first term sign ( f i j ) f 
2 
i j 

. We are thus

ack in the linear case. Let w 

∗
i j 

be the optimal value of the dual

ariable associated with constraint (7) . Applying Theorem 5.1 , one

btains an element of the generalized gradient by: 

∂Q 

∂x i j 

= w 

∗
i j K 

2 
i j (π

∗
i − π ∗

j ) (8) 

ow, to obtain an element of the generalized gradient with respect

o the original variables ( D ij ), one uses the chain rule for the com-

osition of derivative with: 

∂x i j 

∂D i j 

= 5 D 

4 
i j . 

t is then easy to prove that the following expression gives an ele-

ent of the generalized gradient of Q ( D ): 

∂Q(D ) 

∂D i j 

= w 

∗
i j (π

∗
i − π ∗

j )5 K 

2 
i j D 

4 
i j (9) 

his formula gives thus an element of the generalized gradient,

hich is the only information required by the bundle method

See Lemaréchal (1989) ) used to solve the two stage problem. See

e Wolf and Smeers (1996) for the application of the bundle

ethod to this two-stage problem. 
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7. Conclusions 

It has been shown in this paper how the first-order derivatives

of the optimal solution of a linear program with respect to matrix

coefficients can be generalized to the nonsmooth case, even when

the optimal function as a function of matrix coefficients admits

breakpoints. Our result, Theorem 5.1 , emphasizes the fundamen-

tal role played by bases in this respect. The extreme points of the

generalized gradient correspond to all the different optimal basis.

A practical application to gas transmission network optimization,

which was in fact the motivation for considering such a formula,

was then presented. 
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