Percentile Queries

in

Multi-Dimensional Markov Decision Processes

Mickael Randour (LSV - CNRS \& ENS Cachan) Jean-François Raskin (ULB) Ocan Sankur (ULB)

01.06.2015

LACL seminar, UPEC

UNIVERSITÉ
LIBRE
DE BRUXELLES

The talk in one slide

Strategy synthesis for Markov Decision Processes (MDPs)

Finding good controllers for systems interacting with a stochastic environment.

The talk in one slide

Strategy synthesis for Markov Decision Processes (MDPs)

Finding good controllers for systems interacting with a stochastic environment.

■ Good? Performance evaluated through payoff functions.
■ Usual problem is to optimize the expected performance or the probability of achieving a given performance level.
■ Not sufficient for many practical applications.
\triangleright Several extensions, more expressive but also more complex...

The talk in one slide

Strategy synthesis for Markov Decision Processes (MDPs)

Finding good controllers for systems interacting with a stochastic environment.

■ Good? Performance evaluated through payoff functions.
■ Usual problem is to optimize the expected performance or the probability of achieving a given performance level.
■ Not sufficient for many practical applications.
\triangleright Several extensions, more expressive but also more complex...

Aim of this talk

Multi-constraint percentile queries: generalizes the problem to multiple dimensions, multiple constraints.

Advertisement

Full paper available on arXiv [RRS14]: abs/1410.4801

To appear in CAV'15 [RRS15a]

Percentile Queries in Multi-Dimensional Markov Dec
Processe Université de Mons (UMONS), Belgium Computer Science Department, Université de Mons Livelles (U.L.B.), Belgiun Cepartenent d'Informatique, Université Libre de Bruxe

- decision processes (MDPs) are wsefull th eighted Markov decision processes (anke necessary the ana
end
and bstract. Multi-dimensionan that are potentives percentile queries in ititi-dimensional weight Abst with multiple objectidy the complech constraints. Ge study (one per dimensill dimension i offs. In this. paper, we strategies that enforce sutitative thresholds enforces that or orlem for the class

1 Context, MDPs, Strategies

2 Percentile Queries

3 Shortest Path

4 Discounted Sum

5 Conclusion

1 Context, MDPs, Strategies

2 Percentile Queries

3 Shortest Path

4 Discounted Sum

5 Conclusion

Context

■ Verification and synthesis:
\triangleright a reactive system to control,
\triangleright an interacting environment,
\triangleright a specification to enforce.

Context

■ Verification and synthesis:
\triangleright a reactive system to control,
\triangleright an interacting environment,
\triangleright a specification to enforce.
■ Model of the (discrete) interaction?
\triangleright Antagonistic environment: 2-player game on graph.
\triangleright Stochastic environment: MDP.

Context

- Verification and synthesis:
\triangleright a reactive system to control,
\triangleright an interacting environment,
\triangleright a specification to enforce.
- Model of the (discrete) interaction?
\triangleright Antagonistic environment: 2-player game on graph.
\triangleright Stochastic environment: MDP.
- Quantitative specifications. Examples:
\triangleright Reach a state s before x time units \leadsto shortest path.
\triangleright Minimize the average response-time \sim mean-payoff.

Context

■ Verification and synthesis:
\triangleright a reactive system to control,
\triangleright an interacting environment,
\triangleright a specification to enforce.
■ Model of the (discrete) interaction?
\triangleright Antagonistic environment: 2-player game on graph.
\triangleright Stochastic environment: MDP.
■ Quantitative specifications. Examples:
\triangleright Reach a state s before x time units \sim shortest path.
\triangleright Minimize the average response-time \leadsto mean-payoff.
■ Focus on multi-criteria quantitative models
\triangleright to reason about trade-offs and interplays.

Strategy (policy) synthesis for MDPs

Markov decision processes

- MDP $M=(S, A, \delta, w)$
\triangleright finite sets of states S and actions A \triangleright probabilistic transition $\delta: S \times A \rightarrow \mathcal{D}(S)$ \triangleright weight function $w: A \rightarrow \mathbb{Z}^{d}$

■ Run (or play): $\rho=s_{1} a_{1} \ldots a_{n-1} s_{n} \ldots$ such that $\delta\left(s_{i}, a_{i}, s_{i+1}\right)>0$ for all $i \geq 1$
\triangleright set of runs $\mathcal{R}(M)$
\triangleright set of histories (finite runs) $\mathcal{H}(M)$

- Strategy $\sigma: \mathcal{H}(M) \rightarrow \mathcal{D}(A)$
$\triangleright \forall h$ ending in $s, \operatorname{Supp}(\sigma(h)) \in A(s)$

Markov decision processes

Sample pure memoryless strategy σ Sample run $\rho=s_{1}$

Markov decision processes

Sample pure memoryless strategy σ
Sample run $\rho=s_{1} a_{1}$

Markov decision processes

Sample pure memoryless strategy σ
Sample run $\rho=s_{1} a_{1} s_{2}$

Markov decision processes

Sample pure memoryless strategy σ
Sample run $\rho=s_{1} a_{1} s_{2} a_{2}$

Markov decision processes

Sample pure memoryless strategy σ
Sample run $\rho=s_{1} a_{1} s_{2} a_{2} s_{1}$

Markov decision processes

Sample pure memoryless strategy σ
Sample run $\rho=s_{1} a_{1} s_{2} a_{2} s_{1} a_{1}$

Markov decision processes

Sample pure memoryless strategy σ
Sample run $\rho=s_{1} a_{1} s_{2} a_{2} s_{1} a_{1} s_{2}$

Markov decision processes

Sample pure memoryless strategy σ
Sample run $\rho=s_{1} a_{1} s_{2} a_{2} s_{1} a_{1} s_{2} a_{2}$

Markov decision processes

Sample pure memoryless strategy σ
Sample run $\rho=s_{1} a_{1} s_{2} a_{2} s_{1} a_{1} s_{2} a_{2} s_{3}$

Markov decision processes

Sample pure memoryless strategy σ
Sample run $\rho=s_{1} a_{1} s_{2} a_{2} s_{1} a_{1} s_{2} a_{2} s_{3} a_{3}$

Markov decision processes

Sample pure memoryless strategy σ
Sample run $\rho=s_{1} a_{1} s_{2} a_{2} s_{1} a_{1} s_{2} a_{2} s_{3} a_{3} s_{4}$

Markov decision processes

Sample pure memoryless strategy σ
Sample run $\rho=s_{1} a_{1} s_{2} a_{2} s_{1} a_{1} s_{2} a_{2} s_{3} a_{3} s_{4} a_{4}$

Markov decision processes

Sample pure memoryless strategy σ
Sample run $\rho=s_{1} a_{1} s_{2} a_{2} s_{1} a_{1} s_{2} a_{2}\left(s_{3} a_{3} s_{4} a_{4}\right)^{\omega}$

Markov decision processes

Sample pure memoryless strategy σ
Sample run $\rho=s_{1} a_{1} s_{2} a_{2} s_{1} a_{1} s_{2} a_{2}\left(s_{3} a_{3} s_{4} a_{4}\right)^{\omega}$
Other possible run $\rho^{\prime}=s_{1} a_{1} s_{2} a_{2}\left(s_{3} a_{3} s_{4} a_{4}\right)^{\omega}$

Markov decision processes

Sample pure memoryless strategy σ
Sample run $\rho=s_{1} a_{1} s_{2} a_{2} s_{1} a_{1} s_{2} a_{2}\left(s_{3} a_{3} s_{4} a_{4}\right)^{\omega}$
Other possible run $\rho^{\prime}=s_{1} a_{1} s_{2} a_{2}\left(s_{3} a_{3} s_{4} a_{4}\right)^{\omega}$

- Strategies may use
\triangleright finite or infinite memory
\triangleright randomness
- Payoff functions map runs to numerical values
\triangleright truncated sum up to $T=\left\{s_{3}\right\}$: $\operatorname{TS}^{T}(\rho)=2, \operatorname{TS}^{T}\left(\rho^{\prime}\right)=1$
\triangleright mean-payoff: $\underline{\mathrm{MP}}(\rho)=\underline{\mathrm{MP}}\left(\rho^{\prime}\right)=1 / 2$
\triangleright many more

Markov chains

Once initial state $s_{\text {init }}$ and strategy σ fixed, fully stochastic process $~$ Markov chain (MC)

Markov chains

Once initial state $s_{\text {init }}$ and strategy σ fixed, fully stochastic process $~$ Markov chain (MC)

State space $=$ product of the MDP and the memory of σ

Markov chains

Once initial state $s_{\text {init }}$ and strategy σ fixed, fully stochastic process $~$ Markov chain (MC)

State space $=$ product of the MDP and the memory of σ

■ Event $\mathcal{E} \subseteq \mathcal{R}(M)$
\triangleright probability $\mathbb{P}_{M, s_{\text {int }}}^{\sigma}(\mathcal{E})$
■ Measurable $f: \mathcal{R}(M) \rightarrow(\mathbb{R} \cup\{-\infty, \infty\})^{d}$ \triangleright expected value $\mathbb{E}_{M, \text { s init }^{\prime}}^{\sigma}(f)$

1 Context, MDPs, Strategies

2 Percentile Queries

3 Shortest Path

4 Discounted Sum

5 Conclusion

Single-constraint percentile problem

Ensuring a given performance level with sufficient probability \triangleright uni-dimensional weight function $w: A \rightarrow \mathbb{Z}$ and payoff function $f: \mathcal{R}(M) \rightarrow \mathbb{R} \cup\{-\infty, \infty\}$
\triangleright well-studied for various payoffs

Single-constraint percentile problem

Given MDP $M=(S, A, \delta, w)$, initial state $s_{\text {init }}$, payoff function f, value threshold $v \in \mathbb{Q}$, and probability threshold $\alpha \in[0,1] \cap \mathbb{Q}$, decide if there exists a strategy σ such that

$$
\mathbb{P}_{M, s_{\text {init }}}^{\sigma}\left[\left\{\rho \in \mathcal{R}_{s_{\text {init }}}(M) \mid f(\rho) \geq v\right\}\right] \geq \alpha
$$

Single-constraint percentile problem

Ensuring a given performance level with sufficient probability \triangleright uni-dimensional weight function $w: A \rightarrow \mathbb{Z}$ and payoff function $f: \mathcal{R}(M) \rightarrow \mathbb{R} \cup\{-\infty, \infty\}$
\triangleright well-studied for various payoffs

Single-constraint percentile problem

Given MDP $M=(S, A, \delta, w)$, initial state $s_{\text {init }}$, payoff function f, value threshold $v \in \mathbb{Q}$, and probability threshold $\alpha \in[0,1] \cap \mathbb{Q}$, decide if there exists a strategy σ such that

$$
\mathbb{P}_{M, \text { sinit }}^{\sigma}\left[\left\{\rho \in \mathcal{R}_{s_{\text {init }}}(M) \mid f(\rho) \geq v\right\}\right] \geq \alpha .
$$

\triangleright percentile constraint, shortened $\mathbb{P}_{M, s_{\text {init }}}^{\sigma}[f \geq v] \geq \alpha$

Illustration: stochastic shortest path problem

Shortest path (SP) problem for weighted graphs
Given state $s \in S$ and target set $T \subseteq S$, find a path from s to a state $t \in T$ that minimizes the sum of weights along edges.
\triangleright PTIME algorithms (Dijkstra, Bellman-Ford, etc) [CGR96]

Illustration: stochastic shortest path problem

Shortest path (SP) problem for weighted graphs

Given state $s \in S$ and target set $T \subseteq S$, find a path from s to a state $t \in T$ that minimizes the sum of weights along edges.
\triangleright PTIME algorithms (Dijkstra, Bellman-Ford, etc) [CGR96]
For SP, we focus on MDPs with positive weights
\triangleright Truncated sum payoff function for $\rho=s_{1} a_{1} s_{2} a_{2} \ldots$ and target set T :

$$
\operatorname{TS}^{T}(\rho)=\left\{\begin{array}{l}
\sum_{j=1}^{n-1} w\left(a_{j}\right) \text { if } s_{n} \text { first visit of } T \\
\infty \text { if } T \text { is never reached }
\end{array}\right.
$$

Illustration: stochastic shortest path problem

Two-dimensional weights on actions: time and cost.
Often necessary to consider trade-offs: e.g., between the probability to reach work in due time and the risks of an expensive journey.

Illustration: stochastic shortest path problem

Classical problem considers only a single percentile constraint.

- C1: 80% of runs reach work in at most 40 minutes.
\triangleright Taxi $\sim \leq 10$ minutes with probability $0.99>0.8$.

Illustration: stochastic shortest path problem

Classical problem considers only a single percentile constraint.

- C1: 80% of runs reach work in at most 40 minutes.
\triangleright Taxi $\sim \leq 10$ minutes with probability $0.99>0.8$.
- C2: 50% of them cost at most $10 \$$ to reach work.
\triangleright Bus $\sim \geq 70 \%$ of the runs reach work for $3 \$$.

Illustration: stochastic shortest path problem

Classical problem considers only a single percentile constraint.
■ C1: 80% of runs reach work in at most 40 minutes.
\triangleright Taxi $\sim \leq 10$ minutes with probability $0.99>0.8$.
■ C2: 50% of them cost at most $10 \$$ to reach work.
\triangleright Bus $\sim \geq 70 \%$ of the runs reach work for $3 \$$.
Taxi $\not \models \mathrm{C} 2$, bus $\not \vDash \mathrm{C} 1$. What if we want $\mathrm{C} 1 \wedge \mathrm{C} 2$?

Illustration: stochastic shortest path problem

- C1: 80% of runs reach work in at most 40 minutes.

■ C2: 50% of them cost at most $10 \$$ to reach work.

Study of multi-constraint percentile queries.

\triangleright Sample strategy: bus once, then taxi. Requires memory.
\triangleright Another strategy: bus with probability $3 / 5$, taxi with probability $2 / 5$. Requires randomness.

Illustration: stochastic shortest path problem

- C1: 80% of runs reach work in at most 40 minutes.

■ C2: 50% of them cost at most $10 \$$ to reach work.

Study of multi-constraint percentile queries.

In general, both memory and randomness are required.
\neq classical problems (single constraint, expected value, etc)

Multi-constraint percentile problem

Multi-constraint percentile problem

Given d-dimensional MDP $M=(S, A, \delta, w)$, initial state $s_{\text {init }}$, payoff function f, and $q \in \mathbb{N}$ percentile constraints described by dimensions $l_{i} \in\{1, \ldots, d\}$, value thresholds $v_{i} \in \mathbb{Q}$ and probability thresholds $\alpha_{i} \in[0,1] \cap \mathbb{Q}$, where $i \in\{1, \ldots, q\}$, decide if there exists a strategy σ such that query \mathcal{Q} holds, with

$$
\mathcal{Q}:=\bigwedge_{i=1}^{q} \mathbb{P}_{M, s_{\text {init }}}^{\sigma}\left[f_{l_{i}} \geq v_{i}\right] \geq \alpha_{i}
$$

Very general framework allowing for: multiple constraints related to \neq or $=$ dimensions, \neq value and probability thresholds.
\leadsto For SP, even \neq targets for each constraint.
\leadsto Great flexibility in modeling applications.

Results overview (1/2)

- Wide range of payoff functions
\triangleright multiple reachability,
\triangleright inf, sup, liminf, limsup,
\triangleright mean-payoff ($\overline{\mathrm{MP}}, \underline{\mathrm{MP}}$),
\triangleright shortest path (SP),
\triangleright discounted sum (DS).

Results overview (1/2)

- Wide range of payoff functions
\triangleright multiple reachability,
\triangleright mean-payoff ($\overline{\mathrm{MP}}, \mathrm{MP}$),
\triangleright shortest path (SP),
\triangleright discounted sum (DS).
■ Several variants:
\triangleright multi-dim. multi-constraint,
\triangleright single-dim. multi-constraint,
\triangleright single-constraint.

Results overview (1/2)

- Wide range of payoff functions
\triangleright multiple reachability,
\triangleright inf, sup, lim inf, lim sup,
\triangleright mean-payoff ($\overline{\mathrm{MP}}, \mathrm{MP}$),
\triangleright shortest path (SP),
\triangleright discounted sum (DS).
■ Several variants:
\triangleright multi-dim. multi-constraint,
\triangleright single-dim. multi-constraint,
\triangleright single-constraint.
- For each one:
\triangleright algorithms,
\triangleright lower bounds,
\triangleright memory requirements.
\leadsto Complete picture for this new framework.

Results overview (2/2)

	Single-constraint	Single-dim. Multi-constraint	Multi-dim. Multi-constraint
Reachability	P [Put94]	$\mathrm{P}(\mathrm{M}) \cdot \mathrm{E}(\mathcal{Q})$ [EKVY08], PSPACE-h	-
$f \in \mathcal{F}$	P [CH09]	P	$\mathrm{P}(M) \cdot \mathrm{E}(\mathcal{Q})$ PSPACE-h.
$\overline{\mathrm{MP}}$	P [Put94]	P	P
MP	P [Put94]	$\mathrm{P}(\mathrm{M}) \cdot \mathrm{E}(\mathcal{Q})$	$\mathrm{P}(\mathrm{M}) \cdot \mathrm{E}(\mathcal{Q})$
SP	$\begin{aligned} & \mathrm{P}(M) \cdot \mathrm{P}_{p s}(\mathcal{Q})[\mathrm{HK} 15 \mathrm{~b}] \\ & \text { PSPACE-h. [HK15b] } \end{aligned}$	$\begin{gathered} \mathrm{P}(M) \cdot \mathrm{P}_{p s}(\mathcal{Q}) \text { (one target) } \\ \text { PSPACE-h. [HK15b] } \end{gathered}$	$\mathrm{P}(M) \cdot \mathrm{E}(\mathcal{Q})$ PSPACE-h. [HK15b]
ε-gap DS	$\begin{gathered} \mathrm{P}_{p s}(M, \mathcal{Q}, \varepsilon) \\ \text { NP-h. } \end{gathered}$	$\begin{gathered} \mathrm{P}_{p s}(M, \varepsilon) \cdot \mathrm{E}(\mathcal{Q}) \\ \text { NP-h. } \end{gathered}$	$\begin{aligned} & \hline \mathrm{P}_{p s}(M, \varepsilon) \cdot \mathrm{E}(\mathcal{Q}) \\ & \mathrm{PSPACE}-\mathrm{h} . \end{aligned}$

$\triangleright \mathcal{F}=\{$ inf, sup, lim inf, lim sup $\}$
$\triangleright M=$ model size, $\mathcal{Q}=$ query size
$\triangleright \mathrm{P}(x), \mathrm{E}(x)$ and $\mathrm{P}_{p s}(x)$ resp. denote polynomial, exponential and pseudo-polynomial time in parameter x.

All results without reference are new.

Results overview (2/2)

	Single-constraint	Single-dim. Multi-constraint	Multi-dim. Multi-constraint
Reachability	P [Put94]	$\mathrm{P}(M) \cdot \mathrm{E}(\mathcal{Q})$ [EKVY08], PSPACE-h	-
$f \in \mathcal{F}$	P [CH09]	P	$\mathrm{P}(M) \cdot \mathrm{E}(\mathcal{Q})$ PSPACE-h.
$\overline{\mathrm{MP}}$	P [Put94]	P	P
MP	P [Put94]	$\mathrm{P}(\mathrm{M}) \cdot \mathrm{E}(\mathcal{Q})$	$\mathrm{P}(\mathrm{M}) \cdot \mathrm{E}(\mathcal{Q})$
SP	$\begin{aligned} & \mathrm{P}(M) \cdot \mathrm{P}_{p s}(\mathcal{Q})[\mathrm{HK} 15 \mathrm{~b}] \\ & \mathrm{PSPACE}-\mathrm{h} .[\mathrm{HK} 15 \mathrm{~b}] \end{aligned}$	$\begin{gathered} \mathrm{P}(M) \cdot \mathrm{P}_{p s}(\mathcal{Q}) \text { (one target) } \\ \text { PSPACE-h. [HK15b] } \end{gathered}$	$\begin{gathered} \mathrm{P}(M) \cdot \mathrm{E}(\mathcal{Q}) \\ \text { PSPACE-h. }[\mathrm{HK} 15 \mathrm{~b}] \end{gathered}$
ε-gap DS	$\begin{gathered} \mathrm{P}_{p s}(M, \mathcal{Q}, \varepsilon) \\ \text { NP-h. } \end{gathered}$	$\begin{gathered} \mathrm{P}_{p s}(M, \varepsilon) \cdot \mathrm{E}(\mathcal{Q}) \\ \text { NP-h. } \end{gathered}$	$\begin{aligned} & \mathrm{P}_{p s}(M, \varepsilon) \cdot \mathrm{E}(\mathcal{Q}) \\ & \text { PSPACE-h. } \end{aligned}$

In most cases, only polynomial in the model size.
\triangleright In practice, the query size can often be bounded while the model can be very large.

Results overview (2/2)

	Single-constraint	Single-dim. Multi-constraint	Multi-dim. Multi-constraint
Reachability	P [Put94]	$\mathrm{P}(M) \cdot \mathrm{E}(\mathcal{Q})$ [EKVY08], PSPACE-h	-
$f \in \mathcal{F}$	P [CH09]	P	$\mathrm{P}(M) \cdot \mathrm{E}(\mathcal{Q})$ PSPACE-h.
$\overline{\mathrm{MP}}$	P [Put94]	P	P
MP	P [Put94]	$\mathrm{P}(\mathrm{M}) \cdot \mathrm{E}(\mathcal{Q})$	$\mathrm{P}(\mathrm{M}) \cdot \mathrm{E}(\mathcal{Q})$
SP	$\begin{aligned} & \mathrm{P}(M) \cdot \mathrm{P}_{p s}(\mathcal{Q})[\mathrm{HK} 15 \mathrm{~b}] \\ & \mathrm{PSPACE}-\mathrm{h} .[\mathrm{HK} 15 \mathrm{~b}] \end{aligned}$	$\begin{gathered} \mathrm{P}(M) \cdot \mathrm{P}_{p s}(\mathcal{Q}) \text { (one target) } \\ \text { PSPACE-h. [HK15b] } \end{gathered}$	$\begin{gathered} \mathrm{P}(M) \cdot \mathrm{E}(\mathcal{Q}) \\ \text { PSPACE-h. }[\mathrm{HK} 15 \mathrm{~b}] \end{gathered}$
ε-gap DS	$\begin{gathered} \mathrm{P}_{p s}(M, \mathcal{Q}, \varepsilon) \\ \text { NP-h. } \end{gathered}$	$\begin{gathered} \mathrm{P}_{p s}(M, \varepsilon) \cdot \mathrm{E}(\mathcal{Q}) \\ \text { NP-h. } \end{gathered}$	$\begin{aligned} & \hline \mathrm{P}_{p s}(M, \varepsilon) \cdot \mathrm{E}(\mathcal{Q}) \\ & \mathrm{PSPACE}-\mathrm{h} . \end{aligned}$

No time to discuss every result!

Results overview (2/2)

	Single-constraint	Single-dim. Multi-constraint	Multi-dim. Multi-constraint
Reachability	P [Put94]	$\mathrm{P}(\mathrm{M}) \cdot \mathrm{E}(\mathcal{Q})$ [EKVY08], PSPACE-h	-
$f \in \mathcal{F}$	P [CH09]	P	$\mathrm{P}(M) \cdot \mathrm{E}(\mathcal{Q})$ PSPACE-h.
$\overline{\mathrm{MP}}$	P [Put94]	P	P
MP	P [Put94]	$\mathrm{P}(\mathrm{M}) \cdot \mathrm{E}(\mathcal{Q})$	$\mathrm{P}(\mathrm{M}) \cdot \mathrm{E}(\mathcal{Q})$
SP	$\begin{aligned} & \mathrm{P}(M) \cdot \mathrm{P}_{p s}(\mathcal{Q})[\mathrm{HK} 15 \mathrm{~b}] \\ & \mathrm{PSPACE}-\mathrm{h} .[\mathrm{HK} 15 \mathrm{~b}] \end{aligned}$	$\begin{gathered} \mathrm{P}(M) \cdot \mathrm{P}_{p s}(\mathcal{Q}) \text { (one target) } \\ \text { PSPACE-h. [HK15b] } \end{gathered}$	$\begin{gathered} \mathrm{P}(M) \cdot \mathrm{E}(\mathcal{Q}) \\ \text { PSPACE-h. }[\mathrm{HK} 15 \mathrm{~b}] \end{gathered}$
ε-gap DS	$\begin{gathered} \mathrm{P}_{p s}(M, \mathcal{Q}, \varepsilon) \\ \text { NP-h. } \end{gathered}$	$\begin{gathered} \mathrm{P}_{p s}(M, \varepsilon) \cdot \mathrm{E}(\mathcal{Q}) \\ \text { NP-h. } \end{gathered}$	$\begin{aligned} & \mathrm{P}_{p s}(M, \varepsilon) \cdot \mathrm{E}(\mathcal{Q}) \\ & \text { PSPACE-h. } \end{aligned}$

Four groups of results

1 Reachability. Algorithm based on multi-objective linear programming (LP) in [EKVY08]. We refine the complexity analysis, provide LBs and tractable subclasses.
\triangleright Useful tool for many payoff functions!

Results overview (2/2)

	Single-constraint	Single-dim. Multi-constraint	Multi-dim. Multi-constraint
Reachability	P [Put94]	$\mathrm{P}(M) \cdot \mathrm{E}(\mathcal{Q})$ [EKVY08], PSPACE-h	-
$f \in \mathcal{F}$	P [CH09]	P	$\mathrm{P}(M) \cdot \mathrm{E}(\mathcal{Q})$ PSPACE-h.
$\overline{\mathrm{MP}}$	P [Put94]	P	P
MP	P [Put94]	$\mathrm{P}(\mathrm{M}) \cdot \mathrm{E}(\mathcal{Q})$	$\mathrm{P}(\mathrm{M}) \cdot \mathrm{E}(\mathcal{Q})$
SP	$\begin{aligned} & \mathrm{P}(M) \cdot \mathrm{P}_{p s}(\mathcal{Q})[\mathrm{HK} 15 \mathrm{~b}] \\ & \mathrm{PSPACE}-\mathrm{h} .[\mathrm{HK} 15 \mathrm{~b}] \end{aligned}$	$\begin{gathered} \mathrm{P}(M) \cdot \mathrm{P}_{p s}(\mathcal{Q}) \text { (one target) } \\ \text { PSPACE-h. [HK15b] } \end{gathered}$	$\begin{gathered} \mathrm{P}(M) \cdot \mathrm{E}(\mathcal{Q}) \\ \text { PSPACE-h. }[\mathrm{HK} 15 \mathrm{~b}] \end{gathered}$
ε-gap DS	$\begin{gathered} \mathrm{P}_{p s}(M, \mathcal{Q}, \varepsilon) \\ \text { NP-h. } \end{gathered}$	$\begin{gathered} \mathrm{P}_{p s}(M, \varepsilon) \cdot \mathrm{E}(\mathcal{Q}) \\ \text { NP-h. } \end{gathered}$	$\begin{aligned} & \mathrm{P}_{p s}(M, \varepsilon) \cdot \mathrm{E}(\mathcal{Q}) \\ & \text { PSPACE-h. } \end{aligned}$

Four groups of results

$2 \mathcal{F}$ and $\overline{\mathrm{MP}}$. Easiest cases.
\triangleright inf and sup: reduction to multiple reachability.
$\triangleright \lim \inf$, lim sup and $\overline{\mathrm{MP}}$: maximal end-component (MEC) decomposition + reduction to multiple reachability.

Results overview (2/2)

	Single-constraint	Single-dim. Multi-constraint	Multi-dim. Multi-constraint
Reachability	P [Put94]	$\mathrm{P}(\mathrm{M}) \cdot \mathrm{E}(\mathcal{Q})$ [EKVY08], PSPACE-h	-
$f \in \mathcal{F}$	P [CH09]	P	$\mathrm{P}(M) \cdot \mathrm{E}(\mathcal{Q})$ PSPACE-h.
$\overline{\mathrm{MP}}$	P [Put94]	P	P
MP	P [Put94]	$\mathrm{P}(M) \cdot \mathrm{E}(\mathcal{Q})$	$\mathrm{P}(\mathrm{M}) \cdot \mathrm{E}(\mathcal{Q})$
SP	$\begin{aligned} & \mathrm{P}(M) \cdot \mathrm{P}_{p s}(\mathcal{Q})[\mathrm{HK} 15 \mathrm{~b}] \\ & \text { PSPACE-h. [HK15b] } \end{aligned}$	$\begin{gathered} \mathrm{P}(M) \cdot \mathrm{P}_{p s}(\mathcal{Q}) \text { (one target) } \\ \text { PSPACE-h. [HK15b] } \end{gathered}$	$\begin{gathered} \mathrm{P}(M) \cdot \mathrm{E}(\mathcal{Q}) \\ \text { PSPACE-h. }[\mathrm{HK} 15 \mathrm{~b}] \end{gathered}$
ε-gap DS	$\begin{gathered} \mathrm{P}_{p s}(M, \mathcal{Q}, \varepsilon) \\ \text { NP-h. } \end{gathered}$	$\begin{gathered} \mathrm{P}_{p s}(M, \varepsilon) \cdot \mathrm{E}(\mathcal{Q}) \\ \mathrm{NP}-\mathrm{h} . \end{gathered}$	$\begin{aligned} & \mathrm{P}_{p s}(M, \varepsilon) \cdot \mathrm{E}(\mathcal{Q}) \\ & \text { PSPACE-h. } \end{aligned}$

Four groups of results

3 MP. Technically involved.
\triangleright Inside MECs: (a) strategies satisfying maximal subsets of constraints, (b) combine them linearly.
\triangleright Overall: write an LP combining multiple reachability toward MECs and those linear combinations equations.

Results overview (2/2)

	Single-constraint	Single-dim. Multi-constraint	Multi-dim. Multi-constraint
Reachability	P [Put94]	$\mathrm{P}(\mathrm{M}) \cdot \mathrm{E}(\mathcal{Q})$ [EKVY08], PSPACE-h	-
$f \in \mathcal{F}$	P [CH09]	P	$\mathrm{P}(M) \cdot \mathrm{E}(\mathcal{Q})$ PSPACE-h.
$\overline{\mathrm{MP}}$	P [Put94]	P	P
MP	P [Put94]	$\mathrm{P}(\mathrm{M}) \cdot \mathrm{E}(\mathcal{Q})$	$\mathrm{P}(\mathrm{M}) \cdot \mathrm{E}(\mathcal{Q})$
SP	$\begin{aligned} & \mathrm{P}(M) \cdot \mathrm{P}_{p s}(\mathcal{Q})[\mathrm{HK} 15 \mathrm{~b}] \\ & \mathrm{PSPACE}-\mathrm{h} .[\mathrm{HK} 15 \mathrm{~b}] \end{aligned}$	$\begin{gathered} \mathrm{P}(M) \cdot \mathrm{P}_{p s}(\mathcal{Q}) \text { (one target) } \\ \text { PSPACE-h. [HK15b] } \end{gathered}$	$\begin{gathered} \mathrm{P}(M) \cdot \mathrm{E}(\mathcal{Q}) \\ \text { PSPACE-h. }[\mathrm{HK} 15 \mathrm{~b}] \end{gathered}$
ε-gap DS	$\begin{gathered} \mathrm{P}_{p s}(M, \mathcal{Q}, \varepsilon) \\ \text { NP-h. } \end{gathered}$	$\begin{gathered} \mathrm{P}_{p s}(M, \varepsilon) \cdot \mathrm{E}(\mathcal{Q}) \\ \text { NP-h. } \end{gathered}$	$\begin{aligned} & \mathrm{P}_{p s}(M, \varepsilon) \cdot \mathrm{E}(\mathcal{Q}) \\ & \text { PSPACE-h. } \end{aligned}$

Four groups of results

4 SP and DS. Based on unfoldings and multiple reachability.
\triangleright For SP, we bound the size of the unfolding by node merging.
\triangleright For DS, we can only approximate the answer in general. Need to analyze the cumulative error due to necessary roundings.

Results overview (2/2)

	Single-constraint	Single-dim. Multi-constraint	Multi-dim. Multi-constraint
Reachability	P [Put94]	$\mathrm{P}(M) \cdot \mathrm{E}(\mathcal{Q})$ [EKVY08], PSPACE-h	-
$f \in \mathcal{F}$	P [CH09]	P	$\mathrm{P}(M) \cdot \mathrm{E}(\mathcal{Q})$ PSPACE-h.
$\overline{\mathrm{MP}}$	P [Put94]	P	P
MP	P [Put94]	$\mathrm{P}(\mathrm{M}) \cdot \mathrm{E}(\mathcal{Q})$	$\mathrm{P}(\mathrm{M}) \cdot \mathrm{E}(\mathcal{Q})$
SP	$\begin{aligned} & \mathrm{P}(M) \cdot \mathrm{P}_{p s}(\mathcal{Q})[\mathrm{HK} 15 \mathrm{~b}] \\ & \mathrm{PSPACE}-\mathrm{h} .[\mathrm{HK} 15 \mathrm{~b}] \end{aligned}$	$\begin{gathered} \mathrm{P}(M) \cdot \mathrm{P}_{p s}(\mathcal{Q}) \text { (one target) } \\ \text { PSPACE-h. [HK15b] } \end{gathered}$	$\begin{gathered} \mathrm{P}(M) \cdot \mathrm{E}(\mathcal{Q}) \\ \text { PSPACE-h. }[\mathrm{HK} 15 \mathrm{~b}] \end{gathered}$
ε-gap DS	$\begin{gathered} \mathrm{P}_{p s}(M, \mathcal{Q}, \varepsilon) \\ \text { NP-h. } \end{gathered}$	$\begin{gathered} \mathrm{P}_{p s}(M, \varepsilon) \cdot \mathrm{E}(\mathcal{Q}) \\ \text { NP-h. } \end{gathered}$	$\begin{aligned} & \hline \mathrm{P}_{p s}(M, \varepsilon) \cdot \mathrm{E}(\mathcal{Q}) \\ & \mathrm{PSPACE}-\mathrm{h} . \end{aligned}$

Four groups of results

4 SP and DS.
\sim Technical focus of this talk.
\triangleright Intuitive unfoldings, interesting tricks for DS.
\triangleright Start simple and iteratively extend the solution.

Some related work

■ Same philosophy (i.e., beyond uni-dimensional \mathbb{E} or \mathbb{P} maximization), \neq approaches.
\triangleright Beyond worst-case synthesis: $\mathbb{E}+$ worst-case [BFRR14b].
\triangleright Survey of recent extensions in VMCAI'15 [RRS15b].

Some related work

■ Same philosophy (i.e., beyond uni-dimensional \mathbb{E} or \mathbb{P} maximization), \neq approaches.
\triangleright Beyond worst-case synthesis: $\mathbb{E}+$ worst-case [BFRR14b].
\triangleright Survey of recent extensions in VMCAI'15 [RRS15b].

- Multi-dim. MDPs: DS [CMH06], MP [$\mathrm{BBC}^{+} 14$, FKR95].

Some related work

■ Same philosophy (i.e., beyond uni-dimensional \mathbb{E} or \mathbb{P} maximization), \neq approaches.
\triangleright Beyond worst-case synthesis: $\mathbb{E}+$ worst-case $[B F R R 14 b]$.
\triangleright Survey of recent extensions in VMCAI'15 [RRS15b].
■ Multi-dim. MDPs: DS [CMH06], MP [BBC^{+}14, FKR95].
■ Many related works for each particular payoff: MP [Put94], SP [UB13, HK15b], DS [Whi93, WL99, BCF ${ }^{+}$13], etc.
\triangleright All with a single constraint.

Some related work

■ Same philosophy (i.e., beyond uni-dimensional \mathbb{E} or \mathbb{P} maximization), \neq approaches.
\triangleright Beyond worst-case synthesis: $\mathbb{E}+$ worst-case [BFRR14b].
\triangleright Survey of recent extensions in VMCAI'15 [RRS15b].
■ Multi-dim. MDPs: DS [CMH06], MP [$\mathrm{BBC}^{+} 14$, FKR95].
■ Many related works for each particular payoff: MP [Put94], SP [UB13, HK15b], DS [Whi93, WL99, BCF ${ }^{+}$13], etc.
\triangleright All with a single constraint.
■ Multi-constraint percentile queries for LTL [EKVY08].
\triangleright Closest to our work.
\triangleright We use multiple reachability.

1 Context, MDPs, Strategies

2 Percentile Queries

3 Shortest Path

4 Discounted Sum

5 Conclusion

Single-constraint queries

Single-constraint percentile problem for SP

Given MDP $M=(S, A, \delta, w)$, initial state $s_{\text {init }}$, target set T, threshold $v \in \mathbb{N}$, and probability threshold $\alpha \in[0,1] \cap \mathbb{Q}$, decide if there exists a strategy σ such that $\mathbb{P}_{M, s_{\text {init }}}^{\sigma}\left[\mathrm{TS}^{T} \leq v\right] \geq \alpha$.
\triangleright Hypothesis: all weights are non-negative.

Theorem

The above problem can be decided in pseudo-polynomial time and is PSPACE-hard. Optimal pure strategies with pseudo-polynomial memory exist and can be constructed in pseudo-polynomial time.
\triangleright Polynomial in the size of the MDP, but also in the threshold v.
\triangleright See [HK15b] for hardness.

Pseudo-PTIME algorithm (1/2)

Key idea: pseudo-PTIME reduction to the stochastic reachability problem (SR - single target).

Pseudo-PTIME algorithm (1/2)

Key idea: pseudo-PTIME reduction to the stochastic reachability problem (SR - single target).

SR problem

Given unweighted MDP $M=(S, A, \delta)$, initial state $s_{\text {init }}$, target set T and probability threshold $\alpha \in[0,1] \cap \mathbb{Q}$, decide if there exists a strategy σ such that $\mathbb{P}_{M, \text { s init }^{\sigma}}[\diamond T] \geq \alpha$.

Theorem

The SR problem can be decided in polynomial time. Optimal pure memoryless strategies exist and can be constructed in polynomial time.
\triangleright Linear programming.

Pseudo-PTIME algorithm (2/2)

Sketch of the reduction
1 Start from $M, T=\left\{s_{2}\right\}$, and $v=7$.

Pseudo-PTIME algorithm (2/2)

Sketch of the reduction
1 Start from $M, T=\left\{s_{2}\right\}$, and $v=7$.
2 Build M_{v} by unfolding M, tracking the current sum up to the threshold v, and integrating it in the states of the expanded MDP.

Pseudo-PTIME algorithm (2/2)

Pseudo-PTIME algorithm (2/2)

3 Bijection between runs of M and M_{v}

$$
\operatorname{TS}^{T}(\rho) \leq v \quad \Leftrightarrow \quad \rho^{\prime} \models \diamond T^{\prime}, T^{\prime}=T \times\{0,1, \ldots, v\}
$$

Pseudo-PTIME algorithm (2/2)

3 Bijection between runs of M and M_{v}

$$
\operatorname{TS}^{T}(\rho) \leq v \quad \Leftrightarrow \quad \rho^{\prime} \models \diamond T^{\prime}, T^{\prime}=T \times\{0,1, \ldots, v\}
$$

4 Solve the SR problem on M_{v}
\triangleright Memoryless strategy in $M_{v} \leadsto$ pseudo-polynomial memory in M in general

Pseudo-PTIME algorithm (2/2)

If we just want to minimize the risk of exceeding $v=7$,
\triangleright an obvious possibility is to play b directly,
\triangleright playing a only once is also acceptable.
For the single-constraint problem, both strategies are equivalent
\sim we can discriminate them with richer queries

Multi-constraint queries (1/2)

Multi-constraint percentile problem for SP

Given d-dimensional MDP $M=(S, A, \delta, w)$, initial state $s_{\text {init }}$ and $q \in \mathbb{N}$ percentile constraints described by target sets $T_{i} \subseteq S$, dimensions $I_{i} \in\{1, \ldots, d\}$, value thresholds $v_{i} \in \mathbb{N}$ and probability thresholds $\alpha_{i} \in[0,1] \cap \mathbb{Q}$, where $i \in\{1, \ldots, q\}$, decide if there exists a strategy σ such that query \mathcal{Q} holds, with

$$
\mathcal{Q}:=\bigwedge_{i=1}^{q} \mathbb{P}_{M, s_{\text {init }}}^{\sigma}\left[\mathrm{TS}_{l_{i}}^{T_{i}} \leq v_{i}\right] \geq \alpha_{i}
$$

where $\mathrm{TS}_{I_{i}}^{T_{i}}$ denotes the truncated sum on dimension I_{i} and w.r.t. target set T_{i}.

Multi-constraint queries (2/2)

Theorem

This problem can be decided in

- exponential time in general,
- pseudo-polynomial time for single-dimension single-target multi-contraint queries.
It is PSPACE-hard even for single-constraint queries. Randomized exponential-memory strategies are always sufficient and in general necessary, and can be constructed in exponential time.
\triangleright Polynomial in the size of the MDP, blowup due to the query.
\triangleright Hardness already true for single-constraint [HK15b].
\leadsto wide extension for basically no price in complexity.
Undecidable for arbitrary weights (2CM reduction)!

EXPTIME / pseudo-PTIME algorithm

1 Build an unfolded MDP M_{v} similar to single-constraint case:
\triangleright stop unfolding when all dimensions reach sum $v=\max _{i} v_{i}$.

EXPTIME / pseudo-PTIME algorithm

1 Build an unfolded MDP M_{v} similar to single-constraint case:
\triangleright stop unfolding when all dimensions reach sum $v=\max _{i} v_{i}$.
2 Maintain single-exponential size by defining an equivalence relation between states of M_{v} :
$\triangleright S_{v} \subseteq S \times(\{0, \ldots, v\} \cup\{\perp\})^{d}$,
\triangleright pseudo-poly. if $d=1$.

EXPTIME / pseudo-PTIME algorithm

1 Build an unfolded MDP M_{v} similar to single-constraint case:
\triangleright stop unfolding when all dimensions reach sum $v=\max _{i} v_{i}$.
2 Maintain single-exponential size by defining an equivalence relation between states of M_{v} :
$\triangleright S_{v} \subseteq S \times(\{0, \ldots, v\} \cup\{\perp\})^{d}$,
\triangleright pseudo-poly. if $d=1$.
3 For each constraint i, compute a target set R_{i} in M_{v} :
$\triangleright \rho \models$ constraint i in $M \Leftrightarrow \rho^{\prime} \models \diamond R_{i}$ in M_{v}.

EXPTIME / pseudo-PTIME algorithm

1 Build an unfolded MDP M_{v} similar to single-constraint case:
\triangleright stop unfolding when all dimensions reach sum $v=\max _{i} v_{i}$.
2 Maintain single-exponential size by defining an equivalence relation between states of M_{v} :
$\triangleright S_{v} \subseteq S \times(\{0, \ldots, v\} \cup\{\perp\})^{d}$,
\triangleright pseudo-poly. if $d=1$.
3 For each constraint i, compute a target set R_{i} in M_{v} :
$\triangleright \rho \models$ constraint i in $M \Leftrightarrow \rho^{\prime} \models \diamond R_{i}$ in M_{v}.
4 Solve a multiple reachability problem on M_{v}.
\triangleright Generalizes the SR problem [EKVY08, RRS14].
\triangleright Time polynomial in M_{v} but exponential in q.
\triangleright Single-dim. single target queries \Rightarrow absorbing targets \Rightarrow polynomial-time algorithm for multiple reachability.

Randomness is always necessary

\triangleright For any payoff function and a sufficiently general query.
\triangleright Example: multiple reachability.

$$
\exists ? \sigma: \mathbb{P}_{M, s_{0}}^{\sigma}\left[\diamond s_{1}\right] \geq 0.5 \wedge \mathbb{P}_{M, s_{0}}^{\sigma}\left[\diamond s_{2}\right] \geq 0.5
$$

Need to play s_{1} and s_{2} with probability $1 / 2$.

1 Context, MDPs, Strategies

2 Percentile Queries

3 Shortest Path

4 Discounted Sum

5 Conclusion

Multi-constraint queries

Multi-constraint percentile problem for DS

Given d-dimensional MDP $M=(S, A, \delta, w)$, initial state $s_{\text {init }}$ and $q \in \mathbb{N}$ percentile constraints described by discount factors $\left.\lambda_{i} \in\right] 0,1\left[\cap \mathbb{Q}\right.$, dimensions $I_{i} \in\{1, \ldots, d\}$, value thresholds $v_{i} \in \mathbb{N}$ and probability thresholds $\alpha_{i} \in[0,1] \cap \mathbb{Q}$, where $i \in\{1, \ldots, q\}$, decide if there exists a strategy σ such that query \mathcal{Q} holds, with

$$
\mathcal{Q}:=\bigwedge_{i=1}^{q} \mathbb{P}_{M, s_{\text {init }}}^{\sigma}\left[\operatorname{DS}_{l_{i}}^{\lambda_{i}} \geq \boldsymbol{v}_{i}\right] \geq \alpha_{i}
$$

where $\operatorname{DS}_{l_{i}}^{\lambda_{i}}(\rho)=\sum_{j=1}^{\infty} \lambda_{i}^{j} \cdot w_{l_{i}}\left(a_{j}\right)$ denotes the discounted sum on dimension I_{i} and w.r.t. discount factor λ_{i}.

We allow arbitrary weights.

Precise discounted sum problem is hard

Precise DS problem

Given value $t \in \mathbb{Q}$, and discount factor $\lambda \in] 0,1[$, does there exist an infinite binary sequence $\tau=\tau_{1} \tau_{2} \tau_{3} \ldots \in\{0,1\}^{\omega}$ such that $\sum_{j=1}^{\infty} \lambda^{j} \cdot \tau_{j}=t ?$
\triangleright Reduces to an almost-sure percentile problem on a single-state 2-dim. MDP.
\triangleright Still not known to be decidable!
\leadsto related to open questions such as the universality problem for discounted-sum automata [BHO15, CFW13, BH14].

Precise discounted sum problem is hard

Precise DS problem

Given value $t \in \mathbb{Q}$, and discount factor $\lambda \in] 0,1[$, does there exist an infinite binary sequence $\tau=\tau_{1} \tau_{2} \tau_{3} \ldots \in\{0,1\}^{\omega}$ such that $\sum_{j=1}^{\infty} \lambda^{j} \cdot \tau_{j}=t ?$
\triangleright Reduces to an almost-sure percentile problem on a single-state 2-dim. MDP.
\triangleright Still not known to be decidable!
\leadsto related to open questions such as the universality problem for discounted-sum automata [BHO15, CFW13, BH14].

We cannot solve the exact problem but we can approximate

 correct answers.
ε-gap percentile problem $(1 / 3)$

- Classical decision problem.
\triangleright Two types of inputs: yes-inputs and no-inputs.
\triangleright Correct answers required for both types.

ε-gap percentile problem (1/3)

- Classical decision problem.
\triangleright Two types of inputs: yes-inputs and no-inputs.
\triangleright Correct answers required for both types.
- Promise problem [Gol06].
\triangleright Three types: yes-inputs, no-inputs, remaining inputs.
\triangleright Correct answers required for yes-inputs and no-inputs, arbitrary answer OK for the remaining ones.

ε-gap percentile problem (1/3)

- Classical decision problem.
\triangleright Two types of inputs: yes-inputs and no-inputs.
\triangleright Correct answers required for both types.
- Promise problem [Gol06].
\triangleright Three types: yes-inputs, no-inputs, remaining inputs.
\triangleright Correct answers required for yes-inputs and no-inputs, arbitrary answer OK for the remaining ones.
- ε-gap problem.
\triangleright The uncertainty zone can be made arbitrarily small, parametrized by value $\varepsilon>0$.

ε-gap percentile problem $(2 / 3)$

We build an algorithm.
■ Inputs: query \mathcal{Q} and precision factor $\varepsilon>0$.
■ Output: Yes, No or Unknown.
\triangleright If Yes, then a strategy exists and can be synthesized.
\triangleright If No, then no strategy exists.
\triangleright Answer Unknown can only be output within an uncertainty zone of size $\sim \varepsilon$.
\Rightarrow Incremental approximation scheme.

ε-gap percentile problem (3/3)

Theorem

There is an algorithm that, given an MDP, a percentile query \mathcal{Q} for the DS and a precision factor $\varepsilon>0$, solves the following ε-gap problem in exponential time. It answers

- Yes if there is a strategy satisfying query $\mathcal{Q}_{2 \cdot \varepsilon}$;
- No if there is no strategy satisfying query $\mathcal{Q}_{-2 \cdot \varepsilon}$;
- and arbitrarily otherwise.
\triangleright Shifted query: $\mathcal{Q}_{x} \equiv \mathcal{Q}$ with value thresholds $v_{i}+x$ (all other things being equal).

ε-gap percentile problem (3/3)

Theorem

There is an algorithm that, given an MDP, a percentile query \mathcal{Q} for the DS and a precision factor $\varepsilon>0$, solves the following ε-gap problem in exponential time. It answers

- Yes if there is a strategy satisfying query $\mathcal{Q}_{2 \cdot \varepsilon}$;
- No if there is no strategy satisfying query $\mathcal{Q}_{-2 \cdot \varepsilon}$;
- and arbitrarily otherwise.
\triangleright Shifted query: $\mathcal{Q}_{x} \equiv \mathcal{Q}$ with value thresholds $v_{i}+x$ (all other things being equal).
+ PSPACE-hard ($d \geq 2$, subset-sum games [Tra06]), NP-hard for $q=1$ (K-th largest subset problem [BFRR14b, HK15a]), exponential memory sufficient and necessary.

Algorithm: key ideas

1 Goal: multiple reachability over appropriate unfolding.

Algorithm: key ideas

1 Goal: multiple reachability over appropriate unfolding.
2 Finite unfolding?
\triangleright Sums not necessarily increasing ($\neq \mathrm{SP}$).
\Rightarrow Not easy to know when to stop.

Algorithm: key ideas

1 Goal: multiple reachability over appropriate unfolding.
2 Finite unfolding?
\triangleright Sums not necessarily increasing ($\neq \mathrm{SP}$).
\Rightarrow Not easy to know when to stop.
\triangleright Use the discount factor.
\Rightarrow Weights contribute less and less to the sum along a run.
\Rightarrow The range of possible futures narrows the deeper we go.
\Rightarrow Cutting all branches after a pseudo-polynomial depth changes the overall sum by at most $\varepsilon / 2$.

Algorithm: key ideas

1 Goal: multiple reachability over appropriate unfolding.
2 Pseudo-polynomial depth.
\triangleright 2-exponential unfolding overall!

Algorithm: key ideas

1 Goal: multiple reachability over appropriate unfolding.
2 Pseudo-polynomial depth.
\triangleright 2-exponential unfolding overall!
3 Reduce the overall size?
\triangleright No direct merging of nodes (no integer labels, $\neq \mathrm{SP}$), too many possible label values.
\triangleright Introduce a rounding scheme of the numbers involved (inspired by $\left[\mathrm{BCF}^{+} 13\right]$).
\Rightarrow We bound the error due to cumulated roundings by $\varepsilon / 2$.
\Rightarrow Single-exponential width.

Algorithm: key ideas

1 Goal: multiple reachability over appropriate unfolding.
2 Pseudo-polynomial depth.
3 Single-exponential width.
4 Leaf labels are off by at most ε. Classify each leaf w.r.t. each constraint.
\sim Same idea as for SP.
\Rightarrow Defining target sets for multiple reachability.
\triangleright Leaves can be good, bad or uncertain (if too close to threshold).

Algorithm: key ideas

1 Goal: multiple reachability over appropriate unfolding.
2 Pseudo-polynomial depth.
3 Single-exponential width.
4 Leaf labels are off by at most ε. Classify each leaf w.r.t. each constraint.
\triangleright Leaves can be good, bad or uncertain (if too close to threshold).

5 Finally, two multiple reachability problems to solve.
\triangleright If OK for good leaves, then answer Yes.
\triangleright If KO for good but OK for uncertain, then answer Unknown.
\triangleright If KO for both, then answer No.

Algorithm: key ideas

1 Goal: multiple reachability over appropriate unfolding.
2 Pseudo-polynomial depth.
3 Single-exponential width.
4 Leaf labels are off by at most ε. Classify each leaf w.r.t. each constraint.
\triangleright Leaves can be good, bad or uncertain (if too close to threshold).

5 Finally, two multiple reachability problems to solve.
\triangleright If OK for good leaves, then answer Yes.
\triangleright If KO for good but OK for uncertain, then answer Unknown.
\triangleright If KO for both, then answer No.

That solves the ε-gap problem.

1 Context, MDPs, Strategies

2 Percentile Queries

3 Shortest Path

4 Discounted Sum

5 Conclusion

Summary

■ Multi-constraint percentile queries.
\triangleright Generalizes the classical threshold probability problem.
■ Wide range of payoffs: reachability, inf, sup, lim inf, lim sup, mean-payoff, shortest path, discounted sum.
\triangleright Various techniques are needed.
■ Complexity usually acceptable.
\triangleright Often only polynomial in the model size, while exponential in the query size for the most general variants.

Results overview

	Single-constraint	Single-dim. Multi-constraint	Multi-dim. Multi-constraint
Reachability	P [Put94]	$\mathrm{P}(M) \cdot \mathrm{E}(\mathcal{Q})$ [EKVY08], PSPACE-h	-
$f \in \mathcal{F}$	P [CH09]	P	$\mathrm{P}(M) \cdot \mathrm{E}(\mathcal{Q})$ PSPACE-h.
$\overline{\mathrm{MP}}$	P [Put94]	P	P
MP	P [Put94]	$\mathrm{P}(\mathrm{M}) \cdot \mathrm{E}(\mathcal{Q})$	$\mathrm{P}(\mathrm{M}) \cdot \mathrm{E}(\mathcal{Q})$
SP	$\begin{aligned} & \mathrm{P}(M) \cdot \mathrm{P}_{p s}(\mathcal{Q})[\mathrm{HK} 15 \mathrm{~b}] \\ & \mathrm{PSPACE}-\mathrm{h} .[\mathrm{HK} 15 \mathrm{~b}] \end{aligned}$	$\begin{gathered} \mathrm{P}(M) \cdot \mathrm{P}_{p s}(\mathcal{Q}) \text { (one target) } \\ \text { PSPACE-h. [HK15b] } \end{gathered}$	$\begin{gathered} \mathrm{P}(M) \cdot \mathrm{E}(\mathcal{Q}) \\ \text { PSPACE-h. }[\mathrm{HK} 15 \mathrm{~b}] \end{gathered}$
ε-gap DS	$\begin{gathered} \mathrm{P}_{p s}(M, \mathcal{Q}, \varepsilon) \\ \text { NP-h. } \end{gathered}$	$\begin{gathered} \mathrm{P}_{p s}(M, \varepsilon) \cdot \mathrm{E}(\mathcal{Q}) \\ \mathrm{NP}-\mathrm{h} . \end{gathered}$	$\begin{aligned} & \hline \mathrm{P}_{p s}(M, \varepsilon) \cdot \mathrm{E}(\mathcal{Q}) \\ & \operatorname{PSPACE}-\mathrm{h} . \end{aligned}$

$\triangleright \mathcal{F}=\{$ inf, sup, lim inf, lim sup $\}$
$\triangleright M=$ model size, $\mathcal{Q}=$ query size
$\triangleright \mathrm{P}(x), \mathrm{E}(x)$ and $\mathrm{P}_{p s}(x)$ resp. denote polynomial, exponential and pseudo-polynomial time in parameter x.

Thank you! Any question?

References I

Tomáš Brázdil, Václav Brozek, Krishnendu Chatterjee, Vojtech Forejt, and Antonín Kucera. Markov decision processes with multiple long-run average objectives.
LMCS, 10(13):1-29, 2014.
Tomás Brázdil, Taolue Chen, Vojtech Forejt, Petr Novotný, and Aistis Simaitis.
Solvency Markov decision processes with interest.
In Proc. of FSTTCS, LIPIcs 24, pages 487-499. Schloss Dagstuhl - LZI, 2013.
Véronique Bruyère, Emmanuel Filiot, Mickael Randour, and Jean-François Raskin.
Expectations or guarantees? I want it all! A crossroad between games and MDPs. In Proc. of SR, EPTCS 146, pages 1-8, 2014.

Véronique Bruyère, Emmanuel Filiot, Mickael Randour, and Jean-François Raskin.
Meet your expectations with guarantees: Beyond worst-case synthesis in quantitative games.
In Proc. of STACS, LIPIcs 25, pages 199-213. Schloss Dagstuhl - LZI, 2014.
Udi Boker and Thomas A. Henzinger.
Exact and approximate determinization of discounted-sum automata.
LMCS, 10(1), 2014.
Udi Boker, Thomas A. Henzinger, and Jan Otop.
The target discounted-sum problem.
In Proc. of LICS. IEEE, 2015.
Krishnendu Chatterjee, Laurent Doyen, Mickael Randour, and Jean-François Raskin.
Looking at mean-payoff and total-payoff through windows.
In Proc. of ATVA, LNCS 8172, pages 118-132. Springer, 2013.

References II

Krishnendu Chatterjee, Vojtech Forejt, and Dominik Wojtczak.
Multi-objective discounted reward verification in graphs and MDPs.
In Proc. of LPAR, LNCS 8312. Springer, 2013.
Boris V. Cherkassky, Andrew V. Goldberg, and Tomasz Radzik.
Shortest paths algorithms: Theory and experimental evaluation.
Math. programming, 73(2):129-174, 1996.

Krishnendu Chatterjee and Thomas A. Henzinger.
Probabilistic systems with limsup and liminf objectives.
In Margaret Archibald, Vasco Brattka, Valentin Goranko, and Benedikt Löwe, editors, Infinity in Logic and Computation, volume 5489 of Lecture Notes in Computer Science, pages 32-45. Springer Berlin Heidelberg, 2009.

Krishnendu Chatterjee, Rupak Majumdar, and Thomas A. Henzinger.
Markov decision processes with multiple objectives.
In Bruno Durand and Wolfgang Thomas, editors, STACS 2006, volume 3884 of Lecture Notes in Computer Science, pages 325-336. Springer Berlin Heidelberg, 2006.

Krishnendu Chatterjee, Mickael Randour, and Jean-François Raskin.
Strategy synthesis for multi-dimensional quantitative objectives.
Acta Informatica, 51(3-4):129-163, 2014.
Kousha Etessami, Marta Z. Kwiatkowska, Moshe Y. Vardi, and Mihalis Yannakakis.
Multi-objective model checking of Markov decision processes.
LMCS, 4(4), 2008.

References III

J.A. Filar, D. Krass, and K.W. Ross.

Percentile performance criteria for limiting average markov decision processes.
Automatic Control, IEEE Transactions on, 40(1):2-10, 1995.
Oded Goldreich.
On promise problems: A survey.
In Theoretical Computer Science, Essays in Memory of Shimon Even, LNCS 3895, pages 254-290. Springer, $20 \overline{06}$.

Christoph Haase and Stefan Kiefer.
The complexity of the Kth largest subset problem and related problems.
CoRR, abs/1501.06729, 2015.
Christoph Haase and Stefan Kiefer.
The odds of staying on budget.
In Proc. of ICALP, LNCS. Springer, 2015.
Martin L. Puterman.
Markov Decision Processes: Discrete Stochastic Dynamic Programming.
John Wiley \& Sons, Inc., New York, NY, USA, 1st edition, 1994.

Mickael Randour, Jean-François Raskin, and Ocan Sankur.
Percentile queries in multi-dimensional Markov decision processes.
CoRR, abs/1410.4801, 2014.
Mickael Randour, Jean-François Raskin, and Ocan Sankur.
Percentile queries in multi-dimensional Markov decision processes.
In Proc. of CAV, LNCS. Springer, 2015.

References IV

Mickael Randour, Jean-François Raskin, and Ocan Sankur.
Variations on the stochastic shortest path problem.
In Proc. of VMCAI, LNCS 8931, pages 1-18. Springer, 2015.
Stephen D. Travers.
The complexity of membership problems for circuits over sets of integers.
Theor. Comput. Sci., 369(1-3):211-229, 2006.
Michael Ummels and Christel Baier.
Computing quantiles in Markov reward models.
In Proc. of FOSSACS, LNCS 7794, pages 353-368. Springer, 2013.
Douglas J. White.
Minimizing a threshold probability in discounted Markov decision processes.
J. of Math. Anal. and App., 173(2):634-646, 1993.

Congbin Wu and Yuanlie Lin.
Minimizing risk models in Markov decision processes with policies depending on target values.
J. of Math. Anal. and App., 231(1), 1999.

Stochastic reachability - LP

For each $s \in S$, one variable x_{s}.
under constraints

$$
\min \sum_{s \in S} x_{s}
$$

$$
\begin{array}{ll}
x_{s}=1 & \forall s \in T, \\
x_{s}=0 & \forall s \in S \text { which cannot reach } T, \\
x_{s} \geq \sum_{s^{\prime} \in S} \delta\left(s, a, s^{\prime}\right) \cdot x_{s^{\prime}} & \forall a \in A(s) .
\end{array}
$$

Optimal solution $\Rightarrow \mathbf{v}_{s}$ is the maximal probability to reach T that can be achieved from s.

Pure memoryless strategy σ^{v} for all $s \notin T$ that can reach T :

$$
\sigma^{\vee}(s)=\arg \max _{a \in A(s)}\left[\sum_{s^{\prime} \in S} \delta\left(s, a, s^{\prime}\right) \cdot x_{s^{\prime}}\right]
$$

SP with arbitrary weights: undecidability $(1 / 2)$

Consider a $2 \mathrm{CM} \mathcal{M}$. From this 2 CM , we construct an MDP $M=(S, A, \delta, w)$ and a target set of states $T \subset S$, with an initial state $s_{\text {init }} \in S$ such that there exists a strategy $\sigma \in \Sigma$ satisfying the four-dimensional percentile query

$$
\mathcal{Q}:=\bigwedge_{i=1}^{4} \mathbb{P}_{M, s_{\text {init }}}^{\sigma}\left[\mathrm{TS}_{l_{i}}^{T} \leq 0\right]=1
$$

if and only if the machine does not halt.
Halting state $\notin \mathrm{T}$: halting $\Rightarrow \mathrm{TS}^{T}=\infty$.

SP with arbitrary weights: undecidability (2/2)

(a) Increment C_{1}.

(c) Halting.

(e) Escape gadget reachable by every action of the MDP.

